
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Duoram: A Bandwidth-Efficient Distributed ORAM
for 2- and 3-Party Computation

Adithya Vadapalli, University of Waterloo; Ryan Henry, University of Calgary;
Ian Goldberg, University of Waterloo

https://www.usenix.org/conference/usenixsecurity23/presentation/vadapalli

DUORAM: A Bandwidth-Efficient Distributed ORAM
for 2- and 3-Party Computation∗

Adithya Vadapalli
avadapal@uwaterloo.ca
University of Waterloo

Ryan Henry
ryan.henry@ucalgary.ca

University of Calgary

Ian Goldberg
iang@uwaterloo.ca

University of Waterloo

Abstract
We design, analyze, and implement DUORAM, a fast and
bandwidth-efficient distributed ORAM protocol suitable for
secure 2- and 3-party computation settings. Following Do-
erner and shelat’s FLORAM construction (CCS 2017), DUO-
RAM leverages (2,2)-distributed point functions (DPFs) to
represent PIR and PIR-writing queries compactly—but with a
host of innovations that yield massive asymptotic reductions
in communication cost and notable speedups in practice, even
for modestly sized instances. Specifically, DUORAM intro-
duces a novel method for evaluating dot products of certain
secret-shared vectors using communication that is only loga-
rithmic in the vector length. As a result, for memories with n
addressable locations, DUORAM can perform a sequence of
m arbitrarily interleaved reads and writes using just O(m lgn)
words of communication, compared with FLORAM’s O(m

√
n)

words. Moreover, most of this work can occur during a data-
independent preprocessing phase, leaving just O(m) words of
online communication cost for the sequence—i.e., a constant
online communication cost per memory access.

1 Introduction

Oblivious RAM (ORAM) allows a client to outsource data
storage to one or more untrusted servers. The client can then
read from or write to the outsourced storage (called a database
or a memory) without revealing to the servers anything about
its access patterns (i.e., which memory addresses it accesses or
whether those accesses are reads or writes). Although initially
proposed as a general software security tool [14], the past
few years have seen increased attention on distributed ORAM
(DORAM) constructions [5, 8, 10, 17–19, 21, 22] optimized
for data-dependent yet oblivious memory accesses in secure
multiparty computation (MPC) settings. Note that in such
MPC settings, all parties typically know the algorithm being
executed, and so the requirement that reads and writes be
indistinguishable from each other is relaxed.
∗An extended version of this paper is available [28].

This paper presents DUORAM, a DORAM protocol with
instantiations in either 2- or 3-party settings tolerating a sin-
gle passive corruption. DUORAM follows a similar design to
Doerner and shelat’s DPF-based FLORAM construction [8];
however, despite their shared lineage and structural similar-
ities, DUORAM offers several substantial—and, we argue,
surprising—theoretical and practical advantages relative to
FLORAM. Most notably, DUORAM exploits a subtle observa-
tion to support sequences of arbitrarily interleaved, oblivious
reads and writes with online communication independent of
the memory size for realistically sized memories.1 Indeed,
even the total (i.e., preprocessing plus online) communication
cost scales logarithmically in the memory size.

1.1 Overview of State of the Art

The state-of-the-art DORAM construction from prior work
is Doerner and shelat’s FLORAM [8], a 2-party construction
built from garbled circuits and (2,2)-distributed point func-
tions (DPFs). We defer an in-depth description of DPFs to
Section 2.1; for now, it suffices to regard DPFs as concise,
secret-shared representations of standard basis vectors (i.e.,
of vectors ei comprising all 0s except for a single 1 appearing
in coordinate i). FLORAM uses DPFs to implement both
private information retrieval (PIR) and PIR-writing, a pair
of cryptographic primitives that respectively allow remote
users to download items from and write items to databases
held by remote and untrusted servers. In both instances, the
security goal is to hide the address accessed (and contents of
that address) from the servers.

Throughout our description of FLORAM, we consider mem-

1Specifically, computation parties in DUORAM exchange a constant num-
ber of secret shares per memory access. Some of these shares encode memory
addresses i ∈ [0..n) while others encode w-bit words of data (such as those
stored at the addressed memory); thus, strictly speaking, DUORAM’s per-
access online communication complexity is logarithmic in n and linear in
w. Our implementation fixes w = 64 and bounds lgn ≤ 64 and therefore
supports up to n = 264 memory locations, each holding a 64-bit word of data,
for a theoretical limit of 128 EiB of memory while using a constant number
of online communication words per access.

USENIX Association 32nd USENIX Security Symposium 3907

Table 1: Comparing computation, bandwidth, and the number of rounds of DUORAM with previous work. The gray color
represents the preprocessing cost. We note that Kushilevitz and Mour’s work [21] is a 4-party protocol; if we turn DUORAM
into a 4-party or (3+ 1)-party protocol, then the Rounds will reduce to 1+ 1 and the Computation to O(lgn)+O(n). The
improvement is because we will no longer require an MPC to generate the DPFs; the fourth party can act as a dealer to create
and distribute the DPFs.

Parties Rounds Bandwidth Computation
FLORAM [8] 2 O(lgn) O(

√
n) O(n)

Hamlin and Varia [18] 2 O(1) O(
√

n lgn) O(
√

n lgn)
Jarecki and Wei [19] 3 O(lgn) O(lg3 n) O(lg3 n)

Bunn et al. [5] 3 O(
√

n) O(
√

n) O(n)
Kushilevitz and Mour [21] 4 O(1) O(lgn) O(n)

DUORAM 2 or 3 O(lgn)+1 O(lgn)+O(1) O(n)+O(n)

ory D ∈ {0,1}n×w consisting of n words that are each w bits
long. We denote the word at memory address i in D by
D[i] ∈ {0,1}w. Depending on the type of memory access
being performed, the computation parties hold either an en-
crypted copy of D (when reading) or a secret shared copy of
D (when writing); a “refresh” operation converts D from its
secret-shared representation to its encrypted one. FLORAM
also makes use of a “stash” (the details of which we gloss
over) to reduce the frequency with which the computation par-
ties must invoke the (rather costly) refresh operation, resulting
in a lower amortized cost per memory access.

Oblivious reads in FLORAM. Computation parties P0 and
P1 hold symmetric keys k0 and k1 respectively alongside the
memory D blinded using a pseudorandom function F; i.e., P0
and P1 hold in common blinded memory D∈ {0,1}n×w such
that D[i]← D[i]⊕F(k0,i)⊕F(k1,i) for each i ∈ [0..n).

Given shares of a target address i∗ ∈ [0..n), they obtain
shares of the corresponding word D[i∗] using simple PIR
followed by an oblivious unblinding step, as follows:

1. P0 and P1 collaboratively sample a DPF representation
of ei∗ using 2-MPC;

2. each Pb locally expands its DPF share into a bit vector
tb ∈ {0,1}

n and then it computes RΣ

b ←
⊕

(tb[i]=1) D[i];
and, finally,

3. P0 and P1 run another 2-MPC to evaluate F at the (un-
known to either party) input i∗ to produce shares of
D[i∗] = RΣ

0 ⊕RΣ

1 ⊕F(k0,i
∗)⊕F(k1,i

∗).

Oblivious writes in FLORAM. Computation parties P0 and
P1 hold XOR-shares D0 and D1 of the memory D.

Given shares of a target index–value pair (i∗,M), they
replace D[i∗] with D[i∗]⊕M using PIR-writing, as follows:

1. P0 and P1 collaboratively sample a DPF representation
of v =M · ei∗ using 2-MPC; and

2. each Pb locally expands its DPF share into an n-element
vector vb ∈ ({0,1}w)n and then it computes D′b← Db⊕
vb.

Of course, the parties can write an arbitrary value of their
choosing first using i∗ to read shares of D[i∗], and then in-
voking the above procedure for the target index–value pair
(i∗,M⊕D[i∗]).

Refreshing the FLORAM database. Recall that FLORAM
requires an encrypted copy of D for reading and an XOR-
shared copy of D for writing. The refresh operation transforms
XOR-shared memory (suitable for writing) into encrypted
memory (suitable for reading). Given shares D0 and D1 of D,
they compute the encrypted memory as follows:

1. For every refresh, P0 and P1 pick fresh keys k0 and k1
respectively, and mask their local copy of the database;
i.e, for all i, P0 and P1 compute R[i]′←D0[i]⊕F(k0,i)
and R[i]′′← D1[i]⊕F(k1,i) respectively.

2. For all i, P0 and P1 exchange R[i]′ and R[i]′′ to com-
pute R̃[i]← R[i]′⊕R[i]′′, resulting a communication
complexity of O(n) words.

The doubly-masked memory serves as the “read only” mem-
ory. FLORAM uses this refresh operation to initialize their
ORAM with the two versions of the database, thus incurring a
O(n) communication cost to begin any access to the ORAM.
A read operation following a write operation would require
FLORAM to do another linear-cost refresh operation, to get
a new version of the masked database. However, FLORAM
uses a O(

√
n)-sized stash to reduce the communication cost

from O(n) to O(
√

n).
While we compare our work mainly against FLORAM (be-

cause it is the most closely related to our work and has a
shared lineage), there have been several other works in the
3-party and 4-party DORAM setting. Table 1 compares DUO-
RAM with some of the prominent recent work to do one access
in a database holding n constant-sized words. DUORAM’s crit-
ical insight is that reducing latency and increasing bandwidth

3908 32nd USENIX Security Symposium USENIX Association

between parties is much more challenging than increasing
local computational power, and so it focuses on reducing the
round complexity and bandwidth usage. Memory accesses in
DUORAM require only two messages (one round) of commu-
nication.

