
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

TreeSync: Authenticated Group Management
for Messaging Layer Security

Théophile Wallez, Inria Paris; Jonathan Protzenko, Microsoft Research;
Benjamin Beurdouche, Mozilla; Karthikeyan Bhargavan, Inria Paris

https://www.usenix.org/conference/usenixsecurity23/presentation/wallez

TreeSync: Authenticated Group Management for Messaging Layer Security

Théophile Wallez
Inria Paris

Jonathan Protzenko
Microsoft Research

Benjamin Beurdouche
Mozilla

Karthikeyan Bhargavan
Inria Paris

Abstract
Messaging Layer Security (MLS), currently undergoing stan-
dardization at the IETF, is an asynchronous group messaging
protocol that aims to be efficient for large dynamic groups,
while providing strong guarantees like forward secrecy (FS)
and post-compromise security (PCS). While prior work on
MLS has extensively studied its group key establishment
component (called TreeKEM), many flaws in early designs
of MLS have stemmed from its group integrity and authen-
tication mechanisms that are not as well-understood. In this
work, we identify and formalize TreeSync: a sub-protocol
of MLS that specifies the shared group state, defines group
management operations, and ensures consistency, integrity,
and authentication for the group state across all members.

We present a precise, executable, machine-checked formal
specification of TreeSync, and show how it can be composed
with other components to implement the full MLS proto-
col. Our specification is written in F∗ and serves as a refer-
ence implementation of MLS; it passes the RFC test vectors
and is interoperable with other MLS implementations. Using
the DY∗ symbolic protocol analysis framework, we formal-
ize and prove the integrity and authentication guarantees of
TreeSync, under minimal security assumptions on the rest of
MLS. Our analysis identifies a new attack and we propose
several changes that have been incorporated in the latest MLS
draft. Ours is the first testable, machine-checked, formal spec-
ification for MLS, and should be of interest to both developers
and researchers interested in this upcoming standard.

1 Introduction

Whether WhatsApp, Signal, Facebook Messenger, or Wire,
virtually all modern messaging applications prominently ad-
vertise end-to-end encryption (E2EE) as one of their core
features, confirming that private, secure communications are
becoming a baseline expectation for many users. Unlike short-
lived HTTPS connections, however, messaging conversations
can run for years, and so the security guarantees of messaging

must account for the realistic possibility that one of the de-
vices is stolen or otherwise compromised during the lifetime
of the conversation. If an adversary compromises a device, it
can of course read recent messages and send new messages,
but we would still like to protect messages that were sent
or received well in the past, i.e. forward secrecy (FS), and
messages that will be sent or received in the future after a
period of healing, i.e. post-compromise security (PCS).

For two-party conversations, messaging applications rely
on modern protocols like Signal [34] to provide FS and PCS
by regularly updating (or ratcheting) the message encryption
keys [36]. However, many messaging conversations involve
groups of more than two parties. Indeed, since many users
have several devices, even a chat between two individuals
becomes a group conversation under the hood.

Group Messaging. The fundamental difference between
group messaging and two-party conversations is that groups
are dynamic: participants may enter or leave at any time,
meaning that the membership (or roster) evolves over time.
The message encryption keys must also evolve with changes
in the roster, so that, for example, a member who has been
removed from the group cannot read subsequent messages. To
keep track of the group membership, each member needs to
continuously synchronize and authenticate the current group
state, so they know who they are talking to.

The security requirements for group messaging are also
more complex: confidentiality properties like FS and PCS
need to be adapted for groups where any member device may
be compromised, and authentication guarantees must now
also include group membership authentication and sender
authentication within the group. Groups can also grow quite
large, so a group messaging protocol must provide all these
guarantees while scaling to a roster with up to thousands of
members. See [44] for a detailed discussion on the challenges
of group messaging and a survey of proposed designs.

Current group messaging applications meet a subsets of
these requirements. For example, WhatsApp uses the Signal
Sender Keys protocol [32] which uses two-party Signal chan-

USENIX Association 32nd USENIX Security Symposium 1217

nels between each pair of members to distribute keys for group
conversations. This protocol provides FS and sender authenti-
cation, but does not authenticate group membership, does not
provide PCS, and its reliance on n2 Signal channels in groups
of size n does not scale to large groups. Signal recently added
a private group system [22] that adds membership authentica-
tion and privacy but does not improve efficiency.

To address this state of affairs, the IETF has convened a
working group tasked with designing a new secure group mes-
saging protocol, dubbed MLS (Messaging Layer Security).
MLS is nearing publication, and an early implementation is al-
ready deployed in RingCentral and Cisco’s Webex video con-
ferencing platform. The security of MLS is of great interest,
as it is likely to be adopted by several messaging applications.

IETF MLS. The IETF MLS working group is tasked with
designing a protocol that achieves the goals described in the
MLS architecture [12]. The architecture assumes the exis-
tence of a trusted authentication service (AS), which attests
to relationships between member identities and their authenti-
cation credentials. It also assumes the existence of a mostly-
untrusted delivery service (DS), which stores and delivers
messages to endpoints and defines a globally unique order for
all group modifications. A malicious DS may ignore some
messages, or partition the group by selectively delivering mes-
sages, but it cannot read or write group messages.

The MLS protocol is currently at version 16 [8] and is
in the final stages of standardization. The first few drafts of
the MLS protocol were primarily concerned with efficiently
establishing group keys for large groups. The starting point
was Asynchronous Ratcheting Trees (ART) [23], a protocol
that uses a tree of Diffie-Hellman keys to efficiently update
and distribute group keys, providing both FS and PCS. ART
was replaced (in draft 2) by a more efficient alternative called
TreeKEM [13] that is based on Hybrid Public Key Encryp-
tion [10]. Subsequent drafts refined and improved TreeKEM,
but the fundamental key establishment mechanism remains
the same. The TreeKEM protocol (and many of its variants)
have been formally analyzed in the literature [3–5, 21].

The group key established by TreeKEM is then used to
derive a tree of message encryption keys that each group
member can use to send and receive application messages,
via a protocol we call TreeDEM (introduced in draft 7).

Both TreeKEM and TreeDEM rely on a group state data
structure that must be synchronized across all current mem-
bers. Most of the remaining complexity of MLS is in defining
this data structure, specifying how members can modify the
group state to add and remove members, and how the group
state is synchronized and authenticated between members.
Indeed, many of the recent significant changes in the protocol
have been motivated by strengthening the integrity and au-
thentication guarantees of the group state against insider and
outsider attacks. For example, an early attack called double
join allowed a member to resist future removal by surrepti-

tiously adding itself to the group. Avoiding this attack resulted
in significant changes to the treatment of the member removal,
at the cost of making TreeKEM less efficient. More recent
authentication attacks on new members [5, 14] motivated the
design of a complex parent hash mechanism to protect the
integrity of the group state. Despite these attacks and result-
ing changes, the authentication mechanisms of MLS have not
been studied in their own right, and prior works have primar-
ily seen group management from the narrow lens of its impact
on key establishment in TreeKEM.

Contributions. In this paper, we focus specifically on the
group state management and authentication mechanisms of
MLS, which we identify as a separate sub-protocol called
TreeSync. We show that MLS can be cleanly decomposed into
TreeKEM, TreeDEM, and TreeSync, allowing us to state and
prove the authentication and integrity guarantees of TreeSync
independently of TreeKEM and TreeDEM.

We present a machine-checked formal security analysis of
a byte-level precise specification of TreeSync written in the F∗

programming language [43]. Our specification is executable
and serves as a reference implementation of MLS, which we
test and evaluate against other implementations.

Our analysis uncovers a new attack that exploits the inter-
action between TreeSync and TreeDEM, and also highlights
other issues in MLS. We propose fixes for these issues, which
have been incorporated into MLS.

We prove a series of integrity and authentication theorems
for TreeSync in MLS draft 16, using the DY∗ symbolic pro-
tocol analysis framework [15]. Notably, our proofs make no
assumptions on the security of TreeKEM, and we only need
minimal assumptions on the use of signatures in TreeDEM.

Ours is the first testable, machine-checked, formal speci-
fication for MLS. It covers all details of the protocol down
to the precise message formats, and hence may be of inde-
pendent interest to developers and researchers interested in
MLS. Conversely, our proofs are only for TreeSync; although
we formally specify both TreeKEM and TreeDEM, we leave
their comprehensive security analysis for future work.

Outline. We start with a new presentation of MLS as the
combination of three independent subsystems (§2). We then
turn our attention to one of those, TreeSync, and precisely
capture its behavior (§3). Equipped with the specification,
we then set out to formally prove the security of TreeSync
in the symbolic model (§4). Our contribution is not purely
theoretical: our implementation is usable, interoperable, and
has been successfully integrated in a prototype version of
the Skype messaging client (§5). Our proof and implemen-
tation combined have influenced both the standard and other
implementations: we describe changes to the MLS draft that
resulted from attacks we found, as well as bugs in other im-
plementations that were exposed through our work (§6). We
conclude with related work (§7). Our verified implementation
is available online as part of the anonymous supplement [1].

1218 32nd USENIX Security Symposium USENIX Association

b c d ea
pka pkb pkc pkd pke

pkab pkc pkde

pkabc pkde

sabcde

sabc

sab

b c d ea
pka pk’b pkc pkd pke

pk’ab pkc pkde

pk‘abc pkde

s‘abcde

s’abc

s’ab

hpke(pkde ,
s‘

abcde)

hpke(pkc , s‘
abc)

hpke(pka , s‘
ab)

Figure 1: TreeKEM maintains a tree of subgroups, each associated with a secret (e.g. sabc) and corresponding public key (pkabc).
The root secret (sabcde) is the commit secret for the current epoch. Each member (e.g. b) only knows the secret keys for the
subgroups it is a member of (sab,sabc,sabcde). To send a commit, a member (e.g. b) updates its subgroup secrets (to s′ab,s

′
abc,s

′
abcde)

and encrypts each new subgroup secret (e.g. s′abc) to the corresponding sibling subgroup’s public key (hpke(pkc,s
′
abc)). Hence,

each commit for a group of n (e.g. 8) members results in only log(n) (= 3) public key encryptions.