1.2 Our Contributions
FLORAM proposed an ORAM with O(n) local computation
but a communication complexity of only O(

√
n), and which

in practice beats prior polylog schemes. This paper presents
a novel DORAM scheme, called DUORAM, which takes it
a step further—we maintain the computation complexity of
O(n), but substantially reduce the concrete costs, while reduc-
ing the communication complexity to O(lgn) and offloading
almost the entire communication to a preprocessing phase.
The main contributions of our work are as follows:

1. A new preprocessing strategy that enables the compu-
tation parties to generate and (partially) evaluate DPFs
ahead of time, before any target indices or values are
known;

2. novel 3-party read and 3-party write procedures, both
of which (i) operate directly on secret-shared memory,
(ii) use only a single round of interaction, and (iii) incur
online communication cost independent of the memory
size; and

3. 2-party variants of the above 3-party protocols that elim-
inate one of the three servers using a single-server Sym-
metric PIR-based protocol.

The second contribution listed above eliminates the need
for an explicit refresh operation or a stash (it also makes initial-
izing memory free of any communication cost, compared with
FLORAM’s O(n) communication for initialization), yielding
a very efficient 3-party DORAM protocol. The third contribu-
tion yields a 2-party protocol with far lower asymptotic and
concrete communication than FLORAM, albeit with a higher
constant for the linear local computation.

Some of the salient features of DUORAM’s online phase
are: (i) online communication complexity of O(1) for reading
and writing, (ii) doing k reads in parallel takes one round
of communication, (iii) doing k updates in parallel requires
one message being exchanged, and (iv) doing k dependent
reads (addresses to read depend on the outcome of previous
reads) takes k rounds of communication. Some features of
DUORAM’s preprocessing phase are: (i) the communication
complexity is O(m lgn) for m accesses on memory of size n,
(ii) the computation complexity is O(n) cheap operations per
ORAM access for memory of size n, and (iii) round complex-
ity is O(lgn), independent of the number of accesses. The
concrete advantages of DUORAM are borne out in our experi-
ments, where we observe that even throttling throughput to

as little as 1 Mbit/s has only a nominal impact on DUORAM’s
performance for a database of size 225. This is in contrast to
FLORAM, which did not complete the computations for the
same database size of 225 even after more than ten hours.

1.3 System Overview
DUORAM can be instantiated either as a 2-party or a 3-party
protocol. The DUORAM protocol at a very high level works
as follows. The database is (additively) secret shared among
two parties, namely, P0 and P1. The two parties also hold
the additive shares of a target index in the database that they
want to access.2 If they wish to perform a write (or an update)
operation, the two parties also hold the shares of the value
they wish to write at the target index. Three-party DUORAM
(3P-DUORAM) has a (stateful) auxiliary party, namely P2.
The auxiliary party does not hold the database or index shares
and merely facilitates the secure multiparty computation. Our
2-party DUORAM (2P-DUORAM) replaces the third party with
a Computational Symmetric PIR (CSPIR) protocol. Figure 1
describes the DUORAM system. The party with reduced opac-
ity is the auxiliary party that does not hold either the database
shares or the shares of the database index.

Organization. This paper is organized as follows. In Sec-
tion 2 we discuss the background needed for DUORAM. Sec-
tion 3 describes the various DUORAM subprotocols; detailed
discussions of the 3P-DUORAM and 2P-DUORAM protocols
follow in Sections 4 and 5. We experimentally evaluate the
protocols in Section 6. Section 7 describes related work, and
Section 8 concludes.

2 Background

2.1 Distributed Point Functions (DPFs)
In the most simple terms, Distributed Point Functions (DPFs)
are a concise way to share a standard basis vector (or more
generally a 1-hot vector, which is a scaled standard basis
vector) among multiple parties. Gilboa and Ishai [12] were
the first to introduce DPFs. Boyle, Gilboa, and Ishai [3,
4] improved upon the original DPF construction. In this
paper, we will concern ourselves with the most compact DPF
construction, which appears in Boyle, Gilboa, and Ishai’s
follow-up paper [4].

We will begin the discussion of DPFs by first describing a
point function. A point function is a function that evaluates
to 0 at every value in its domain, except at one special point
(called the “target point”), where it evaluates to a non-zero

2Storing the target indices as additive shares rather than XOR shares
makes DUORAM more efficient. However, the database can either be additive
or XOR shares. We choose to keep them as additive shares purely for
consistency.

USENIX Association 32nd USENIX Security Symposium 3909

ò

D0

ò

D1

�
(P0 : i∗0,M0)

Output: read0,D
′
0

�
(P1 : i∗1,M1)

Output: read1,D
′
1�

P2

Figure 1: DUORAM System. P0 and P1 hold shares D0 and D1 of the database D, shares i∗0 and i∗1 of the index i∗ they wish to
access, and shares M0 and M1 of the update value M. All shares are additive, so that i∗0 +i∗1 = i∗ and similar. The outputs of
the read operation are read0 and read1, with the property that read0 + read1 = D[i∗]. D′0 and D′1 are the outputs of the write
operation, with D′0[i]+D′1[i] = D[i] for i 6= i∗, and D′0[i∗]+D′1[i∗] = D[i∗]+M.

value (called the “target value”). In the definition below
(Definition 1), i∗ is the “target point” and M is the “target
value”.

Definition 1. A point function is a function pi∗,M : [0,n)→
{0,1}∗ such that pi∗,M(i

∗) =M and pi∗,M(i) = 0 otherwise.

Observe that we can represent a point function as a binary
tree (see Figure 2). Distributed Point Functions are a concise
way to share a point function among two or more parties.
An (m, t)-DPF distributes a point function among m parties,
such that no coalition of fewer than t parties can learn the
target point or the target value. This paper deals specifically
with (2,2)-DPFs, where the goal is to share a point function
among two parties succinctly. Definition 2 (a restatement
of Definition 4 from Vadapalli, Storrier, and Henry [29])
formally defines (2,2)-DPFs.

Definition 2. A (2,2)-distributed point function, or (2,2)-
DPF, is a pair of PPT algorithms (GEN,EVAL) defining
secret-shared representations of point functions; that is, given
(i) a security parameter λ∈N, (ii) a target point i∗, and (iii) a
target value M, we have

1. Correctness: If (k0,k1)← GEN(1λ,i∗,M), then, for all
i ∈ [0,n),

EVAL(k0,i)+EVAL(k1,i) =

{
M if i= i∗, and
0 otherwise.

2. Simulatability: There exists a PPT simulator S such that,
for a tuple of target index and target value, (i∗,M), and
bit b ∈ {0,1}, the distribution ensembles

{
S(1λ,b)

}
λ∈N

and
{
kb
∣∣ (k0,k1)← GEN(1λ,i∗,M)

}
λ∈N are computa-

tionally indistinguishable.

The kb output by GEN are called (2,2)-DPF keys.

2.1.1 DPF Construction

We will now describe the most compact construction of DPFs
due to Boyle, Gilboa, and Ishai [4]. The key ingredient used

ø
0

000

ø

0

001

00

ø
0

010

ø

0

011

01

0

ø
0

100

ø

M

101

10

ø
0

110

ø

0

111

11

1

Figure 2: The point function binary tree with target value M
at target index i∗ = 0b101 = 5.

in their construction is the so-called length-doubling PRG,
which we represent by G2×, to construct Goldreich, Gold-
wasser, Micali styled PRFs [13]. We denote the left and
right halves of the outputs of G2×(·) as GL(·) and GR(·)
respectively. Boyle, Gilboa, and Ishai’s construction fol-
lows from the following observation: GL(s0) = GL(s1) and
GR(s0) = GR(s1) if and (essentially) only if s0 = s1. The
GEN algorithm (for a DPF tree with height h) begins with se-
lecting two random seeds, namely, s ()

0 and s ()

1 . The main idea
is to use a length-doubling PRG recursively on the two seeds
to construct a pair of binary trees. In our notation (which we
borrow from Vadapalli et al. [29]), the nodes in the binary
tree generated by recursively applying the length-doubling
PRG have as a subscript the bit indicating which party’s tree
the node belongs to, and as a superscript the binary string
indicating the path from the root to the node (the tree’s root
is s ()

b). For any node s (i)

b , where i is a binary string, the out-
puts of the length-doubling PRG are (s (i‖0)

b ,s (i‖1)
b). We call

two nodes with the same superscript but different subscripts
a node pair. The main idea is to use the length-doubling
PRG recursively on the two seeds to construct a pair of bi-
nary trees that are equal everywhere except on the path to
leaf i∗, and that the node pair for leaf i∗ XOR to M. Of
course, the trees generated by the length-doubling PRG will
not have this form. Therefore, there are two other ingredients
associated with DPFs, which allow us to fix these random
trees, namely, (i) correction words, and (ii) flag bits. There

3910 32nd USENIX Security Symposium USENIX Association

s
()

0

s
(0)
0

s
(00)
0

ø

ø
R
′
0

R0

000

ø

ø
R
′
1

R1

001

00

s
(01)
0

ø

ø
R
′
2

R2

010

ø

ø
R
′
3

R3

011

01

0

s
(1)
0

s
(11)
0

ø

ø
R
′
4

R4

100

ø

ø
M0

R5

101

10

s
(11)
0

ø

ø
R
′
6

R6

110

ø

ø
R
′
7

R7

111

11

1

cw
(1)← GL(s

()

0)⊕GL(s
()

1)

cw
(2)← GR(s

(1)
0)⊕GR(s

(1)
1)

cw
(3)← GL(s

(10)
0)⊕GL(s

(10)
1)

F ←M⊕R5⊕~R5

s
()