2 MLS: TreeKEM, TreeDEM, and TreeSync

The Messaging Layer Security (MLS) protocol [8] enables a
set of endpoints to form a dynamic group and exchange end-
to-end encrypted messages that only the current members of
the group can read or write. We begin with a high-level view of
this protocol before describing its cryptographic components.

Dynamic Groups. To initiate a group conversation, an end-
point, called the creator, creates a new group and assigns it a
fresh group secret. The creator can then add other members
to this group by sending them encrypted welcome messages
containing group information, including the current member-
ship and the group secret. Each member is authenticated by a
credential issued by a trusted Authentication Service, which
associates the member with a signature keypair.

Any member of the group can subsequently propose to
add or remove members, or update its own credential and/or
encryption keys. A group member can commit a batch of pend-
ing proposals by modifying the group, updating the group
secret, and conveying the new secret to the updated set of
group members. Each commit is said to open a new epoch
(group creation is at epoch 0), so the group secret at epoch n
is more precisely called the epoch secret at n.

An epoch secret should only be known to the current mem-
bers of the group in that epoch. Hence, the protocol seeks to
ensure that members cannot read or write messages after they
are removed, and new members cannot read old messages.

Secure Messaging. Within each epoch, the epoch secret is
used to derive message encryption keys that members of the
group can use to securely exchange application messages.

The protocol generates fresh encryption keys for each mes-
sage to guarantee forward secrecy (FS): compromising a
member’s secrets should not allow the adversary to decrypt
previous messages sent or received by that member. Note
that the FS guarantee depends on the secure deletion of these
messages on each member device [2, 33].

Furthermore, as long as each member regularly updates
its encryption keys, the protocol provides post-compromise
security: an adversary who learns a member’s secrets at epoch

n, but does not interfere until the member’s keys are updated
at epoch m > n, cannot decrypt messages after epoch m.

Decomposing MLS. Given this high-level view of MLS, the
main cryptographic elements that need elaboration are: how
a committer computes the new epoch secret and conveys it
to the current group members, how application messages are
encrypted in a way that provides authentication and forward
secrecy, and how the protocol guarantees that all members of
the group have a consistent view of the group membership and
structure. In the remainder of this section, we describe sub-
protocols of MLS that implement each of these components.

2.1 TreeKEM: Establishing Epoch Secrets
To participate in an MLS group, each endpoint e must first up-
load a signed key package containing its credential (including
a signature verification key), a public encryption key pke, and
other protocol parameters (e.g. supported ciphersuites). So,
when a group member decides to add e to a group, it can use
pke to encrypt a welcome package for e containing enough
information for e to initialize its state and join the group.

At epoch 0, the epoch secret is derived from a fresh random
value. Thereafter, at each commit, the committer computes
a commit secret and sends it to all the members of the new
epoch. Each member then mixes the commit secret with the
previous epoch secret (at n−1) to obtain the new epoch se-
cret (at n). A naive approach would be for the committer to
generate a fresh commit secret and encrypt it for each group
member using their public keys. However, in a group of size
n, this design requires n expensive public-key encryptions for
each commit, which does not scale well to large groups.

TreeKEM defines a more efficient commit operation by
structuring the group as a complete binary tree, as depicted
in Figure 1. The non-empty leaves of the tree contain the key
packages of the current group members (a,b,c,d,e). Each
internal node (also called parent node) corresponds to a sub-
group consisting of the members underneath that node, and
is associated with a node secret (e.g. sabc) that is known only
to its members (a,b,c). Each node secret (sabc) is used to de-
rive a public encryption key for the corresponding subgroup

USENIX Association 32nd USENIX Security Symposium 1219

(pkabc). The node secret at the root (sabcde) is known to the
full group and is used as the commit secret for the epoch.

The benefit of the binary tree data structure is that when
a committer (say b) wishes to convey a new commit secret
to a group of size n, it only needs to compute and convey
a single message containing log(n) public-key encryptions.
Essentially, the committer (b) generates a fresh secret sb, uses
it to derive a sequence of node secrets for the path from its
leaf to the root (s′ab,s

′
abc,s

′
abcde), and conveys each new node

secret to the rest of the subgroup by encrypting it under the
corresponding sibling node’s public key (pka,pkc,pkde). Each
recipient (e.g. c) decrypts the node secret for the smallest
subgroup it shares with the committer (sabc), and derives the
sequence of node secrets up to the root (s′abcde).

In general, a parent node can be blank, or it may have un-
merged leaves, which means that it is associated with not one
but a set of public keys that collectively covers the members
below that node. Consequently, the cost of each commit can
actually vary between log(n) and n. TreeKEM also optimizes
for the case when one of the children of a parent node is an
empty subtree, by skipping the computation of that node’s
secret and treating it as blank, with the same public key as
its non-empty subtree. Such nodes (e.g. the parent of de in
Figure 1) are called filtered nodes.

We have given only a simplified summary of TreeKEM.
The full TreeKEM protocol has many other details that we
elide here, since they are unimportant for this paper. Several
prior works have formally analyzed TreeKEM and its variants
and shown that it implements a security definition called Con-
tinuous Group Key Agreement (CGKA) [3,4]. Other work has
analyzed the way epoch secrets are derived in TreeKEM [21].

TreeKEM Tree Invariants. For our purposes, the pertinent
observation is that the security of TreeKEM crucially relies
on a tree secrecy invariant: if an internal node is associated
with a node secret, then it can only be known to the members
underneath that node. Recall that each parent node secret
is chosen during a commit by a member below that node,
but it is then encrypted under one of its children’s public
keys. Consequently, the TreeKEM secrecy invariant relies
on the integrity of the public keys in the tree, which can be
expressed as a tree integrity invariant: if an internal node is
associated with a public encryption key, then this public key
was computed for (a subset of) the current members of the
node’s subgroup, by one of the members of the subgroup.

2.2 TreeDEM: Group Message Encryption
Given an epoch secret, the TreeDEM protocol derives mes-
sage encryption keys for each member in the current group
and specifies how they are used to send and receive application
messages, handshake messages (containing TreeKEM propos-
als and commits), and Welcome messages for new members.
We briefly describe how TreeDEM authenticates and encrypts
application messages.

Each application message is serialized into a bitstring along
with metadata indicating the group, epoch, and sender. This
bitstring is then signed with the sender’s signing key (to au-
thenticate which member sent the message) and then MACed
with a key derived from current epoch secret. The serialized
message, its signature, and MAC are then encrypted using an
authenticated encryption (AEAD) scheme using the sender’s
current message encryption key. The recipient performs the
reverse set of operations to decrypt the message, verify the
signature and MAC to ensure that the message was sent by a
sender who is a member of the group.

After each message is sent or received, the sender’s mes-
sage encryption key is updated (or ratcheted) using a key
derivation function to provide forward secrecy: compromis-
ing a group member after a key has been updated does not
reveal prior keys or messages encrypted under those keys.

Each group member needs to keep track of the current
encryption keys for all members and update these keys at
every application message. In large groups, maintaining all
these keys can be costly, especially if only a small minority
of members send messages in a each epoch. Consequently,
TreeDEM uses a tree-based message key derivation technique
that lazily derives keys for each sender, to reduce the number
of keys each member needs to maintain.

The security functionality provided by TreeDEM is some-
times called Forward-Secure Group Authenticated Encryption
with Associated Data (FS-GAEAD) and has been analyzed in
prior work [4]. For the purposes of this paper, the pertinent
feature of TreeDEM is its reliance on the group tree data
structure for key derivation, and that it uses sender signatures
to authenticate MLS messages.

2.3 TreeSync: Group State Synchronization

MLS relies on group members having a consistent view of the
group state. Specifically all members must agree on (and au-
thenticate) the membership of the group and the structure and
contents of the public key tree (as depicted in Figure 1). Oth-
erwise, a member may be fooled by an attacker into sending
messages to groups it did not intend to communicate with.

Our key observation in this paper is that the task of syn-
chronizing and authenticating the group state can be seen as
an independent generic sub-protocol with minimal dependen-
cies on TreeKEM and TreeDEM. This allows us to modularly
analyze the group authentication guarantees of MLS without
getting bogged down by the details of these other protocols.

We identify a protocol called TreeSync that encapsulates all
operations on the MLS group state, while treating TreeKEM-
related content as opaque bitstrings. We describe TreeSync
in detail in the Section 3, and we formalize and analyze its
integrity and authentication guarantees in Section 4, under
minimal assumptions on TreeKEM and TreeDEM. We also
show that TreeSync provides some of the prerequisites for the
security of TreeKEM and TreeDEM, such as the TreeKEM

1220 32nd USENIX Security Symposium USENIX Association

tree integrity invariant, and the Tree Hash construction.
Our treatment of TreeSync is in contrast to the MLS speci-

fication [8], which tightly interleaves its description of group
synchronization with the key derivations of TreeKEM. Prior
work on the authentication mechanisms in MLS [5] also fol-
lows this pattern by combining them with TreeKEM, which
in our opinion results in unnecessarily complex proofs.

Authentication Attacks on MLS. Furthermore, many prior
attacks on MLS can actually be better understood as attacks
on TreeSync. For example, a double join attack occurs when
a malicious member at leaf i manages to modify the content
of a parent node that is not its ancestor [9]. In the welcome
message attack, an attacker fools a new member into accepting
a tampered tree with compromised public keys [14]. In the
tree signing attack, the attacker changes the position of leaves
in the tree to fool a new member [5]. Each of these attacks
resulted in major changes to the protocol, significantly raising
its complexity and reducing its efficiency. By identifying
and analyzing TreeSync, we provide a formal framework for
finding such attacks and evaluating defenses against them.
Indeed, we identified flaws in the authentication and integrity
mechanisms of MLS and fixed them during this work.

3 A Formal Specification of TreeSync

In this section, we describe the TreeSync protocol and its
detailed formal specification in the F∗ language [43]. Unlike
prior analyses of MLS that are based on high-level models
written as pseudocode [3–5, 21], our F∗ specification is exe-
cutable, and hence testable against the RFC test vectors and
other MLS implementations. It accounts for all the low-level
details of MLS, and so serves as both a formal companion to
the RFC and a reference implementation.

The precision of our specification also means that our anal-
ysis is less likely to miss attacks. For example, in Section 4.5,
we show a new attack that results from the ambiguity of the
message formats between TreeSync and TreeDEM, and would
not appear in more abstract models.

The authentication mechanisms of TreeSync are com-
plex, with performance optimizations interleaved with cryp-
tographic constructions. Our goal is to informally explain
the design and its motivations, and guide the reader to the
F∗ specification for full details. Our full specification and all
proofs are included in supplementary material [1].

3.1 TreeSync data structures

We present a generic tree data structure that can be instanti-
ated to obtain the TreeSync and TreeKEM trees. This is in
contrast with the RFC, which combines the two trees.

type tree (leaf_t:Type) (node_t:Type) (l:nat) (i:tree_index l) =
| TLeaf:

data: leaf_t{l == 0} →
tree leaf_t node_t l i

| TNode:
data: node_t{l > 0} →
left: tree leaf_t node_t (l−1) (left_index i) →
right: tree leaf_t node_t (l−1) (right_index i) →
tree leaf_t node_t l i

The type tree left_t node_t l i describes a complete binary tree
indexed by its height l – we follow the RFC convention that a
standalone leaf has height 0. The type tree is parametric over
leaf_t, the payload of the leaves, and node_t, the payload of the
non-leaf (a.k.a. “parent”) nodes. The leaves of the tree (i.e.
the participants) are numbered left-to-right from 0 to 2l −1.
Hence, each leaf has an absolute leaf index that represents its
position in the full tree.

We leverage F∗’s dependent types to encode structural in-
variants on the tree. Notably, the i argument to tree enforces
a correct-by-construction tracking of leaf indices, rules out
programmer errors, and enforces the MLS invariant that two
sub-trees at different positions, even if otherwise identical,
are never interchangeable.

To obtain the TreeSync tree (called treesync), we instantiate
the tree with the content of parent and leaf nodes:

type parent_node = {
opaque_content: node_content;
parent_hash: mls_bytes;
unmerged_leaves: mls_list uint32; }

type leaf_node = {
opaque_content: leaf_content;
parent_hash: leaf_node_parent_hash;
signature_key: signature_public_key;
...
signature: mls_bytes; (* signs all the fields above, and more *) }

let treesync = tree (option leaf_node) (option parent_node)

The TreeSync tree must include some content provided
by and useful for TreeKEM, such as public keys, but our
specification treats these protocols as independent modules, as
evidenced by the opaque_content fields: TreeSync is oblivious
to the particular payload that its nodes carry.

Note that the mls_bytes type is a convenient abbreviation
that enforces that the length of bytes we manipulate does
not exceed 230 −1, a requirement coming from the compact
integer encoding of the QUIC standard [29], which MLS itself
adopts. We refer the reader to the supplementary material for
the full definitions of all our data structures.

Blank nodes and empty leaves. In the treesync datatype
above, the leaf and parent node payloads are optional. Empty
leaf nodes happen because the RFC mandates a complete
binary tree, meaning some participant (leaf) nodes might be

USENIX Association 32nd USENIX Security Symposium 1221

empty, as illustrated in Figure 2. Empty parent (inner) nodes
are called blank nodes in the RFC, and arise either from par-
ticipant removals, or because of filtered nodes (§2.1).

3.2 TreeSync operations

TreeSync offers a series of group management operations that
members can use to modify and synchronize the group state.
In particular, any member can create a proposal message to
suggest a change (e.g. add or remove a member) and send it to
the rest of the group, via the Delivery Service (DS). A group
member can then collect a set of proposals and send a commit
message for these proposals along with a path update. None
of these sending operations actually change the TreeSync tree;
instead, each member waits for a commit to be accepted by
the DS and sent back before executing the proposed changes.
Hence, the DS resolves potential conflicts by choosing the
order of commits for the whole group.

When a commit is processed, each of the proposals is exe-
cuted in order to modify the local TreeSync state. In the rest
of this subsection, we discuss how each of these changes is
implemented. The key guiding principle for all the operations
in TreeSync is that they must preserve the tree integrity in-
variant: every subtree with a non-blank node must have been
authenticated by a participant at one of the leaves of the sub-
tree. To enforce this invariant, TreeSync relies on the parent
hash mechanism described in Section 3.4.

Processing Path Updates. Each commit operation ends with
a path update that updates all the nodes on the path from
the root down to the sender’s leaf, updating the tree integrity
mechanisms along the way. The function implementing path
updates in F∗ has type as follows, where we omit boilerplate:

val apply_path: #l:nat →#li:leaf_index l 0 →
t:treesync l 0 →p:pathsync l 0 li → treesync l 0

The apply_path function allows the client to update tree t of
height l with a new path p, where p follows the path from root
to leaf li, and carries fresh content for each node (including
leaf) found along the path. The apply_path function, in addi-
tion to updating content along p, also updates the integrity
protections at each node, as we will see later in Figure 3.

In line with our dependent type definition for trees, the leaf
index li not only guarantees that the path terminates at partici-
pant (leaf) li, but also allows us to keep track of the leftmost
leaf index as we move along the path. Once again, carrying
such indices not only avoids errors, but greatly simplifies and
automates our proofs. The 0 in the type signature is another
invariant enforced “for free” by typing: this function is only
intended to be called on a path starting at the root.

Processing Removal and Addition. The functions imple-
menting add and remove have types as follows.

c ea

Y

X

Figure 2: An MLS tree with three participants a, c and e at
leaf indices 0, 2 and 4; other leaf nodes are empty. Due to the
filtered node optimization, X and Y are the only parent nodes
that are not blanked.

val tree_remove: #l:nat →#i:tree_index l → t:treesync l i →
li:leaf_index l i → treesync l i

val tree_add: #l:nat →#i:tree_index l → t:treesync l i →
li:leaf_index l i → ln:leaf_node → treesync l i

We note that adding a member may increase the size of the
tree, and removal can shrink the tree. The full types of these
functions include preconditions (omitted here, see [1]) that
rule out various overflow conditions in various TreeSync struc-
tures whose length is bounded by the RFC.

If a wishes to remove c from the tree (Figure 2), MLS
requires blanking out all of the nodes starting from c (a leaf),
all the way up to, and including, the root. The net effect is that
any cryptographic material that c may have authored is now
gone from the tree. The RFC also mandates that each removal
be enclosed in a commit that includes a path update by the
committer a, which updates the contents of all nodes from a
to the root, authenticates the removal, and restores integrity
protections for the full tree at the root.

If a committed e wishes to add b to the tree (Figure 2), e
fills out the first non-empty leaf (at index 1) with b’s data. The
path update from e then updates the nodes between e and the
root (e.g. X). However, there may be nodes between b and
the root which are not updated (e.g. Y). These nodes will only
be updated in a subsequent commit by one of the members
under them (a or b). In the meantime, TreeSync performs
supplemental book-keeping using unmerged leaves.

Unmerged leaves. Each node now contains a list of un-
merged leaves (or unmerged list), with the invariant that par-
ticipants in that list belong to the node’s subtree. If b is in the
unmerged list of Y , then it indicates that the addition of b to
the subtree under Y postdates the modification of the node Y .

Addition now works as follows: after the first non-empty
leaf has been filled with the new participant data, addition also
extends the unmerged list of every node on the path from the
new participant all the way up to the root. Concretely, after
adding b’s data at leaf index 1, e inserts b into the unmerged
list of Y and X . Only then does e issue a path update.

Path updates clear the unmerged list of each node they visit,

1222 32nd USENIX Security Symposium USENIX Association

so when e issues a path update, the root’s unmerged list is
empty after the update, meaning that any integrity protections
added to the root now cover the entire group – all is well.

Serialization and Parsing. Our specification implements the
serialization and parsing of all the MLS data structures, for
trees, messages, and signature contents down to the byte level
– we follow the RFC to the letter. This is to be contrasted with
all prior formal approaches, which study a model of MLS that
is not guaranteed to be faithful to the RFC. As a consequence,
our specification can actually be extracted and executed to
establish that we are interoperable with test vectors and other
implementations (§5); this level of precision also allowed us
to find new attacks, such as signature collisions (§4.5).

3.3 Tree Hash

The MLS specification defines a tree hash operation that
computes a digest for an entire tree; we rely on this operation
in subsequent sections. The implementation details are of
little importance for the rest of this paper: it suffices to say
that the RFC implements an efficient recursive hash procedure
akin to that of a Merkle Tree, and should two different MLS
trees exhibit the same tree hash, then one has found a collision
for the underlying hash function (§4.3). Proving this requires,
naturally, reasoning about injectivity of serialization.

The tree hash provides an integrity mechanism for the MLS
tree: if two members have the same tree hash they must have
the same tree (barring hash collisions). Consequently, by in-
cluding the tree hash within a signature, a sender can authenti-
cate the full tree to a receiver. However, this integrity guaran-
tee is not strong enough to protect new group members from
tree tampering attacks by old members, such as the welcome
message attack [14] and tree signing attack [5]. Consequently,
MLS includes a second, stronger integrity mechanism called
the Parent Hash.