1

s
(0)
1

s
(00)
1

ø

ø
R
′
0

R0

000

ø

ø
R
′
1

R1

001

00

s
(01)
1

ø

ø
R
′
2

R2

010

ø
ø

R
′
3

R3

011

01

0

s
(1)
1

s
(11)
1

ø

ø
R
′
4

R4

100
ø

ø
M1

~R5

101

10

s
(11)
1

ø

ø
R
′
6

R6

110

ø

ø
R
′
7

R7

111

11

Figure 3: The yellow-colored nodes are unequal pairs and the white colored nodes are equal pairs. The green colored circles
represent the correction words and the blue colored square is the final correction word. A red-colored double edge indicates that
the correction associated with that level is XOR-ed into the PRG output. In other words, it also indicates that red color edges
emanating from a parent indicate that the flag bit associated with the parent is set to 1, and black edges indicate that the flag bit is
set to 0. For instance, in the root layer, we have s (0)

0 ← GL(s
()

0)⊕ cw (1);s (1)
0 ← GR(s

()

0)⊕ cw (1); s (0)
1 ← GL(s

()

1);s (1)
1 ← GR(s

()

1)

is a “correction word” associated with each binary tree level
and a flag bit associated with each node. For tree pairs of
height h, suppose that (cw (1), . . . ,cw (h)) represent the correc-
tion words. In the first step, the two root seeds are expanded
to get (s (0)

0 ,s (1)
0)←G2×(s

()

0) and (s (0)
1 ,s (1)

1)←G2×(s
()

1). Next,
exactly one pair of children (s (0)

b ,s (1)
b) is transformed such that,

s (0)
b ← s (0)

b ⊕ cw (1) and s (1)
b ← s (1)

b ⊕ cw (1), while the other pair
of children (s (0)

1−b,s
(1)
1−b) remains the same. In other words,

for exactly one of the seeds, the “correction word” associated
with level 1 is XOR-ed into the children. The flag bit associ-
ated with the seed determines if a party XORs the correction
word into its children. Naturally, the flag associated with one
of the seeds is set to 1, while the other is 0. In general, the
flag bits will be the same for the two nodes in each node pair,
except on the path from the root to leaf i∗, where they will
be different. The correction words are designed so that after
the transformation, we have the property that either s (0)

0 = s (0)
1

(if i∗ starts with a 1 bit) or s (1)
0 = s (1)

1 (if i∗ starts with a 0
bit). Notice that there are two types of node pairs, (i) equal,
where the two nodes in the pair are the same, and (ii) unequal,
where the two nodes in the pair are not the same. Observe
that the children of the two nodes from an equal pair are the
same; thus, they are both part of an equal pair in the next
layer. Similarly, the children of the nodes from an unequal
pair are part of an unequal pair in the next layer. At each
layer, applying the correction word transforms exactly one
of the children of a node from an unequal pair (the child not
on the path to leaf i∗) to being part of an equal pair. Apply-
ing h correction words results in leaves such that all the leaf
pairs except i∗ of the two trees XOR to 0, and leaf pair i∗

XORs to something random. Therefore, DPFs also have a
notion of a final correction word, denoted as F . Unlike the
correction words, (cw (1), . . . ,cw (h)), whose goal is to equal-
ize a particular node in the path from the root to the leaf, F
converts the random node at the target location i∗ into the
target value M. Figure 3 shows an example construction of

DPFs. We remark that the two DPF trees in Figure 3 recon-
struct the point function tree in Figure 2. We can evaluate
the DPF over the entire domain of the point function using
the function EVALFULL, which traverses the DPF tree in a
depth-first manner to reduce the amortized number of PRG
evaluations from O(lgn) to O(1) cost per leaf node [4]. The
function produces (vb, tb)← EVALFULL(kb) where vb is the
vector of labels of all the leaves in tree b and tb is the vector
of the flags on all the leaves in tree b. We have the property
that t0⊕ t1 = ei∗ and v0⊕v1 = ei∗ ·M. Also, we have for all
i that vb[i] = EVAL(kb,i).

2.2 Secure Multi-Party Computation (MPC)

We will first present an informal description of MPC. Con-
sider a situation where parties P0,P1, . . . ,Pn hold secret inputs
x0,x1, . . . ,xn respectively and would like to compute the func-
tion y = f (x0, . . . ,xn) without revealing the secret inputs. The
goal is that no party i learns anything else except y. In other
words, Pi should not learn any x j (except the information
about x j implied by y), where j 6= i. A special case of MPC
is 2-MPC, which has exactly two parties in the protocol. It is
defined as follows:

Definition 3 (2-MPC, Informal). Parties P0 and P1 hold
private inputs x0 and x1 respectively. Their goal is to compute
a function f (x0,x1) with the following properties: (i) Privacy:
No party should learn anything more than what is implied
by the final output, and (ii) Correctness: Parties P0 and P1
learn the correct output.

Loosely speaking, (2 + 1)-MPC, also known as server-
aided 2-MPC, is a 2-party MPC protocol with a third party
(which neither holds any secret input nor receives any mes-
sages during the protocol) that does not collude with any other
two parties. The third party merely facilitates the MPC by
sending some correlated randomness to the two MPC parties.

USENIX Association 32nd USENIX Security Symposium 3911

2.2.1 AND and Dot Product on Secret Shares

We first define the notion of AND triples (on XOR shares)
and dot-product triples (on vectors of additive shares), which
facilitate computing (bitwise) AND and dot products on se-
cret shares. In Appendix A, we describe two main ways to
generate these triples, namely a (2+1)-MPC protocol (using
a stateless third party) and a 2-party protocol (using oblivious
transfer, or OT). The former leads to the Du–Atallah [9] pro-
tocol for AND (and dot products, which are denoted as 〈·, ·〉),
which is an efficient (2+1)-MPC variant of the well-known
Beaver triples [1] based AND protocol.

Definition 4 (AND Triples). (X0,Y0,Z0) ∈ {0,1}
λ ×

{0,1}λ × {0,1}λ and (X1,Y1,Z1) ∈ {0,1}
λ × {0,1}λ ×

{0,1}λ are called AND triples if for a random T ∈ {0,1}λ,
the following holds true: (i) Z0 = (X0 ∧ Y1) ⊕ T , and
(ii) Z1 = (X1∧Y0)⊕T .

Definition 5 (Dot-product Triples). (X0,Y0,Z0) ∈ Zn
2w ×

Zn
2w ×Z2w and (X1,Y1,Z1) ∈ Zn

2w ×Zn
2w ×Z2w are called

dot-product triples if for a random T ∈ Z2w , the following
holds true: (i) Z0 = 〈X0,Y1〉+T , and (ii) Z1 = 〈X1,Y0〉−T .

P0 and P1 hold (x0,y0) and (x1,y1) respectively and their
goal is to compute shares of (x0⊕ x1)∧ (y0⊕ y1). Suppose
P0 and P1 hold the AND triples (X0,Y0,Z0) and (X1,Y1,Z1).
First, Pb sends (xb⊕Xb) and (yb⊕Yb) to P1−b for b ∈ {0,1}.
P0 computes z0← (x0∧(y0⊕(y1⊕Y1)))⊕Y0∧(x1⊕X1)⊕Z0
and P1 computes z1 ← (x1 ∧ (y1⊕ (y0⊕Y0)))⊕Y1 ∧ (x0⊕
X0)⊕Z1 respectively. Now, observe that z0⊕z1 = (x0⊕x1)∧
(y0⊕ y1).

Similarly, to compute dot products, assume that parties
P0 and P1 hold (x0,y0) and (x1,y1) respectively, such that
x = x0 + x1 and y = y0 + y1. Their goal is to obtain shares
of 〈x,y〉. P0 and P1 hold the dot-product triples (X0,Y0,Z0)
and (X1,Y1,Z1). Pb sends (xb +Xb) and (yb +Yb) to P1−b
for b ∈ {0,1}. P0 computes z0 ← 〈x0,(y0 +(y1 +Y1))〉−
〈Y0,(x1 +X1)〉+Z0 and P1 computes z1← 〈x1,(y1 +(y0 +
Y0))〉−〈Y1,(x0 +X0)〉+Z1 respectively. Now, observe that
z0 + z1 = 〈(x0 +x1),(y0 +y1)〉.

3 Communication Efficient 3-Party DORAM

We now present the construction of our communication-
efficient DORAM, which we call DUORAM. The main
feature of DUORAM is that we avoid the need for a linear-
communication-cost refresh operation like the one required
by FLORAM, described in Section 1.1. Avoiding the refresh
operation is possible because DUORAM, unlike FLORAM,
stores the database as additive secret shares for both READ
and WRITE operations. Furthermore, since DUORAM does
not change how data is stored in memory, its initialization
does not involve any communication. The parties only need
to allocate sufficient (zeroed) storage. Another surprising

consequence of avoiding the refresh operation is that we have
an online communication cost that is independent of the size
of the database.