3.4 Parent Hash

We have now exposed all of the TreeSync operations.
Throughout our explanations, we have consistently referred to
the need for a mechanism that can protect the integrity of the
whole tree, while i) correctly accounting for both unmerged
leaves and blank nodes mechanisms, and ii) satisfying the
constraint that a path update can only modify nodes along
the path. That integrity mechanism is known as the Parent
Hash, and must accommodate further requirements: first, the
number of hash computations and recomputations should be
minimal (for efficiency); second, the parent hash should cover
the contents of all the subtrees that existed in the tree when
the parent hash was last modified.

Computation. Each node in the tree stores a parent hash.
When a path update is applied, the parent hash of each node
on the path is recomputed, starting at the root, and continuing

let rec apply_path_loop #l #i #li (t: treesync l i) (p: pathsync l i li)
parent_parent_hash

= match t, p with
// End of path: apply new contents from p onto t
| TLeaf _, PLeaf lp →TLeaf (Some lp)
| TNode _left right, PNode opt_opaque_content ps →

let _, sibling = get_child_sibling t li in
let opt_content’ = // Compute the new node content

match opt_opaque_content with
| None →None // We skip filtered nodes
| Some content →Some ({

opaque_content = content;
// Carried from previous loop iteration
parent_hash = parent_parent_hash;
// Notice we clear the unmerged leaves list
unmerged_leaves = []; }) in

// Compute the parent’s parent hash for recursive call
let parent_parent_hash’ =

match opt_opaque_content with
| None →parent_parent_hash // We skip filtered nodes
| Some content →

compute_parent_hash content parent_parent_hash sibling
in
// Update the tree recursively
if is_left_leaf li then (// relative to tree of height l at position i

let left’ = apply_path_loop left ps parent_parent_hash’ in
TNode opt_content’ left’ right

) else (
let right’ = apply_path_loop right ps parent_parent_hash’ in
TNode opt_content’ left right’)

Figure 3: Implementation of the apply_path function, simpli-
fied. We write x’ for the updated value for x.

all the way down to the leaf (participant) that issued the path
update. We show the inner (recursive) loop of apply_path, in
Figure 3.

To initialize recursion, the parent hash stored in the root
node is always a special empty value. Then, at any given step
along the way (with N the current node, S its sibling, and P
their parent), the parent hash stored in N is updated to the
hash of a serialized structure containing:

• the (new) parent hash stored in P,
• the (new) opaque payload stored in P, and
• the tree hash of S, which fully captures the contents of S,

unmerged leaves included.
At the end of the path update issuance, the leaf signs its own
parent hash. Doing so, the participant signs (authenticates)
their own membership in the tree, as well as the content of
their parent P, the entire sibling tree S, and whatever else the
parent hash of P recursively covers. Transitively, this means
that the leaf contains a hash value that protects the integrity
of every node, sibling and parent, all the way up to the root.

Recall that when a node in the path has a blank subtree, it
is called a filtered node and is treated as blank; in this case,

USENIX Association 32nd USENIX Security Symposium 1223

apply_path_loop skips the node and moves down to its child.
Figure 2 illustrates this optimization: if c issues a path update,
its parent node is skipped, and only Y and X get updated.

Each path update also clears the unmerged list of every
node on the path, as the nodes that were in the unmerged
list are now authenticated by the update. Accounting for un-
merged leaves and filtered nodes significantly complicates the
implementation of all the operations in TreeSync; this is one
of the many reasons that motivate a formal proof.

Verification. Perhaps harder than updating the parent hash is
verifying its correctness to prevent against malicious actors.
This happens in two circumstances: first, upon joining a group;
second, upon receiving a commit from another group member.
In the first scenario, the whole tree must be visited; in the
second scenario, this is only an incremental process wherein
a lot of values from tree hash can be cached and reused.

Several subtleties arise in the process. We give an intuition
for two of those, and leave a formal discussion of correctness
properties to §4. First, a node N might have a non-empty
unmerged list. This means that in order to validate the parent
hash stored at N, one must consider the subtree at the time of
the last authentication of N, that is, the subtree without the
unmerged leaves. This requires introducing a new operation
revert_add(P,leaves) operation that allows us to revert back
the addition of a set of unmerged leaves (leaves) from a tree
rooted at a parent node (P), so that we can compute a correct,
albeit outdated, hash. The second complexity arises from the
filtered nodes optimization. Notably, one must ensure that a
malicious actor cannot surreptitiously introduce new nodes in
an otherwise filtered (skipped) subtree.

Failing to account for both of these subtleties breaks our
integrity invariant and can allow attacks on the protocol. Our
authentication proof for TreeSync relies on a novel criterion,
the “parent-hash link”, that ties together the parent hash, the
blank (skipped) nodes, and unmerged leaves together (§4).

This concludes our overview of the main elements of
TreeSync, which itself only forms a small part of the MLS
standard. The protocol is large enough and complex enough
that we believe that it is hard, even for experts, to understand
all the details, let alone reason about its security. We provide
a testable specification for all of MLS in F∗ [1], which readers
can inspect and run to hopefully gain a better understand-
ing of the protocol and the machine-checked authentication
theorems we proof for the TreeSync component.

4 A security proof of TreeSync

In this section, we describe a series of invariants and lemmas
we prove for our TreeSync specification leading up to the
main integrity and authentication guarantees of the protocol.

4.1 TreeSync State Invariants
As we saw in Section 3.1, the TreeSync tree data type already
incorporates several structural invariants (complete tree, cor-
rect leaf index). In addition, we state and prove a series of
invariants for all TreeSync states that are reachable by a se-
quence of operations. We describe three of these invariants,
which play important roles in our security proofs:

Unmerged Leaves. At each parent node n, the unmerged
leaves list must be sorted in increasing order, each unmerged
leaf must point to a leaf index within the subtree rooted at n,
and the leaf at this index must be non-blank.

This invariant can be easily checked for every TreeSync
tree, and is necessary to prove the parent-hash invariant de-
scribed below, but surprisingly, the latter two conditions were
not required by the MLS draft. On our suggestion, they are
now included since draft 15.

Leaf Validation. We require and enforce an invariant that
all leaf signatures in the tree have been verified, and that
the credential at each leaf has been issued (out-of-band) by
the Authentication Service. Hence, we can assume that the
verification key in the credential belongs to the member at
the leaf and has been used to sign the leaf content. These are
crucial pre-conditions for the authentication guarantees of
TreeSync.

Parent-hash Linking. The parent hash construction (Sec-
tion 3.4) creates links between parent nodes and their de-
scendants. Formally, if a parent node P has two children
C and S, we say that there is a direct parent link between
C and P if, once we revert all the unmerged leaves of P
(revert_add(P,P.unmerged_leaves)): (1) P and C are non-blank,
(2) C has no unmerged leaves, and (3) C contains a parent-
hash computed from P and S (C.parent_hash is equal to
ParentHash(P.content, P.parent_hash, TreeHash(S))).

More generally, we say that there is a parent link from a
descendant node D to P (written D⇝ P) if P and D satisfy the
conditions above and there is a path from D up to P such that
all intermediate nodes on this path are filtered, i.e. they are
blank and the corresponding sibling trees are fully blank. This
generalization is needed because filtered paths may introduce
blank nodes between a node and its linked parent.

We show that TreeSync enforces the invariant that each non-
blank node P must have a descendant D such that D⇝ P. By
applying this invariant recursively, we obtain a more general
notion of path linking: a leaf L is path linked to an ancestor
node P, if all the non-blank nodes on this path (T1, . . . ,Tn) are
sequentially parent linked (Ti⇝ Ti+1). As we shall see, this
is a crucial invariant for our authentication theorem.

F∗ Proofs. We formalize all our invariants on the TreeSync
tree as a predicate which we attach to the treesync data struc-
ture as a refinement type. Thereafter, we use the F∗ type
checker to prove that all TreeSync operations that modify
the tree data structure preserve this predicate. The proofs rely

1224 32nd USENIX Security Symposium USENIX Association

on some auxiliary lemmas but are mostly straightforward.

4.2 Verified Parsing and Serialization

Our F∗ specification includes parsers and serializers for all the
byte formats defined in the MLS RFC, whether they represent
trees, messages, or inputs to cryptographic constructions. We
uniformly prove correctness properties for all these parsers
and serializers, whether or not they belong in TreeSync.

In particular, for every MLS type T, we define a func-
tion serialize_T that translates T to bytes, and function parse_T
that translates bytes to option T. We then prove that these
functions are inverses of each other, and as a corollary, ob-
tain that the serialization of each MLS type is injective.

∀(x:T). parse_T (serialize_T x) = Some x
∀(x:T) (b:bytes). parse_T b = Some x =⇒ serialize_T x = b

These properties are essential for functional correctness, but
also for security. For example, the TreeHash construction
relies on the serialization of a structure called TreeHashInput
that includes the node type and hashes of the children (if any).
We rely on the injectivity of this serialization to prove the
integrity of TreeHash. Conversely, the failure of an injectivity
lemma may point to an attack, as we will see in the case of
the signature confusion attack on TreeSync authentication.

F∗ Proof. To prove all our parsers and serializers correct,
we rely on a verified library of parser combinators in F∗ that
largely automate the process of defining and verifying this
code. This library allows us to write the RFC types as regu-
lar F∗ data types decorated with annotations describing how
they should be serialized. Using F∗’s metaprogramming fea-
ture, these types are automatically translated to parsers and
serializers equipped with proofs of correctness.

4.3 Tree Hash Integrity Lemma

The TreeHash construction is used to verify the integrity of
TreeSync trees: two members of a group can compare their
tree hashes to verify if the trees are the same.

This integrity guarantee relies on the injectivity of Tree-
Hash: if two subtrees t1 and t2 have the same tree hash
(TreeHash(t1) =TreeHash(t2)), then either two trees are equal
(t1 = t2), or else we can exhibit a pair of bitstrings b1 and b2
that exhibit a hash collision (b1 ̸= b2 ∧H(b1) = H(b2)).

In other words, a collision in TreeHash deterministically
reduces to a collision in the underlying hash function. By
structuring the lemma in this manner, we avoid making any
symbolic or probabilistic assumption on hash functions.

The formal statement of this lemma in F∗ is given below:

val tree_hash_injectivity:
#l1:nat →#i1:tree_index l1 →#l2:nat →#i2:tree_index l2 →
t1:treesync l1 i1 → t2:treesync l2 i2 →Pure (bytes * bytes)
(requires tree_hash t1 == tree_hash t2)
(ensures λ(b1, b2) →

// Either the trees are equal and at the same position
(l1 == l2 ∧ i1 == i2 ∧ t1 == t2) ∨
// Or we computed a hash collision
(hash b1 == hash b2 ∧ ¬(b1 == b2)))

Importantly, note that the lemma not only guarantees that
the trees have the same content and structure, but also that
they are at the same position, which is needed in the Parent
Hash Integrity lemma below. The integrity of TreeHash is
also relevant for TreeDEM, which authenticates the current
tree hash in every message, hence guaranteeing that recipients
and senders of each MLS message have the same tree.

F∗ Proof. Our proof of this lemma in F∗ is by induction
on the structure of the two trees and case analysis on the
TreeHash definition. It relies on the injectivity of serialization
for the TreeHashInput type and as it travels down the trees, it
inductively constructs the bitstrings that must exhibit the hash
collision if the trees are not the same.

Our proof is similar to prior proofs for Merkle Trees
(e.g. see [41, Section 7]). However, we note that even well
known Merkle Tree implementations sometimes have subtle
bugs [45], making them good targets for formal proof.

4.4 Parent Hash Integrity Lemma

Unlike the TreeHash, which is invalidated every time the
tree is modified, the Parent Hash provides a more flexible
integrity guarantee for subtrees that may, for example, have
some unmerged leaves added after the last commit. To state
the Parent Hash Integrity lemma, we first define a notion of
tree equivalence that captures this flexibility, then define one
step of the lemma before defining the lemma for the full tree.

Canonicalization and Equivalence. We define the canoni-
calization of a subtree T with respect to leaf index L, written
canonicalize(T, L), by reverting the unmerged leaves at its root
(revert_add(T, T.unmerged_leaves)) and by ignoring the signa-
ture value from leaf L. As we will see, if L is path-linked to
T , canonicalize(T, L) captures precisely what is covered by L’s
signature. Because L’s signature covers neither itself nor the
unmerged leaves of T , we omit both in the canonicalization.

We say that two trees T and T ′ are equivalent with respect
to a leaf index L, written T ≃L T ′, if the two trees have the
same canonicalization with respect to L.

Parent Link Integrity. Next we prove a lemma that shows
how the parent link relation (D⇝ P) protects the integrity
of the tree. Consider two trees P1 and P2 where, P1 has a
descendant D1 such that D1⇝ P1, and P2 has a descendant D2
such that D2⇝ P2. We prove that if D1 ≃L D2 then P1 ≃L P2.

USENIX Association 32nd USENIX Security Symposium 1225

That is, the parent link relation (⇝) enables us to lift the
equivalence relation (≃L) up the tree.

As with TreeHash, we state this lemma in terms of a func-
tion that either proves the equivalence of P1 and P2 or finds a
hash collision. The statement of the lemma in F∗ is:

val parent_link_integrity:
#ld1 →#ld2 →#lp1:nat{ld1 < lp1} →#lp2:nat{ld2 < lp2} →
#id1:tree_index ld1 →#id2:tree_index ld2 →
#ip1:tree_index lp1 →#ip2:tree_index lp2 →
d1:treesync ld1 id1{node_has_parent_hash d1} →
d2:treesync ld2 id2{node_has_parent_hash d2} →
p1:treesync lp1 ip1{node_not_blank p1} →
p2:treesync lp2 ip2{node_not_blank p2} →
(* leaf index of L *) li:leaf_index ld1 id1 →Pure (bytes * bytes)
(requires equivalent d1 d2 li ∧ parent_hash_linkedP d1 p1 ∧

parent_hash_linkedP d2 p2) // Given the hypotheses
(ensures λ(b1, b2) →

equivalent p1 p2 li ∨ // Either the theorem is true
(hash b1 == hash b2 ∧ ¬(b1 == b2))) // Or we have a collision

Parent Hash Integrity. By recursively applying the Parent

Link Integrity lemma above, we obtain the full integrity guar-
antee for a path from a leaf to each of its ancestor nodes.
Consider two trees T1 and T2, where T1 has a leaf L1 such that
L1 is path-linked to T1, and T1 has a leaf L2 such that L2 is
path-linked to T2. We show that if L1 and L2 have the same
content and same leaf index, and if T1 and T2 have the same
height, then T1 ≃L T2.

As a corollary, we obtain a lemma that is more directly
useful for TreeSync authentication: if T1 is the root node (i.e.
its parent hash field is empty) , then T2’s height cannot be
greater than T1’s, and all the subtrees between L2 to T2 must
be point-wise equivalent to the corresponding subtrees on
from L1 to T1. In practice, after every commit, the path update
corresponds to a linked path from the committing leaf (e.g.
L1) to the root (T1). However, as other leaves subsequently
commit to the tree, the linked path no longer goes to the root
and may be shorter (e.g. up to T2).

F∗ Proofs. The proof for the parent link integrity lemma
is similar to that of the Tree Hash integrity lemma. We rely
on the injectivity of serialization, and the injectivity of tree
hashes, and perform a case analysis on the parent hash def-
inition to construct a hash collision if the two trees are not
equivalent. The full parent hash integrity lemma is proved by
induction on the length of the trees, propagating the hash col-
lision up the tree. Due to the subtleties and many corner cases
of the parent hash computation, we found that having a proof
assistant like F∗ to check all the cases was quite valuable.

Weakness in Previous Drafts. We note that previous
drafts of MLS (before draft 13) did not satisfy the Par-
ent Hash Integrity lemma we state and prove in this sec-
tion. This is because the parent hash construction did
not include the Tree Hash of the sibling and instead
only included the list of public keys (called the res-

olution) in the sibling tree, i.e. C.parent_hash is equal
to ParentHash(P.content, P.parent_hash, Resolution(S)). Notably,
the Resolution does not include the credentials of the leaves
in S. This allows an adversary to tamper with the tree, by
changing the leaf credentials in S, without it being detected
via the parent hash mechanism.

Incidentally, the resolution mechanism was itself intro-
duced in response to an attack (described in [5]) on the in-
tegrity protections of the parent hash mechanism in draft 9.
Our analysis shows that there still are integrity attacks on the
parent hash mechanism after this fix. We proposed the change
to include the Tree Hash instead of the resolution and this
was adopted in draft 13 of the standard. The change also has
the benefit of more cleanly separating TreeSync mechanisms
like parent hash from TreeKEM objects like public keys.

4.5 TreeSync Authentication Theorem
We can finally state the high-level TreeSync Authentication
theorem. Consider the TreeSync tree T at group member b,
obtained as a result of a valid sequence of TreeSync opera-
tions. Then, the theorem states that within every subtree T ′ of
T where the root of the subtree is non-blank, there exists a leaf
L in T ′ with a credential for some member a, such that either
at some point in the past, the TreeSync tree at a contained the
canonicalization of T ′ with respect to L (canonicalize(T’, L)),
or else a’s signature key must have been compromised.

In other words, in every TreeSync state, every subtree with
a non-blank root node is authenticated (up to the flexibility of-
fered by equivalence) by one of the leaves in that tree. Notably,
after a path update, the root of the full tree is guaranteed to
neither be blank nor have unmerged leaves; the full TreeSync
tree is thus always authenticated by some group member.

The authentication guarantee above is the first instance in
our formal development where we are relating the state at one
member (b) with the state at a different member (a). To for-
mally state and prove this theorem, we need a runtime model
that incorporates multiple parties and their interactions. To
this end, we employ the DY∗ symbolic protocol framework.

Verifying Crypto Protocols with DY∗. The DY∗ frame-
work [15] defines a trace-based symbolic runtime model,
where different principals can participate in protocols by
calling cryptographic functions, generating keys and nonces,
sending messages to each other, storing and modifying local
state, and logging events to indicate authentication events.
The attacker controls the network and can compromise princi-
pals: it can read and write any message, generate any number
of keys, read the state of compromised principals, and store
any amount of state for itself.

DY∗ implements a symbolic (or Dolev-Yao) abstraction
of cryptographic functions, modeled using constructors and
functions in F∗. Here, we only use the hashing and signature
functions in DY∗. Hash functions are modeled as opaque
one-way functions with no collisions. Signature schemes are

1226 32nd USENIX Security Symposium USENIX Association

modeled as three functions: a key generation function that
produces signature keypairs, a signature function that signs
a bitstring using a signature key, and a verification function
that takes a verification key, a bitstring, and its signature to
verify. Verification succeeds if (and only if) the signature was
computed with the signature function, meaning signatures are
unforgeable unless the signature key is known to the attacker.

The trace-based runtime model and symbolic cryptographic
assumptions of DY∗ are quite standard for symbolic ver-
ification and similar to models used in ProVerif [20] and
Tamarin [35]. The main difference is the way proofs work
in DY∗. DY∗ is built as a library within the F∗ verifica-
tion framework and hence has access to a rich higher-order
dependently-typed programming language and a full-fledged
theorem prover. Consequently, DY∗ is well suited to verify
protocol implementations, and protocols with recursive data
structures like trees, which automated provers like ProVerif
and Tamarin struggle with. For example, DY∗ has been used
to verify properties like PCS for recursive protocols like
Signal [15] for an unbounded number of rounds. DY∗ has
also been used to verify detailed protocol specifications like
ACME [16] and protocol implementations like Noise* [28].