Notation. Throughout the paper, we will use up to three
parties, namely P0, P1, and P2. Parties P0 and P1 are the two
primary parties. P2 is the helper party. P2’s role is restricted
to either maintaining a state or assisting in the MPC protocol
by sending correlated randomness to the primary parties. In
DUORAM’s 2-party version we replace P2 with a CSPIR pro-
tocol. We denote by D ∈ {0,1}n×w the database into which
we read or write. D0 and D1 denote the additive shares of the
database. In other words, D0 +D1 = D. All additive secret
sharings are treated as integers mod 2w, or vectors of same.
We use D[i] ∈ {0,1}w to denote the ith word of the database.
Similarly, Db[i] denotes the i

th word of Db, thus they are
the shares of the i

th word of the database. We denote by
ζζζb ∈ {0,1}

n×w the blinding factors held by Pb. We use D̃b to
denote the blinded shares of the database, i.e., D̃b← Db +ζζζb.
The blinds and the blinded shares are used in our READ pro-
tocol (where Pb implicitly receives D̃1−b from P1−b), the
details of which appear in Section 3.1.1. We denote by i∗ the
database index into which we want to read or write. M denotes
the value by which we want to update the value at index i∗.
The shares of i∗ are i∗0 and i∗1. Similarly, M0 and M1 are the
shares of M. In our setting, P0 holds (D0, D̃1,ζζζ0,i

∗
0,M0), P1

holds (D1, D̃0,ζζζ1,i
∗
1,M1), and P2 holds (ζζζ0,ζζζ1). DUORAM

initializes the database shares and the Du–Atallah blinding
vectors to all zeros, thus making initialization communication-
free, compared to the O(n) communication cost for initializ-
ing FLORAM. Formally, the initialization results in D0← 0,
D1← 0, ζζζ0← 0, ζζζ1← 0, D̃0← 0, D̃1← 0.

3.1 High-level Working of DUORAM

For the high-level exposition of DUORAM, we consider a
trusted source, given a target location i∗ and a target value
M,3 who creates six pairs of word vectors (mod 2w) with the
property that t (1)

0 + t (1)
1 = t (2)

0 + t (2)
1 = t (3)

0 + t (3)
1 = ei∗ , and v (1)

0 +

v (1)
1 = v (2)

0 + v (2)
1 = v (3)

0 + v (3)
1 = M · ei∗ . The trusted source

sends: (i) (t (1)
0 , t (2)

0 , t (3)
0) to P0, (ii) (t (1)

1 , t (2)
1 , t (3)

1) to P1, and
(iii) (t (2)

0 , t (3)
1) to P2, and correspondingly: (i) (v (1)

0 ,v (2)
0 ,v (3)

0) to
P0, (ii) (v (1)

1 ,v (2)
1 ,v (3)

1) to P1, and (iii) (v (2)
0 ,v (3)

1) to P2. We note
the t (k)

b and v (k)
b vectors (for k ∈ {1,2,3,}) are almost the flag

and label vectors of a DPF, except the aforementioned vectors
are additively shared, while DPFs are XOR-shared (and the
flag vectors of DPFs are bit vectors, not word vectors). We
will see later how to convert DPFs into these additively shared
vectors.

3The trusted source is for exposition only; we will remove it shortly. Also
note that this formulation requires that i∗ and M be known at DPF generation
time, a requirement we will also remove.

3912 32nd USENIX Security Symposium USENIX Association

P0

+

+

−

P1

+

−

+

D0

v (1)
0

D̃0D′0

ζζζ0

v (2)
0

ζζζ
′
0

v (1)
1

v (2)
1

D̃′0

Figure 4: DUORAM’s REFRESHBLINDS operation. Since v (1)
0 +v (1)

1 = v (2)
0 +v (2)

1 =M · ei∗ , we have D′0 +ζζζ
′
0 = D̃′0. P0 holds D0

(depicted in orange) and updates it as D0+v (1)
0 (v (1)

0 depicted as black, with i∗th value depicted in blue). P1 holding D̃0←D0+ζζζ0
(ζζζ0 is depicted as green) “corrects” by subtracting v (1)

1 (which is exactly the same as −v (1)
0 except at index i∗), which corrects all

the indices but index i∗. To correct that, P0 subtracts v (2)
0 (depicted as red) from ζζζ0 and P1 adds v (2)

1 (depicted as red), to D̃0+v (1)
1 .

3.1.1 READ Operation

The goal of the READ protocol is to read from the database,
D, the word addressed by the target index, i∗. In other words,
P0 and P1, who hold the additive shares of i∗, along with
the shares of the database D, want to obtain the additive
shares of D[i∗]. We observe that D[i∗] = 〈D,ei∗〉. While
we describe the details of the READ operation in Section 4,
we mention here that we perform the READ operation via a
variant of a Du–Atallah dot-product protocol to compute the
dot-product of the flag vectors associated with a DPF at i∗

with the database. The flag vectors from the DPFs are XOR
shares of a standard basis vector. In Section 4.1.1 we will
show a procedure to convert them to additive shares. While
the idea is to use Du–Atallah-style dot products to compute
the shares of 〈D,ei∗〉, there is a critical difference between the
original Du–Atallah to compute the dot product (described
in Section 2.2.1) and the one DUORAM uses. Unlike the
standard Du–Atallah-styled dot-products, where the database
shares and the standard-basis vector shares must be blinded
and exchanged, our protocol only requires the blinded shares
of the database to be traded. Cruicially, whereas previous
protocols required linear communication when the database
shares were updated, our innovation enables the parties to
refresh their copies of each other’s blinded databases with
only logarithmic communication. Further, almost all of this
communication can be done in the preprocessing phase, be-
fore the update locations or values are known, with only a
single word exchanged in the online phase. We achieve this
at the cost of having three distinct shares of the same standard
basis vector. Our READ protocol works as follows:

1. P2 selects ρ ∈ {0,1}w uniformly at random and sends
γ0←−〈ζζζ0, t

(3)
1 〉+ρ to P0 and γ1←−〈ζζζ1, t

(2)
0 〉−ρ to P1.

2. P0 outputs read0← 〈D0 + D̃1, t
(1)
0 〉−〈ζζζ0, t

(3)
0 − t (1)

0 〉+ γ0.

3. P1 outputs read1← 〈D1 + D̃0, t
(1)
1 〉−〈ζζζ1, t

(2)
1 − t (1)

1 〉+ γ1.

Lemma 1. After the READ operation, read0+read1 =D[i∗].

The proof of Lemma 1 appears in Appendix B. The active
participation of P2 here is what makes DUORAM a 3-party
protocol and not a (2+1)-party protocol.

3.1.2 UPDATE Operation

The goal is to add a value to the element at the target index
of the database. Parties P0 and P1 hold (M0,i

∗
0) and (M1,i

∗
1)

respectively. Their goal is to obtain shares of a new database,
whose i∗th value is updated by M. A WRITE operation is
a READ operation (with the output readb) followed by an
UPDATE operation with Mb− readb.

Our UPDATE operation works as follows. For b ∈ {0,1},
Pb simply locally sets D′b← Db +v (1)

b .

Lemma 2. After the UPDATE operation, we have:
(i) D′0[i] + D′1[i] = D[i] for all i 6= i∗, and
(ii) D′0[i∗]+D′1[i∗] = D[i∗]+M.

The proof of Lemma 2 follows from the definitions of DPFs.
Our UPDATE operation is (almost) the same as the one used
in FLORAM. However, DUORAM has an additional step to
refresh the blinds to prepare itself for the next read operation.
Critically, DUORAM’s REFRESHBLINDS requires only O(1)
words of communication, unlike FLORAM’s O(

√
n) amor-

tized cost, and this communication can even be sent in the
same flows as already used for the UPDATE protocol.

REFRESHBLINDS. Performing the READ operation in a
Du–Atallah style has the following drawback. The blinded
shares exchanged become “stale” after one UPDATE operation
and cannot be used for the next READ operation. Suppose
that P0 holds (D0,ζζζ0, D̃1) and P1 holds (D1,ζζζ1, D̃0), that they
update the database with some value M, and that D′0 and
D′1 are the updated database shares. We wish for each party

USENIX Association 32nd USENIX Security Symposium 3913

to update their blinds ζζζb and their blinded versions D̃1−b of
the other party’s database share so that D̃′b (held by P1−b)
equals D′b + ζζζ

′
b (held by Pb). From the point of view of P1,

for example, we first observe that, the blinded shares, namely,
D̃0 is wrong because P0 updated D0 by v (1)

0 . However, P1
holds v (1)

1 , which is equal to −v (1)
0 at every location, except

at i∗. Thus, P1 can (almost) correct the blinded shares. In
order to completely correct the blinded share D̃0, we exploit
the fact that (i) v (2)

0 [i∗]+v (2)
1 [i∗] = v (1)

0 [i∗]+v (1)
1 [i∗] =M, and

(ii) only i∗th location needs to be corrected. Therefore, we
use another pair of vectors that reconstruct to M · ei∗ , namely
v (2)

0 and v (2)
1 . We have P0 update the blind by −v (2)

0 and P1

do one more update of D̃0 by v (2)
1 . Figure 4 gives a pictorial

depiction of the REFRESHBLINDS from the point of view of
P0. More formally, we have the following:

1. P0 and P1 update the blinds as ζζζ
′
0← ζζζ0−v (2)

0 and ζζζ
′
1←

ζζζ1−v (3)
1 respectively.

2. P0 and P1 also update the blinded shares they received as
D̃′1← D̃1 +v (3)

0 −v (1)
0 and D̃′0← D̃0 +v (2)

1 −v (1)
1 respec-

tively.

3. P2 updates the blinds as ζζζ
′
0← ζζζ0−v (2)

0 and ζζζ
′
1← ζζζ1−

v (3)
1 .

Lemma 3. For b ∈ {0,1}, D′b +ζζζ
′
b = D̃′b.

The proof of Lemma 3 appears in Appendix B. For the
next READ operation DUORAM uses (ζζζ

′
0, D̃

′
1) and (ζζζ

′
1, D̃

′
0)

as the blinds and blinded shares, thus avoiding FLORAM’s
O(
√

n) amortized communication.

Remark 1. Since the computing parties need to hold the
blinds and blinded shares (in addition to thier own shares of
D) the per-party storage requirement of 3P-DUORAM is three
times the database size.

4 3P-DUORAM: The Details

In this section, we fill in the gaps from the high-level discus-
sion in Section 3.1. 3P-DUORAM proceeds in two phases: the
preprocessing phase and the online phase. The main idea of
the preprocessing phase is that parties P0 and P1 receive DPFs
with a random target point and a random target value before
the computation begins or its inputs are known. Then they
can “adjust” the DPFs accordingly to the required index and
value. In other words, DUORAM generates the DPFs before it
has the knowledge of (i) what to write into the database, and
(ii) where to read or write into the database, thus postponing
those decisions to the online phase.

DPFs with deferred final correction word. Before we
proceed with the descriptions of the preprocessing and online

phases, we consider the concept of DPFs with deferred final
correction word, which replace the final correction word F
(for some as-yet-unknown target value) with the shares of
a final correction word for the target value 0. Such DPFs
were used in Pirsona [27] and are critical to the DUORAM
UPDATE protocol. More formally, in such DPFs, we replace
the final correction word with F0 and F1 sent to P0 and P1,
respectively, such that F0 +F1 =−(v0[i

∗]+v1[i
∗]), where

v0 and v1 are evaluations of the DPF without applying a final
correction word. We denote the DPFs with the final correction
word shares as k̄b = (s ()

b ,cw
(0), . . . ,cw (h),Fb).

4.1 Preprocessing Phase
The goal of the preprocessing phase is to achieve the DPF
distribution in Section 3, without the trusted source.

4.1.1 A (2+1)-Party Protocol to Generate DPFs

The key idea is to replace the trusted source of DPFs with
(2+1)-party MPC protocol to create DPFs (without the final
correction word) with random target point ri. The protocol
begins with parties P0 and P1 selecting random indices r̃i0
and r̃i1 respectively. These values serve as XOR shares
for the random value ri = r̃i0⊕ r̃i1. The parties then use
an MPC share conversion procedure to convert these XOR-
shares to additive shares ri0 and ri1 respectively, such that
ri0 +ri1 = ri. This conversion is needed because the DPF
generation protocol takes as input XOR shares, while the
remaining DUORAM protocols use additive shares.

We run a (2+1)-party MPC protocol (due to Doerner and
shelat [8]) on the XOR-shares r̃i0 and r̃i1, to generate DPFs
(and their evaluation) without the final correction word at
the location ri. The presentation of the protocol appears in
Appendix C. The protocol results in Pb holding (v̊b, t̊b) such
that, (i) v̊0[i]⊕ v̊1[i] = 0 for all i 6= ri, and (ii) t̊0⊕ t̊1 = eri.

We interpret v̊0 as a word vector and call it v0, and interpret
v̊1 as a word vector, negate each element (recall all word op-
erations are mod 2w), and call it v1. The final correction word
shares can be locally computed by each party, and are defined
as F0 = −∑i(v0[i]) and F1 = −∑i(v1[i]). Therefore, we
have v0[ri]+v1[ri]+F0 +F1 = 0.

DUORAM also requires additive shares of the flag vectors
rather than XOR shares. We next describe a procedure that,
given the above vb and Fb values, converts the flag vectors t̊0
and t̊1 such that t̊0⊕ t̊1 = eri, into word vectors t0 and t1 such
that t0+t1 = eri. (We will note later that this share conversion
can even be skipped if the database were XOR-shared.)

Converting to additive shares. The share conversion algo-
rithm begins with the two parties interpreting the flag vectors
as words, and P1 multiplies its word vector by −1. However,
this leads to additive shares of ±1 · eri. More specifically, if
t0[ri] = 1 and t1[ri] = 0, these are additive shares of eri as

3914 32nd USENIX Security Symposium USENIX Association

P0 P1

P2

S← i∗0−ri0 +i∗1−ri1 // compute cyclic shift offset

t (2)
0 [i]← t (2)

0 [i−S] t (3)
1 [i]← t (3)

1 [i−S] // shift flags

ρ
$← Z2w // select random value

γ0←−〈ζζζ0, t
(3)
1 〉+ρ // cancellation term

γ1←−〈ζζζ1, t
(2)
0 〉−ρ // cancellation term

holds : for k ∈ {1,2,3}
(D0, D̃1,i

∗
0,ri0, t

(k)
0)

holds : for k ∈ {1,2,3}
(D1, D̃0,i

∗
1,ri1, t

(k)
1)

holds : (ζζζ0,ζζζ1, t
(2)
0 , t (3)

1)// compute cylic shift offset

S← i∗0−ri0 +i∗1−ri1

// shift flags

t (k)
0 [i]← t (k)

0 [i−S], for k ∈ {1,3}

// compute dotproduct
read0← 〈D0 + D̃1, t

(1)
0 〉−〈ζζζ0, t

(3)
0 − t (1)

0 〉+ γ0

// compute cylic shift offset

S← i∗0−ri0 +i∗1−ri1

// shift flags

t (k)
1 [i]← t (k)

1 [i−S], for k ∈ {1,2}

// compute dotproduct
read1←〈D1 + D̃0, t

(1)
1 〉−〈ζζζ1, t

(2)
1 − t (1)

1 〉+ γ1

i∗0 −ri0 i∗1−ri1

i∗0 −ri0 i
∗
1
−ri 1

γ0
γ1

Figure 5: Online phase of the 3-party READ protocol, for reading the word at index i∗ = i∗0+i∗1. For k ∈ {1,2,3}, t (k)
0 + t (k)

1 = eri.
All array indices are taken mod n.

required, but if t0[ri] = 0 and t1[ri] = 1, these are additive
shares of −eri. (t0 and t1 are the same for all other indices.)
Our idea is that the parties compute the shares of the unknown
sign, blind it with some random word, exchange them and
reconstruct their sum, and multiply their word vectors with
the sum. At this point, the word vectors add to 0 everywhere
except at index ri as required, but at ri, the sum is 1±(the
sum of the blinds), instead of just 1. The final step of the
protocol fixes this offset. A formalization of the protocol
appears in Appendix D.

The preprocessing phase for the UPDATE protocol can be
summarized as follows:

1. P0 and P1 use the (2+ 1)-MPC protocol to generate
DPFs, namely, (k̄ (1)

0 , k̄ (2)
0 , k̄ (3)

0) and (k̄ (1)
1 , k̄ (2)

1 , k̄ (3)
1) respec-

tively.

2. P0 sends k̄ (2)
0 to P2, and P1 sends k̄ (3)

1 to P2.

3. They convert the XOR-shared flags to additive shares.

At the end of the preprocessing phase, we have: (i) Pb holds
(v (t)

b , t (t)
b ,F (t)

b ,rib), for b ∈ {0,1}, t ∈ {1,2,3}, and (ii) the
auxiliary party P2 holds (v (2)

0 , t (2)
0), (v (3)

1 , t (3)
1).

The preprocessing for the READ protocol is almost the
same, requiring three DPFs. For the READ protocol, however,
the parties do not need to hold any vb or any final correction
word.

4.2 3-Party Online Phase

During the multi-party computation, P0 and P1 will want to
read or update some index i∗ of the shared database, where the
index itself is shared between them. From the preprocessing
phase, they already have shares of a random standard basis
vector eri along with shares of ri. The parties first use the
cyclic shift protocol to shift shares of eri into shares of ei∗ .

4.2.1 Adjusting the Random DPFs

Cyclic Shifts: Postponing the decision of where to read or
write. The 3-party online phase begins with a cyclic shift
protocol that adjusts the shares of the standard basis vector at
a random location ri to the shares of the standard basis vector
at the target index i∗. P0 and P1 hold i∗0 and i∗1 respectively,
such that i∗ = i∗0+i∗1. They also hold (ri0,v

′
0) and (ri1,v

′
1)

such that ri= ri0 +ri1, and v′0 +v′1 = eri. Their goal is to
get vectors v0 and v1 such that v0 +v1 = ei∗ . They exchange
i∗b−rib, reconstruct (i∗0 +i∗1−ri0−ri1), and cyclic right
shift v′b by (i∗0 + i∗1 − ri0 − ri1). Similarly, P2 receives
i∗b−rib from Pb and can also compute the required offset
(i∗0 +i∗1−ri0−ri1).

In this protocol, which is key to being able to move the DPF
generation to preprocessing, it is required that index shares be
additive. For consistency, DUORAM keeps the database also
as additive shares, which also simplifies linked data structures
where addresses are stored in the database. For computations
without this need, however, the database can be stored with
XOR shares in DUORAM, removing the need for the share
conversion procedure described in Section 4.1.1.

4.2.2 READ Protocol

The READ protocol does not need any other details to be
filled in from our high-level discussion. After performing
the cyclic shift protocol to move the target point from ri to
i∗, we use the 3-party protocol in Section 3.1.1. Figure 5
describes the 3-party online phase of the READ protocol.
Protocol 1 summarizes the entire (preprocessing and online
phases) DUORAM READ protocol. All array indices are taken
mod n in Protocol 1.

4.2.3 UPDATE Protocol

Postponing the decision of what to write. We have the
following situation. P0 and P1 hold D0 and D1, the shares of

USENIX Association 32nd USENIX Security Symposium 3915

Protocol 1 3P-DUORAM READ Protocol. In the online phase,
P0 holds (D0,ζζζ0, D̃1,i

∗
0) ; P1 holds (D1,ζζζ1, D̃0,i

∗
1); P2 holds

(ζζζ0,ζζζ1). After the end of the protocol, P0 and P1 get read0
and read1 respectively, such that read0+ read1 = D[i∗0 +i∗1].