Applying DY∗ to TreeSync. The definitions we presented
earlier (§3.1) are simplified ones. In reality, all of our
TreeSync code is parametric over the type of bytes, and over
operations on such bytes, which we achieve via F∗’s type
class mechanism. This allows us to write a single TreeSync,
but instantiate it twice “for free”: once with concrete bytes,
to obtain an executable specification that can be tested over
the wire, and once with symbolic DY∗ bytes. Similarly, our
cryptographic primitives are either concrete, and call actual
implementations; or symbolic, and annotated with DY∗ la-
bels. To enable both concrete and symbolic crypto, we had to
extend the DY∗ libraries with some missing features, like a
proper treatment of bitstring lengths.

We then wrap the protocol code within a high-level API
that offers functions for creating groups, adding and removing
members, etc. This API internally stores session state for each
open session, sends and receives messages, and logs events
before each state change. This API is exposed to the attacker,
so it can create any number of TreeSync sessions, and trigger
any sequence of add, removes, and updates. However, the
attacker does not get access to the internal state of uncompro-
mised members. Our goal is to show that in all traces of honest
TreeSync participants with the symbolic Dolev-Yao attacker,
our confidentiality and authentication guarantees hold.

The first step is to typecheck that our protocol code obeys
the DY∗ labeling discipline which ensures that secret values
are kept secret; in TreeSync the only secrets are signature keys,
which are used only to create signatures, so all data structures
are labeled public, and the labeling proofs are straightforward.

Stating and Verifying TreeSync Authentication. Next, we
need to annotate our code with signature predicates that de-

scribe all the possible uses of signatures in our full specifica-
tion, including TreeKEM, TreeDEM, and TreeSync.

Within TreeSync, signatures are used only for leaf signa-
tures. We require that before creating a leaf signature in a
group g, the committer at leaf L must log an event of the form
Send(g,canonicalize(T,L)), for every subtree T it modifies.

We can then state our authentication theorem as an invariant
on the TreeSync state: in all reachable TreeSync session states
at a member b of a group g, in every non-blank subtree T , there
is a leaf L occupied by some principal a such that a previously
logged an event of the form Send(g,canonicalize(T,L)), or else
a was compromised. In DY∗, this is stated as follows.

val treesync_authentication_theorem:
#b:identity →#time:timestamp →#l:nat →#i:tree_index l →
st:treesync_state → t:treesync l i →
Lemma (requires

is_reachable b time st ∧
is_subtree_of t st.tree ∧
root_node_is_not_blank t)

(ensures ∃li, a. has_leaf_identity t li a ∧
// a logged the corresponding Send event
event_happened_before a time

(Send st.group_id (canonicalize t author_li))
// or was corrupted by the attacker before time
∨ is_corrupt a time)

To prove this theorem, we first rely on the unforgeability
of signatures to show that the leaf signature in L ensures the
existence of a linked path from L to T , and of corresponding
Send events in the trace. We then combine the path-link in-
variant and the parent hash integrity lemma to conclude that
the corresponding subtrees at b and a must be equivalent, and
hence have the same canonicalization, to complete the proof.

Signature Confusion Attack. In fact, our first attempt at the
authentication proof for TreeSync in draft 12 failed, because
we were unable to prove that the attacker could not use a Tree-
DEM signature to forge a TreeSync signature. This is because
both protocols use the same signature keys and there is an
ambiguity between their signature formats. Consequently, we
could not prove that the signature predicate for TreeSync is
independent of the predicate used in TreeDEM.

This proof failure actually points to a real attack, and we
can generate concrete instances of the signature contents used
in the two protocols that collide after serialization. We note
that this attack only appears if one models bitstring-level
serialization (like our specification) since the two signatures
would otherwise appear to be on different MLS types.

We presented this attack to the MLS working group and
it was fixed as per our recommendation in draft 13. The fix
uniformly disambiguates all signatures used in MLS for dif-
ferent purposes using different string labels. With this fix
incorporated, we completed our authentication proof.

Interpreting TreeSync Authentication. The TreeSync au-
thentication theorem tells us that the trees at different mem-

USENIX Association 32nd USENIX Security Symposium 1227

Component F∗ LoC Verification time
Library code 836 1min30s
TreeSync 1274 4min30s
TreeKEM 396 1min
TreeDEM 1384 2min45s
High level API 1024 1min30s
Library proofs 1170 1min45s
TreeSync proofs 4018 13min30s
Tests 2782 2min45s
Total specification 4914 11min15s
Total proofs 5188 15min15s

Table 1: Verification and coding effort for MLS on an Intel®
Xeon® CPU E5-2620 v4 @ 2.10GHz with 32GB of memory.

bers are consistent as long as enough honest (uncompromised)
members keep creating commits. In particular, the theorem
prevents all the known tree tampering attacks that plagued
earlier versions of MLS [5, 14].

Interestingly, our proof makes no assumptions at all about
TreeKEM, and our TreeSync specification treats all content
provided by TreeKEM as opaque. We also do not make any
assumptions about TreeDEM except for the signature disam-
biguation property described above. Consequently, TreeSync
provides this authentication guarantee even if TreeKEM and
TreeDEM were replaced by other (even broken) protocols.

Although we do not analyze TreeKEM and TreeDEM in
this paper, TreeSync authentication is a necessary precondi-
tion for both these protocols, since they rely on tree agree-
ment between members. We also prove that the authentication
guarantee of TreeSync implies the TreeKEM tree integrity
invariant, and that the tree hash used in TreeDEM provides
strong integrity guarantees.

5 Implementation

MLS formal specification. Our complete F∗ specification
totals 4914 lines of non-blank, non-comment code. We follow
the modular approach described earlier (§2): our specification
spans three namespaces, one for each subsystem. Table 1 gives
a sense of how many lines of code (LoC) our implementation
contains, grouped as run-time code, proofs, and tests.

Recall that we chose to materialize two trees for TreeSync
and TreeKEM, favoring clarity and readability over concise-
ness; this tradeoff appears in numerous other places in our
specification, where we always prefer a readable specifica-
tion over a clever optimized implementation. For comparison,
we evaluate mlspp and OpenMLS, two industrial implemen-
tations of MLS written in C++ and Rust respectively. The
mlspp implementation, just like us, relies on an automated
framework to derive parsers and serializers, and they use mod-
ern C++ with copious amounts of type inference to keep
boilerplate to a minimum, totaling 4250 lines of non-blank,

Measurement This paper mlspp OpenMLS
Adds 2.7s 1.2s 0.7s
Messages 3.2s 0.6s 0.2s
Removes 5.5s 0.9s 0.7s

Table 2: Performance comparison between this paper and
two other implementations of MLS. The time measured is the
cumulative computation time for all participants in the group,
measured on an Intel® Xeon® CPU E5-2620 v4 @ 2.10GHz
with 32GB of memory. Adds: Add 10 participants, one by
one, with 20 messages from each participant after each add;
Messages: Add 3 participants, with 400 messagers from each
participant after each add; Removes: Add 15 participants,
with 1 message from each participant after each add, then
remove every participant with an odd position in the tree, then
add participants until there are 15 participants again, with 1
message from each participant after each add.

non-comment code. The OpenMLS implementation, in Rust,
totals 15,000 lines of non-test, non-blank, non-comment code.

Based on those two points of comparison, we conclude
that we successfully managed to write a compact, concise,
readable modular specification that can serve as a blueprint
for any future MLS implementations.

MLS reference implementation. As mentioned earlier, our
specification also serves as a reference implementation: all
of our code is also fully executable. To run our code, we rely
on F∗’s extraction feature to produce OCaml code, which we
then compile and execute using the standard OCaml toolchain.
Our code interoperates with mlspp and OpenMLS and we
participate in the IETF MLS interoperability meetings.

Our code requires numerous cryptographic primitives: we
rely on the HACL∗ library [38, 41, 47] for those, thereby pre-
serving the property that the entire codebase is verified. Fur-
thermore, HACL∗ is one of the few libraries that support the
latest version of HPKE, which we require for interoperability.

Performance evaluation. We compare our OCaml-extracted
code to both mlspp (written in C++) and OpenMLS (written
in Rust). We benchmark high-level integration tests that call
the API functions for participant addition, participant removal,
and sending of messages. The results are in Table 2.

We are comparing implementations written using different
languages and toolchains. As such, we can only draw a broad
conclusion, namely, that all implementations exhibit compara-
ble performance, and generally execute within the same order
of magnitude. We remark that our implementation, in spite
of being written with no performance concerns in mind, still
performs competitively. This means our code can be used
off the shelf for rapid prototyping, interoperability testing, or
generally, as a drop-in verified component when the highest
degree of assurance is desired. Rudimentary profiling analysis
indicates that a majority of the execution time is spent within
the cryptographic primitives, which partially explains why

1228 32nd USENIX Security Symposium USENIX Association

our implementation has only limited overhead.
We have several plans in the works to address the perfor-

mance overhead. In the short term, we will investigate the
use of better data structures (e.g. semi-persistent arrays) to
make our pure, persistent byte manipulations more efficient.
In the long run, we want to perform a proof of refinement
that an efficient implementation, written in Rust, satisfies our
high-level specification.

Skype integration. As a proof-of-concept, we integrated
our reference implementation in a prototype version of the
Skype messaging client. This was done as a one-time collabo-
ration with a Microsoft team, where we added support in an
experimental branch for a new feature called "secure group
chats", powered by our MLS reference implementation. We
tested and benchmarked the code on small groups exchanging
a handful of messages. Overall, this allowed us to show that
our code is deployable within a mainstream messenger.

Skype already features 1:1 private conversations using Sig-
nal; our implementation extended this functionality to actual
groups. Skype is written using the Electron framework, i.e. a
Web-based runtime environment. We used js_of_ocaml [46]
to compile our extracted code to JavaScript, and linked it
against HACL-WASM [39], a version of HACL∗ compiled di-
rectly to WebAssembly [27] while preserving security proper-
ties. The Skype team generously enabled the backend changes
to implement the so-called Directory Service and Authentica-
tion Service that MLS relies upon.