Preprocessing Phase:
1: P0 and P1 pick random index shares ri0 and ri1 re-

spectively, and with the aid of P2, use the (2 + 1)-
MPC protocol to generate three DPFs, (k̄ (1)

0 , k̄ (2)
0 , k̄ (3)

0) and
(k̄ (1)

1 , k̄ (2)
1 , k̄ (3)

1), all with index ri= ri0 +ri1.
2: P0 sends k̄ (2)

0 to P2, and P1 sends k̄ (3)
1 to P2.

3: The parties evaluate the DPFs to get XOR-shared flag bits.
P0 and P1 get t̊ (k)

0 and t̊ (k)
1 respectively, for k ∈ {1,2,3}.

P2 gets (t̊ (2)
0 , t̊ (3)

1).
4: They convert the XOR-shared flags t̊ to additive shares t.

Online Phase:
5: P0 and P1 exchange (i∗0− ri0) and (i∗1− ri1). In the

same round of communication, P0 and P1 send (i∗0−ri0)
and (i∗1−ri1) respectively to P2.

6: P0, P1, and P2 reconstruct S← i∗0−ri0 +i∗1−ri1.
7: ∀i, P0 computes t (k)

0 [i]← t (k)
0 [i−S] for k ∈ {1,3}; P1

computes t (k)
1 [i]← t (k)

1 [i− S] for k ∈ {1,2}; P2 com-
putes t (3)

1 [i]← t (3)
1 [i−S] and t (2)

0 [i]← t (2)
0 [i−S].

8: P2 selects ρ ∈ {0,1}w uniformly at random and sends
γ0←−〈ζζζ0, t

(3)
1 〉+ρ to P0 and γ1←−〈ζζζ1, t

(2)
0 〉−ρ to P1.

9: P0 outputs read0← 〈D0 + D̃1, t
(1)
0 〉−〈ζζζ0, t

(3)
0 − t (1)

0 〉+ γ0.
10: P1 outputs read1← 〈D1 + D̃0, t

(1)
1 〉−〈ζζζ1, t

(2)
1 − t (1)

1 〉+ γ1.

the database D. The two parties also hold (i) M0 and M1, the
shares of the target value, and (ii) DPFs k̄0 and k̄1 at i∗ and
their evaluations (v0,v1). Their goal is to add M=M0 +M1
to the value at the target index i∗ of the database D. The
idea is that the parties Pb exchange Mb +Fb to reconstruct
M− (v0[i

∗]+v1[i
∗]). The reconstruction serves as the new

final correction word to write M in the desired location.
P0 and P1 then use the technique of Figure 4 to update

their own blind and their copy of the other’s blinded database
share; P2 similarly updates its copy of P0’s and P1’s blinds.
We present the complete online phase of the update proto-
col, including both sets of updates, in Figure 6. The entire
UPDATE protocol (preprocessing and online phases) is sum-
marized in Protocol 2. All array indices are taken mod n in
Protocol 2.

5 2P-DUORAM

This section presents the 2-party instantiation of DUORAM.
The update protocol is (nearly) the same as the one in 3P-
DUORAM, with the number of communication words in the
online phase independent of the database size. The 2-party
read protocol uses a single-server Computational Symmetric

Protocol 2 3P-DUORAM UPDATE Protocol. In the on-
line phase, P0 holds (D0,ζζζ0, D̃1,i

∗
0,M0); P1 holds D1,

(ζζζ1, D̃0,i
∗
1,M1); P2 holds (ζζζ0,ζζζ1). After the end of the

protocol, P0 gets (D′0,ζζζ
′
0, D̃

′
1), P1 gets (D′1,ζζζ

′
1, D̃

′
0), and P2

gets (ζζζ
′
0,ζζζ
′
1), such that D̃′0 = D′0 + ζζζ

′
0, D̃′1 = D′1 + ζζζ

′
1, and

D′0 +D′1 = D0 +D1 +(M0 +M1) · ei∗0+i∗1
.

Preprocessing Phase:
1: P0 and P1 pick random index shares ri0 and ri1 re-

spectively, and with the aid of P2, use the (2 + 1)-
MPC protocol to generate three DPFs, (k̄ (1)

0 , k̄ (2)
0 , k̄ (3)

0) and
(k̄ (1)

1 , k̄ (2)
1 , k̄ (3)

1), all with index ri= ri0 +ri1. In the pro-
cess, P0 and P1 learn shares F (k)

0 and F (k)
1 respectively of

the final correction words (k ∈ {1,2,3}).
2: P0 sends k̄ (2)

0 to P2, and P1 sends k̄ (3)
1 to P2.

3: The parties evaluate the DPFs to get XOR-shared flag bits
and leaves. P0 and P1 get t̊ (k)

0 ,v̊ (k)
0 and t̊ (k)

1 ,v̊ (k)
1 respectively,

for k ∈ {1,2,3}. P2 gets (t̊ (2)
0 , v̊ (2)

0 , t̊ (3)
1 , v̊ (3)

1).
4: They convert the XOR-shared flags t̊ and leaves v̊ to

additive shares t and v.

Online Phase:
5: P0 and P1 exchange ((i∗0 + ri0),(M0 + F (2)

0),(M0 +

F (3)
0)) and ((i∗0 + ri1),(M1 + F (2)

1),(M1 + F (3)
1)) and

also send those values to P2. P0 and P1 also exchange
(M0+F (1)

0) and (M1+F (1)
1) but do not send those values

to P2.
6: P0,P1,P2 reconstruct F (k)← (M0+F (k)

0 +M1+F (k)
1) for

k ∈ {2,3}; P0,P1 also do so for k = 1.
7: P0,P1,P2 reconstruct S← i∗0 +ri0 +i∗1 +ri1.
8: P0 updates ∀i:

D′0[i]← D0[i]+
(
v (1)

0 [i−S]+F (1) · t (1)
0 [i−S]

)
,

ζζζ
′
0[i]← ζζζ0[i]−

(
v (2)

0 [i−S]+F (2) · t (2)
0 [i−S]

)
,

D̃′0[i]← D̃0[i]+v (3)
0 [i−S]+F (3) · t (3)

0 [i−S]

−(v (1)
0 [i−S]+F (1) · t (1)

0 [i−S]).
9: P1 updates ∀i:

D′1[i]← D1[i]+
(
v (1)

1 [i−S]+F (1) · t (1)
1 [i−S]

)
,

ζζζ
′
1[i]← ζζζ1[i]−

(
v (3)

1 [i−S]+F (3) · t (3)
1 [i−S]

)
,

D̃′0[i]← D̃0[i]+v (2)
1 [i−S]+F (2) · t (2)

1 [i−S]

−(v (1)
1 [i−S]+F (1) · t (1)

1 [i−S]).
10: P2 updates ζζζ0 and ζζζ1 to ζζζ

′
0 and ζζζ

′
1 as P0 and P1 do above.

PIR (CSPIR) protocol, resulting in communication logarith-
mic in the database size (beating FLORAM’s O(

√
n)), but

with more local computation. Our experiments in the next
section show that it can be overall faster than FLORAM for
typical network configurations.

Like in the 3-party setup, the 2-party protocol can be di-
vided into an online and preprocessing phase. The idea once
again is to generate and exchange CSPIR queries at a random
location in the preprocessing phase and then use the cyclic
shift protocol to correct it. Similarly, for an update operation,

3916 32nd USENIX Security Symposium USENIX Association

P0 P1

P2

//compute cylic shift offset
S← i∗0−ri0 +i∗1−ri1

//compute final CW
F (k)←M0 +F (k)

0 +M1 +F (k)
1 for k ∈ {2,3}

//update blinds
ζζζ
′
0[i]← ζζζ0[i]− (v (2)

0 [i−S]+F (2) · t (2)
0 [i−S]), ∀i

ζζζ
′
1[i]← ζζζ1[i]− (v (3)

1 [i−S]+F (3) · t (3)
1 [i−S]), ∀i

holds : for k ∈ {1,2,3}
(M1,D1, D̃0,ζζζ1,i

∗
1,F

(k)
1 ,ri1,v

(k)
1 , t (k)

1)

holds : for k ∈ {1,2,3}
(M0,D0, D̃1,ζζζ0,i

∗
0,F

(k)
0 ,ri0,v

(k)
0 , t (k)

0)

holds : (ζζζ0,ζζζ1,v
(2)
0 ,v (3)

1 , t (2)
0 , t (3)

1)

//compute cylic shift offset
S← i∗0−ri0 +i∗1−ri1

//compute final CW
F (k)←M0 +F (k)

0 +M1 +F (k)
1 , for k ∈ {1,2,3}

//update database
D′0[i]← D0[i]+v (1)

0 [i−S]+F (1) · t (1)
0 [i−S], ∀i

//update blinds
ζζζ
′
0[i]← ζζζ0[i]− (v (2)

0 [i−S]+F (2) · t (2)
0 [i−S]), ∀i

//update blinded shares
D̃′1[i]← D̃1[i]+v (3)

0 [i−S]+F (3) · t (3)
0 [i−S]

−(v (1)
0 [i−S]+F (1) · t (1)

0 [i−S]), ∀i

//compute cylic shift offset
S← i∗0−ri0 +i∗1−ri1; k ∈ {1,2,3}

//compute final CW
F (k)←M0 +F (k)

0 +M1 +F (k)
1 , for k ∈ {1,2,3}

//update database
D′1[i]← D1[i]+v (1)

1 [i−S]+F (1) · t (1)
1 [i−S], ∀i

//update blinds
ζζζ
′
1[i]← ζζζ1[i]− (v (3)

1 [i−S]+F (3) · t (3)
1 [i−S]), ∀i

//update blinded shares
D̃′0[i]← D̃0[i]+v (2)

1 [i−S]+F (2) · t (2)
1 [i−S]

−(v (1)
1 [i−S]+F (1) · t (1)

1 [i−S]), ∀i

i∗0−ri0 ;M0 +F (k)
0

for k ∈ {1,2,3}
i∗1−ri1;M1+F (k)

1

for k ∈ {1,2,3}

i ∗
0 −ri

0 ;M
0 +F (j)0

j ∈ {2,3} i
∗
1
−r

i 1
;M 1

+F
(j)

1

j ∈
{2,

3}

Figure 6: Online phase of the 3-party UPDATE Protocol. Protocol to add the value M=M0+M1 to the value at index i∗ = i∗0+i∗1
in the database D = D0 +D1. For k ∈ {1,2,3}, we have, t (k)

0 + t (k)
1 = eri and v (k)

0 +(t0 ·F
(k))+v (k)

1 +(t1 ·F
(k)) = 0. At the end

of the protocol, for b ∈ {0,1}, Pb gets (D̃′1−b,D
′
b,ζζζ
′
b), such that D̃′b = D′b + ζζζ

′
b. The next READ operation uses ζζζ

′
b and D̃′b as

blinding factors and blinded shares. For the next UPDATE operation, new (v (k)
b , t (k)

b) are received. All array indices are taken mod
n.

we can generate random DPFs at a random location with a
random target value.

2-party READ. The read operation in 2P-DUORAM relies
on Computational Symmetric PIR (CSPIR), which works
as follows. The parties have precomputed and exchanged
CSPIR queries for lookups at random indices ri0 and ri1
respectively. Note that the encrypted queries only depend on
the (random) index being looked up and on the size of the
database, and not on the contents of the database, so those can
be computed and exchanged during preprocessing. They also
have shares i∗0 and i∗1 of the target index i∗. For b ∈ {0,1}:

1. Pb sends (i∗b−rib) to P1−b.

2. Pb blinds each of the elements of Db with a random value
rb ∈ {0,1}

w, and rotates the resulting blinded vector by
i∗b + (i∗1−b − ri1−b). In other words, Pb computes
D′b[i]← (Db[i+i∗b +(i∗1−b−ri1−b)]+ rb).

3. P1−b computes a response to Pb’s preprepared CSPIR
query with index rib on D′1−b and sends the result to Pb,
who recovers cb = D1−b[i

∗]+ r1−b.

4. Pb outputs: readb← cb− rb.

Lemma 4. After the 2-party READ, read0 + read1 = D[i∗].

The proof of Lemma 4 can be found in Appendix B. Our
implementation uses the SPIRAL CPIR protocol by Menon
and Wu [23]. We note that CPIR protocols like SPIRAL are

extremely parallelizable with more hardware. The protocol,
however, cannot be used as-is, as it is not symmetric; that
is, the client may learn more than just one database element.
Therefore, we augment the SPIRAL protocol into a SPIR
protocol using the generic OT-based PIR-to-SPIR transform
by Naor and Pinkas [24].

2-party UPDATE. Observe that since we do the reading
via CSPIR, there is no notion of blinds or blinded shares;
thus, the REFRESHBLINDS operation is no longer needed.
The online phase of the 2-party UPDATE protocol is then
the same as the online phase of the 3-party protocol, but
without the additional REFRESHBLINDS operation. Thus,
somewhat counterintuitively, the online UPDATE phase of
2P-DUORAM is cheaper than that of 3P-DUORAM. However,
the preprocessing phase differs because the multiplicative
triples, rather than being generated via an auxiliary party,
are generated via OT, though we only need to precompute
one DPF per UPDATE operation instead of three DPFs per
UPDATE and READ.

6 Evaluation

We next evaluate the performance of DUORAM on different
ORAM operations. We classify the READ operations as ei-
ther dependent or independent reads for our evaluation. We
call a block of k READ operations dependent if the target
index for each read is known only after the completion of the
previous read. This notion models following pointers in a

USENIX Association 32nd USENIX Security Symposium 3917

Table 2: Comparing computation, bandwidth, and the number of sequential messages sent across various DUORAM operations
for a database containing n words of size w. The gray color represents the preprocessing cost. FLORAM is shown for comparison.
In this table, we assume w≥ lgn.

3P-DUORAM 2P-DUORAM FLORAM

Operation Computation Bandwidth Messages Computation Bandwidth Messages Computation Bandwidth Messages

k Ind Reads O(k·n)+ O(k·n) O(k·w·lgn)+ 2·k·w O(lgn)+ 2 O(k·n)+ O(k·n) O(k·w·lgn)+ O(k·w) O(1)+ 2 O(k·n) O(k·w·lgn) O(lgn)
k Dep Reads O(k·n)+ O(k·w) O(k·w·lgn)+ 2·k·w O(lgn)+ 2·k O(k·n)+ O(k·n) O(k·w·lgn)+ O(k·w) O(1)+ 2·k O(k·n) O(k·w·lgn) O(k·lgn)
k Writes O(k·n)+ O(k·n) O(k·w·lgn)+ 9·k·w O(lgn)+ 3·k O(k·n)+ O(k·n) O(k·w·lgn)+ O(k·w) O(lgn)+ 3·k O(k·n) O(k·w·

√
n) O(k·lgn)

Interleaved O(k·n)+ O(k·n) O(k·w·lgn)+ 11·k·w O(lgn)+ 5·k O(k·n)+ O(k·n) O(k·w·lgn)+ O(k·w) O(lgn)+ 5·k O(k·n) O(k·w·
√

n) O(k·lgn)

linked data structure or traversing a binary tree, for example.
We call a block of k READ operations independent if the k
target indices are known in advance of performing any of
the reads. However, we do not make this distinction for the
WRITE operations, which are always considered dependent.
A READ operation followed by a WRITE operation is called
an interleaved operation. Thus, k interleaved operations are
k read and k write operations interleaved with one another.
Note that an interleaved operation actually involves two reads,
since a write operation is a read operation followed by an
update operation.

6.1 Analytical Evaluation
Before we present our experimental results, we give an ana-
lytical accounting of computation and communication costs
of the DUORAM variants. We summarize the costs in Ta-
ble 2.4 Note that Table 2 shows the number of sequential
messages rather than the number of rounds. We say that a
protocol uses q sequential messages if the time spent on In-
ternet latency is q times the one-way latency. This notion
differs from rounds, where a round requires each party to wait
for a response to their message before sending the next mes-
sage. Thus, q rounds would mean the time spent on Internet
latency is 2q times the one-way latency. Observe that the
online communication cost of 3P-DUORAM is constant (for
constant-sized words; it is linear in the word length). Another
important thing to note is that the number of messages sent
for k independent reads is independent of k.

6.2 Experimental Evaluation
Experimental setup. We implemented and benchmarked
DUORAM. We wrote a proof-of-concept reference implemen-
tation in C++. 5 Our implementation uses Boost.Asio v1.18.1
for asynchronous communication.We ran the parties in
separate docker containers and simulated network param-
eters with tc qdisc add dev eth0 root netem delay

4Table 1 in the FLORAM paper [8] says it requires only O(1) messages to
be sent per access. However, Figure 6 in that same work shows that it requires
Θ(lgn) rounds of communication, and our own measurements reported in
Section 6.2.1 confirm this latter value.

5Our source code is available at https://git-crysp.uwaterloo.ca/
avadapal/duoram.

Xms rate Ymbit, to set the latency to Xms, and restrict the
rate to YMbit/s. We implemented the PRGs with AES.

For our experimental evaluation, we compare DUORAM
against the two works from Table 1 with available imple-
mentations, namely FLORAM

6 and Jarecki and Wei’s [19]
3P-Circuit ORAM.7

6.2.1 Head-to-Head Comparison with FLORAM

In this section, we do a head-to-head comparison of FLO-
RAM with DUORAM, comparing the (i) wall-clock time, and
(ii) bandwidth consumption. The standard latency we use
is 30 ms,8 and the standard bandwidth 100 Mbit/s. We vary
network parameters and database sizes, and compare 2P- and
3P-DUORAM with FLORAM for different ORAM operations.
Specifically, we make our comparisons under the following
conditions: (i) varying the database size from 216 to 226,
while keeping the latency and throughput constant at 30 ms
and 100 Mbit/s, respectively, (ii) varying the throughput while
keeping the number of items constant at 220 and the network
latency at 30 ms, and (iii) varying the network latency while
keeping the number of items at 220 and the throughput at
100 Mbit/s. We omit 3P-Circuit ORAM from these plots
because FLORAM outperforms it in these settings.

Figure 7 compares the performance of DUORAM with FLO-
RAM for doing interleaved operations. The comparative be-
haviours of DUORAM and FLORAM for read and write opera-
tions are very similar; those plots can be found in Figures 11
and 12 in the extended version of this paper [28, App.E]. For
our standard network settings, we see that 2P-DUORAM is
faster than FLORAM until the database size reaches some-
where between 222 and 224 items; at this point, the linear
SPIR computation of 2P-DUORAM starts exceeding the log-
arithmic cost of the rest of the protocol. On the other hand,
3P-DUORAM consistently performs better than FLORAM for
all database sizes. Decreasing the bandwidth capacity has a
minimal impact on the performance of DUORAM because it

6Code retrieved from https://gitlab.com/neucrypt/floram/.
7Code retrieved from https://github.com/Boyoung-/

circuit-oram-3pc.
8A value chosen from the low end of one-way latency values from https:

//www.cloudping.co/grid. Note that low latencies benefit FLORAM much
more than DUORAM, as we will soon see.