We were able to successfully converse across endpoints,
and there were no noticeable slowdowns in the user inter-
face once we linked our code against efficient WASM-based
cryptographic primitives. We conclude that the efficiency of
MLS is bounded by the underlying cryptographic primitives,
and that our reference implementation is a valid choice for
security-conscious consumers.

6 Impact

Improving the standard. Our work identified several is-
sues and attacks in the MLS drafts, and led to our proposing
numerous changes that were ultimately adopted by the IETF.

The first issue we found was the signature confusion attack
described in §4.5. We fixed this defect by uniformly adding
labels to all signatures in MLS, to disambiguate their intent.
This change was adopted in draft 13 and is required for our
authentication theorem.

A second issue we found was that the integrity guarantee
provided by the parent hash mechanism was too weak (§4.4),
since it authenticated only TreeKEM related content in the
tree. We proposed replacing this mechanism with one that
uses the tree hash to authenticate the full content of the tree,
including leaf credentials. This change, which enables our
strong parent hash integrity lemma, was adopted in draft 13.

A third series of issues we found relates to the parent hash
computation. In the process of performing the proof, we ended
up with the four conditions for the well-formedness of the
parent-hash link in the presence of unmerged leaves and fil-
tered paths. We also identified several key criteria that must be
met for the parent hash to recursively authenticate the whole
tree, and for the corresponding inductive reasoning to succeed.
The RFC was failing to enforce some of these, and we showed
protocol traces that would break the TreeSync property.

Finally, we identified further well-formedness conditions
for unmerged leaves that were not enforced upon joining a
group (an unmerged leaf must point to a non-blank leaf). The
protocol was missing this check, which we showed could
break the parent-hash invariant. This is also fixed in draft 15.

Fixing Implementation Bugs. In addition to bugs in the
standard itself, we also found implementation issues through-
out the course of our interoperability testing. The first faulty
implementation we identified was ours: we had some seri-
alization errors, e.g. serializing a field as a uint8 instead of
uint16. We also found issues in both mlspp and OpenMLS, the
two major industrial implementations of MLS at the time of
writing. Both bugs were reported, and fixed.

A benefit of executable specifications is that they can be
extensively tested for interoperability, like we did. This is the
only way to gain confidence that the security theorem refers
to the actual protocol, not a variant of it with an alternate
serialization scheme. It is our opinion that any serious security
analysis of a real-world protocol must include an executable
specification; otherwise, one might prove properties over a
different protocol, without realizing.

Lessons Learned. During our engagement with the IETF
MLS standardization process, we found that the benefits of
formal verification are now appreciated and understood when
it comes to designing a new secure protocol. Notably, the
MLS working group was highly reactive and appreciative of
any bugs found by various teams; gladly accepts well-argued
revisions and improvements; and, we posit, enjoys the added
confidence that a formal analysis brings. We suspect that
the many successes from the earlier TLS 1.3 have created a
fruitful ground for this sort of collaboration.

Our approach of building an executable specification of the
standard proved very useful for interactions with the work-
ing group. This not only makes security proofs much easier
(as opposed to, say, having to perform them on a produc-
tion codebase), but also allows rapid prototype and testing
of proposed changes: for example, we were able to modify
the specification and adapt the proofs to understand the secu-
rity implications of a last-minute protocol modification. We
encourage other standardization efforts to promote reference
implementations written in high-level languages.

Conversely, MLS has grown to become a large protocol
standard, and even understanding, let alone analyzing, the full
protocol is a challenge even for cryptographic developers and

USENIX Association 32nd USENIX Security Symposium 1229

protocol experts. One of the contributions of this paper is the
modular decomposition of MLS from a monolithic protocol
into three independent components with a clean separation of
concerns. In retrospect, this kind of modular design should
have been built into the protocol standard itself, and perhaps
should be a goal for the next version of MLS.

7 Related Work

Although group key establishment has been well studied in
the literature (see e.g. [31,37]), group messaging differs from
traditional group protocols in that it supports asynchronous
messaging in dynamic groups. Unger et al. [44] provide a
survey of messaging protocols, including some that support
groups, conclude that “conversations between larger groups
still lack a good solution”. Since that survey, most academic
work on group messaging has either been in the context of
Signal or MLS. The extension of Signal with private authenti-
cated groups was formally described and analyzed by Chase
et al. [22], but Signal’s sender-driven group messaging proto-
col does not scale to large groups. In the rest of this section,
we compare our work with work on MLS and on other efforts
to formally analyze cryptographic protocols.

Prior Analyses of MLS. The initial draft of MLS relied
on Asynchronous Ratcheting Trees (ART) whose authors
provide a cryptographic proof of their tree-based protocol
design [23]. The original design of the TreeKEM protocol
was presented in [13] and was adopted in MLS draft 2, and
has since been extended with many features including blank
nodes, unmerged leaves, and the proposal-commit pattern.
Various versions of TreeKEM have been analyzed in a vari-
ety of security models. [3] presents a cryptographic analysis
of TreeKEM in draft 7 against a passive, non-adaptative at-
tacker, and defines continuous group key agreement (CGKA).
They also analyze using Updatable Public Key Encryption to
improve forward secrecy guarantees of TreeKEM. [4] mod-
ularly analyzes MLS in draft 11 against an active attacker.
Their proof reason on high-level messages and miss the sig-
nature ambiguity attack, which we found by doing proofs on
byte-level precise executable specifications. [21] analyzes the
key derivation component of MLS in draft 11. [24] studies
the multi-group security of MLS. All of these focus on the
key exchange (TreeKEM) and data encapsulation (TreeDEM)
components of MLS and do not consider tree integrity and
authentication (TreeSync), our main focus.

Alwen et al. [5] study the security of TreeKEM against
insider attacks and find a flaw on tree authentication. They
propose different fixes by modifying the parent hash scheme,
one of which is used in draft 16 and we study in this work
(the “tree parent hash”). However, unlike this work, they study
TreeKEM and TreeSync together as a monolithic protocol.

All the works mentioned above rely on manual pen-and-
paper proofs. As the MLS standard grows, so do these manual

proofs, making them hard to check and maintain. In this work,
we use a formal verification tool to build a byte-level precise
machine-checked specification for MLS that can be indepen-
dently tested, modified, and verified.

A symbolic analysis of TreeKEM for forward security in
Tamarin appears in [26] but it does not consider PCS or au-
thentication. [14] uses F∗ to symbolically analyze TreeKEM
in draft 7, finding an attack on tree authentication. However
they do not identify TreeSync as an independent protocol and
do not analyze the current parent hash design.

Mechanized Proofs of Crypto Protocols. Our approach
follows a long line of work on the mechanized formal verifi-
cation of cryptographic protocols (see [7] for a survey). Some
protocol verification tools, like ProVerif [20], Tamarin [35],
and DY∗ [15], rely on the symbolic model which treats cryp-
tography abstractly and focuses on logical protocol flaws.
Other tools, like CryptoVerif [19], EasyCrypt [11], and Squir-
rel [6], rely on the computational model which includes a
more precise model of cryptography but provides less automa-
tion. Both kinds of tools have been applied to the analysis of
real-world protocols like Signal [15, 30] and TLS 1.3 [17, 25].

Except for DY∗, most existing tools struggle to analyze
protocols with unbounded state (like trees) and with recursive
structure (like ratcheting). Indeed, very little prior work ap-
plies to the mechanized analysis of group protocols [26, 42]
and even these works do not consider authenticated data struc-
tures like TreeSync trees.

Finally, many prior works verify reference implementations
of protocols like Signal [40], Noise [28], and TLS [18]. Like
us, these handle the full complexity of the protocol, includ-
ing detailed message formats, yielding precise theorems that
apply to running protocol code, not just abstract models.

8 Conclusion

We present a precise formal specification of the current ver-
sion of the MLS protocol, along with a machine-checked
proof of its TreeSync component. This work is part of a long-
term engagement between the authors and the MLS working
group, where we analyzed multiple intermediate versions of
the protocol, found and fixed issues, and contributed design
improvements to the protocol. Our specification consolidates
our understanding of MLS and we hope it can serve as a
formal guide to readers interested in this protocol.

Our proofs are only for TreeSync and do not cover Tree-
DEM and TreeKEM, although we formally specify and ac-
count for the interaction between TreeSync and these. We
leave the comprehensive composite security analysis of all
three components of MLS for future work.

1230 32nd USENIX Security Symposium USENIX Association

Acknowledgments

We are indebted to Franziskus Kiefer, Raphael Robert and
Richard Barnes for proofreading a draft of this paper and pro-
viding precious feedback. We are grateful to Jaroslav Franek
for setting up a hackathon that allowed us to try out our MLS
implementation in the Skype client, along with team members
Jakub Kermaschek, Jurav Blazek, Lukas Liska and Katerina
Cizkova.

References

[1] TreeSync: Supplementary material, 2022. https://
github.com/Inria-Prosecco/treesync.

[2] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen,
and Lenka Mareková. Collective information secu-
rity in Large-Scale urban protests: the case of hong
kong. In USENIX Security Symposium, pages 3363–
3380. USENIX Association, August 2021.

[3] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yian-
nis Tselekounis. Security analysis and improvements
for the IETF MLS standard for group messaging. In
CRYPTO, volume 12170 of Lecture Notes in Computer
Science, pages 248–277. Springer, 2020.

[4] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yian-
nis Tselekounis. Modular design of secure group mes-
saging protocols and the security of MLS. In ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 1463–1483, 2021.

[5] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the
insider security of MLS. Cryptology ePrint Archive,
Paper 2020/1327, 2020.

[6] David Baelde, Stéphanie Delaune, Charlie Jacomme,
Adrien Koutsos, and Solène Moreau. An interactive
prover for protocol verification in the computational
model. In IEEE Symposium on Security and Privacy
(S&P), pages 537–554. IEEE, 2021.

[7] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan,
Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan
Parno. SoK: Computer-aided cryptography. In IEEE
Symposium on Security and Privacy (S&P), pages 777–
795, 2021.

[8] R. Barnes, J. Millican B. Beurdouche, R. Robert,
E. Omara, and K. Cohn-Gordon. The messaging layer
security protocol. IETF Internet Draft, September 2022.
version 16.

[9] Richard Barnes. Remove without double-join (in
TreeKEM), 2018. https://mailarchive.ietf.org/
arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik.

[10] Richard Barnes, Karthikeyan Bhargavan, Benjamin
Lipp, and Christopher A Wood. RFC 9180: Hybrid
public key encryption. Technical report, Internet Re-
search Task Force, 2022.

[11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and
Santiago Zanella Béguelin. Computer-aided security
proofs for the working cryptographer. In Phillip Rog-
away, editor, Advances in Cryptology – CRYPTO, pages
71–90, 2011.

[12] B. Beurdouche, E. Rescorla, E. Omara, S. Inguva,
A. Kwon, and A.Duric. Messaging layer security archi-
tecture. IETF Internet Draft, September 2022. version
9.

[13] Karthikeyan Bhargavan, Richard Barnes, and Eric
Rescorla. TreeKEM: Asynchronous decentralized key
management for large dynamic groups a protocol pro-
posal for messaging layer security (MLS). Research
report, Inria Paris, May 2018.

[14] Karthikeyan Bhargavan, Benjamin Beurdouche, and
Prasad Naldurg. Formal Models and Verified Proto-
cols for Group Messaging: Attacks and Proofs for IETF
MLS. Research report, Inria Paris, December 2019.

[15] Karthikeyan Bhargavan, Abhishek Bichhawat,
Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido
Schmitz, and Tim Würtele. DY*: A modular symbolic
verification framework for executable cryptographic
protocol code. In IEEE European Symposium on
Security and Privacy (EuroS&P), pages 523–542. IEEE,
2021.

[16] Karthikeyan Bhargavan, Abhishek Bichhawat,
Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido
Schmitz, and Tim Würtele. An in-depth symbolic
security analysis of the ACME standard. In ACM
SIGSAC Conference on Computer and Communications
Security (CCS), page 2601–2617, 2021.

[17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. Verified models and reference implementa-
tions for the TLS 1.3 standard candidate. In IEEE Sym-
posium on Security and Privacy (S&P), pages 483–502.
IEEE, 2017.

[18] Karthikeyan Bhargavan, Cédric Fournet, Markulf
Kohlweiss, Alfredo Pironti, and Pierre-Yves Strub. Im-
plementing TLS with verified cryptographic security. In
IEEE Symposium on Security and Privacy, (S&P), pages
445–459, 2013.

[19] Bruno Blanchet. CryptoVerif: Computationally sound
mechanized prover for cryptographic protocols. In
Dagstuhl seminar “Formal Protocol Verification Ap-
plied, volume 117, page 156, 2007.

USENIX Association 32nd USENIX Security Symposium 1231

https://github.com/Inria-Prosecco/treesync
https://github.com/Inria-Prosecco/treesync
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik

[20] Bruno Blanchet et al. Modeling and verifying secu-
rity protocols with the applied pi calculus and ProVerif.
Foundations and Trends® in Privacy and Security, 1(1-
2):1–135, 2016.

[21] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok.
Security analysis of the MLS key derivation. In IEEE
Symposium on Security and Privacy (S&P), pages 2535–
2553. IEEE, 2022.

[22] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The
signal private group system and anonymous creden-
tials supporting efficient verifiable encryption. In ACM
SIGSAC Conference on Computer and Communications
Security (CCS), page 1445–1459, 2020.

[23] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon
Millican, and Kevin Milner. On ends-to-ends encryption:
Asynchronous group messaging with strong security
guarantees. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 1802–1819,
2018.

[24] Cas Cremers, Britta Hale, and Konrad Kohbrok. The
complexities of healing in secure group messaging: Why
cross-group effects matter. In USENIX Security Sympo-
sium, pages 1847–1864. USENIX Association, 2021.

[25] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive sym-
bolic analysis of TLS 1.3. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), page
1773–1788, 2017.

[26] Cas Cremers, Charlie Jacomme, and Philip Lukert.
Subterm-based proof techniques for improving the au-
tomation and scope of security protocol analysis. Cryp-
tology ePrint Archive, Paper 2022/1130, 2022. https:
//eprint.iacr.org/2022/1130.

[27] Andreas Haas, Andreas Rossberg, Derek L Schuff,
Ben L Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. Bringing the web
up to speed with WebAssembly. In ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 185–200, 2017.

[28] Son Ho, Jonathan Protzenko, Abhishek Bichhawat, and
Karthikeyan Bhargavan. Noise*: A library of verified
high-performance secure channel protocol implemen-
tations. In IEEE Symposium on Security and Privacy
(S&P), pages 107–124, 2022.

[29] Jana Iyengar and Martin Thomson. QUIC: A UDP-
based multiplexed and secure transport. RFC 9000,
May 2021.

[30] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno
Blanchet. Automated verification for secure messaging
protocols and their implementations: A symbolic and
computational approach. In IEEE European symposium
on security and privacy (EuroS&P), pages 435–450.
IEEE, 2017.

[31] Mark Manulis. Security-focused survey on group key
exchange protocols. Cryptology ePrint Archive, Paper
2006/395, 2006. https://eprint.iacr.org/2006/
395.

[32] Moxie Marlinspike. Private group messaging, 2014.
https://signal.org/blog/private-groups/.

[33] Moxie Marlinspike. Disappearing messages
for Signal, 2016. https://signal.org/blog/
disappearing-messages/.

[34] Moxie Marlinspike and Trevor Perrin. Signal protocol,
2016. https://signal.org/docs.

[35] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David Basin. The tamarin prover for the symbolic analy-
sis of security protocols. In International conference on
computer aided verification, pages 696–701. Springer,
2013.

[36] Trevor Perrin and Moxie Marlinspike. The double
ratchet algorithm, 2016. https://signal.org/docs/
specifications/doubleratchet/.

[37] Bertram Poettering, Paul Rösler, Jörg Schwenk, and
Douglas Stebila. SoK: Game-based security models
for group key exchange. In Kenneth G. Paterson, ed-
itor, Topics in Cryptology – CT-RSA, pages 148–176.
Springer International Publishing, 2021.

[38] Marina Polubelova, Karthikeyan Bhargavan, Jonathan
Protzenko, Benjamin Beurdouche, Aymeric Fromherz,
Natalia Kulatova, and Santiago Zanella-Béguelin. Ha-
clxn: Verified generic SIMD crypto (for all your
favourite platforms). In ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages
899–918, 2020.

[39] Jonathan Protzenko, Benjamin Beurdouche, Denis
Merigoux, and Karthikeyan Bhargavan. Formally veri-
fied cryptographic web applications in webassembly. In
IEEE Symposium on Security and Privacy (S&P), pages
1256–1274. IEEE, 2019.

[40] Jonathan Protzenko, Benjamin Beurdouche, Denis
Merigoux, and Karthikeyan Bhargavan. Formally veri-
fied cryptographic web applications in webassembly. In
IEEE Symposium on Security and Privacy (S&P), pages
1256–1274. IEEE, 2019.

1232 32nd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2022/1130
https://eprint.iacr.org/2022/1130
https://eprint.iacr.org/2006/395
https://eprint.iacr.org/2006/395
https://signal.org/blog/private-groups/
https://signal.org/blog/disappearing-messages/
https://signal.org/blog/disappearing-messages/
https://signal.org/docs
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/

[41] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan Bhar-
gavan, Benjamin Beurdouche, Joonwon Choi, Antoine
Delignat-Lavaud, Cédric Fournet, et al. Evercrypt: A
fast, verified, cross-platform cryptographic provider. In
IEEE Symposium on Security and Privacy (S&P), pages
983–1002. IEEE, 2020.

[42] Benedikt Schmidt, Ralf Sasse, Cas Cremers, and David
Basin. Automated verification of group key agreement
protocols. In 2014 IEEE Symposium on Security and
Privacy (S&P), pages 179–194, 2014.

[43] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem
Rastogi, Antoine Delignat-Lavaud, Simon Forest,
Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves
Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue,
and Santiago Zanella-Béguelin. Dependent types and
multi-monadic effects in F*. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 256–270, 2016.

[44] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha
Fahl, Henning Perl, Ian Goldberg, and Matthew Smith.
SoK: Secure messaging. In IEEE Symposium on Secu-
rity and Privacy (S&P), pages 232–249, 2015.

[45] Forrest Voight. CVE-2012-2459 (block merkle calcu-
lation exploit). https://bitcointalk.org/?topic=
102395, August 2012.

[46] Jérôme Vouillon and Vincent Balat. From bytecode to
javascript: the js_of_ocaml compiler. Software: Practice
and Experience, 44(8):951–972, 2014.

[47] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche.
HACL*: A verified modern cryptographic library.
In ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 1789–1806,
2017.

USENIX Association 32nd USENIX Security Symposium 1233

https://bitcointalk.org/?topic=102395
https://bitcointalk.org/?topic=102395

	Introduction
	MLS: TreeKEM, TreeDEM, and TreeSync
	TreeKEM: Establishing Epoch Secrets
	TreeDEM: Group Message Encryption
	TreeSync: Group State Synchronization

	A Formal Specification of TreeSync
	TreeSync data structures
	TreeSync operations
	Tree Hash
	Parent Hash

	A security proof of TreeSync
	TreeSync State Invariants
	Verified Parsing and Serialization
	Tree Hash Integrity Lemma
	Parent Hash Integrity Lemma
	TreeSync Authentication Theorem

	Implementation
	Impact
	Related Work
	Conclusion