3918 32nd USENIX Security Symposium USENIX Association

https://git-crysp.uwaterloo.ca/avadapal/duoram
https://git-crysp.uwaterloo.ca/avadapal/duoram
https://gitlab.com/neucrypt/floram/
https://github.com/Boyoung-/circuit-oram-3pc
https://github.com/Boyoung-/circuit-oram-3pc
https://www.cloudping.co/grid
https://www.cloudping.co/grid

216 218 220 222 224 226
0

1000

2000

3000

4000

DB Size (# of 64-bit words)

W
al

lc
lo

ck
tim

e
(s

)

Rate=100 Mbit/s, Latency = 30ms

10 30 50 70 90 110

200

600

1000

1400

1800

2200

Rate (Mbit/second)

DB size = 220 items, Latency=30ms

10 30 50 70
100

500

900

1300

Latency (in ms)

DB size = 220 items, Rate=100 Mbit/s

FLORAM 2P-DUORAM (Total) 2P-DUORAM (Online) 3P-DUORAM (Total) 3P-DUORAM (Online)

Figure 7: Comparing FLORAM and DUORAM to do 128 interleaved operations for different parameters of database size, latency,
and bandwidth on databases with 8-byte words. (The error bars are too small and thus not visible.)

216 218 220 222 224 226

22

28

214

220

DB Size (# of 64-bit words)

B
an

dw
id

th
(K

iB
)

Dependent Reads

216 218 220 222 224 226

22

28

214

220

DB Size (# of 64-bit words)

Writes

216 218 220 222 224 226

22

28

214

220

DB Size (# of 64-bit words)

Interleaved

FLORAM 2P-DUORAM (Total) 2P-DUORAM (Online) 3P-DUORAM (Total) 3P-DUORAM (Online)

Figure 8: Comparing bandwidth consumption to do 128 dependent read, 128 write, and 128 interleaved ORAM operations in
DUORAM and FLORAM; the y-axis is log-scaled.

sends so much less data, as can be seen in Figure 8. However,
observe that for all the ORAM operations that we evaluate,
FLORAM experiences a significant dip in performance as
the bandwidth capacity is throttled. The dip is more signifi-
cant when we are doing interleaved operations, as FLORAM’s
interleaved operations require a refresh after every

√
n/8 iter-

ations. Finally, as we increase the latency, the performance of
FLORAM worsens much more than DUORAM’s performance
owing to the additional rounds in FLORAM. For example, we
measure that FLORAM requires about 4 lgn−25 sequential
messages per read operation, while DUORAM requires just 2.

Figure 8 compares the bandwidth consumption between
DUORAM and FLORAM. The difference between FLORAM
and DUORAM is the largest in the interleaved operations case.
This is because FLORAM requires a O(n) communication cost
before every

√
n/8 iterations. Most of FLORAM’s bandwidth

consumption in the case of dependent READ and WRITE
operations comes in the initialization phase. In the case of the
WRITE operation, the online phase of 2P-DUORAM performs
slightly better than the 3-party version because it does not
need to run REFRESHBLINDS. To illustrate and highlight
the low bandwidth requirements of DUORAM, we reduced
the bandwidth capacity to as low as 1 Mbit per second and
set the latency to 100 ms. Even under these extreme network
settings, the performance of DUORAM does not suffer much.
For example, while 2P-DUORAM took about 10 seconds to do

one read operation (including preprocessing and online time)
on a database of 220 items, FLORAM took over 1.5 hours. For
225 items, DUORAM took about 30 seconds, while FLORAM
did not finish running after more than 10 hours. Table 4 in the
extended version of this paper [28, App.E] gives the detailed
results of this experiment.

6.2.2 Internet vs. Local Network Conditions

In this section, we perform a head-to-head comparison of
3P-Circuit ORAM and FLORAM with DUORAM for different
network conditions. Figure 9 compares DUORAM against
3P-Circuit ORAM and FLORAM for (i) 100 Mbit/s bandwidth
and a latency of 30 ms, and (ii) 100 Gbit/s bandwidth, and
no additional latency set (we measure a 30 µs latency). The
former is our standard realistic Internet setting, while the lat-
ter is intended to model the parties being colocated in the
same datacentre, if not the same rack. The latter setting is
the least favorable for DUORAM, as DUORAM optimizes the
parameters (round complexity and bandwidth) that are not rel-
evant for colocated servers; in particular, whereas DUORAM
requires only two sequential messages per READ operation,
we find that Jarecki and Wei’s 3P-Circuit ORAM needs about
10lgn+42, which is in the hundreds for these database sizes.
We observe that to do 128 READ operations in the colocated
setting, 3P-DUORAM performs better than 3P-Circuit ORAM

USENIX Association 32nd USENIX Security Symposium 3919

216 218 220 222 224 226 228 230 232
10−1

100
101
102
103
104

DB Size (# of 64-bit words)

W
al

lc
lo

ck
tim

e
(s

)

Rate=100 Mbit/s, Latency = 30ms

216 218 220 222 224 226 228 230 232
10−1

100

101

102

103

104

DB Size (# of 64-bit words)

Rate=100 Gbit/s, Latency = 30µs

216 218 220 222 224 226 228 230 232
22

28

214

220

226

DB Size (# of 64-bit words)

B
an

dw
id

th
(K

iB
)

Bandwidth Consumption

FLORAM Circuit ORAM (Total) Circuit ORAM (Online) 3P-DUORAM (Total) 3P-DUORAM (Online)

Figure 9: Comparing DUORAM with 3P-Circuit ORAM and FLORAM to do 128 read operations for database sizes between 216

and 232 for two different network settings: 100 Mbit/s bandwidth and a latency of 30 ms, and 100 Gbit/s bandwidth and a latency
of 30 µs. The y-axis in all three plots is log-scaled.

4 8 16 32
0

50

100

150

200

Number of Cores

W
al

lc
lo

ck
tim

e
(s

)

DB Size (# of 64-bit words) = 216

4 8 16 32
0

50
100
150
200
250
300

Number of Cores

DB Size (# of 64-bit words) = 220

4 8 16 32
0

1500

3000

4500

Number of Cores

DB Size (# of 64-bit words) = 226

FLORAM 2P-DUORAM 3P-DUORAM

Figure 10: Comparing the performance of DUORAM and FLORAM to do 128 read operations by varying the number of cores
being used for various database sizes. (The error bars are too small and thus not visible.)

until the number of items is 224; after that, Circuit ORAM
takes over. When we compare against FLORAM, the crossover
over point is 220 for total cost and 226 for online cost. Recall
also that READ operations are the best workload for FLO-
RAM, since it needs to do only one refresh operation (in the
initialization).

For the non-colocated network setting, we observe that 3P-
DUORAM consistently performs better than FLORAM until
the database size of nearly 232 items. When we compare
DUORAM with 3P-Circuit ORAM, we observe that some-
where between database sizes of 228 and 230 (for total time),
or between 230 and 232 (for online time), 3P-Circuit ORAM
starts performing better than DUORAM. Recall from Table 1
that Jarecki and Wei’s protocol has a O(lg3 n) computation
cost. At these sizes, the linear computation cost of DUORAM
starts dominating its low roundtrip cost.

While comparing bandwidth consumption, we observe in
Figure 9 that, to do 128 dependent reads, the bandwidth con-
sumption of 3P-Circuit ORAM and FLORAM are far higher
than DUORAM (note the log scale). Also, observe that the
bandwidth consumption of 3P-Circuit ORAM is higher than
FLORAM until the database size of 224. After that, FLORAM’s
bandwidth consumption overtakes 3P-Circuit ORAM. FLO-
RAM’s high bandwidth cost comes mainly from its refresh
operation, which takes O(n) bandwidth.

6.2.3 Scaling DUORAM

In the following experiments, we examine how DUORAM
scales as we increase the number of cores. Like in the pre-
vious experiments, we set to use the network parameters as
30 ms of latency and 100 Mbit/s bandwidth. Figure 10 shows
how the performance of DUORAM and FLORAM vary as we
increase the number of cores. This section omits a compari-
son with 3P-Circuit ORAM since their implementation does
not support multithreading. We observe that, as we increase
the number of cores, 2P-DUORAM sees a significant improve-
ment in performance, while the same improvement is not
observed in FLORAM’s performance. This is because the
bottlenecks for FLORAM and DUORAM are different. Band-
width is the bottleneck for FLORAM; thus, increasing the
parallelism does not affect FLORAM’s performance in the
restricted bandwidth setting. The upshot of this finding is
that it is much more expensive to scale the performance of
FLORAM as compared to DUORAM, as buying extra band-
width is more expensive. For instance, the current rates9 for
a long-term Amazon EC2 instance: $0.0195/CPU-hour and
$0.09/GB of outbound traffic.10 Table 3 compares the cost
in USD to do ORAM operations in DUORAM and FLORAM.

9https://aws.amazon.com/ec2/pricing/on-demand/
10These are the same values used by SPRIAL [23] for their dollar costs.

3920 32nd USENIX Security Symposium USENIX Association

https://aws.amazon.com/ec2/pricing/on-demand/

Table 3: Comparing monetary costs of DUORAM and FLORAM while setting the throughput to be 100 Mbit/s, and latency to
30 ms for 128 read operations on a database of size 220.

2P-DUORAM 3P-DUORAM FLORAM

operation CPU Cost Bandwidth Cost CPU Cost Bandwidth Cost CPU Cost Bandwidth Cost

128 Reads µ$3800 µ$1200 µ$3000 µ$5 µ$6400 µ$20000
128 Writes µ$5100 µ$5 µ$4700 µ$5 µ$8000 µ$20000

128 Interleaved µ$8900 µ$1200 µ$7700 µ$5 µ$13000 µ$38000

All the costs in costs in Table 3 in micro-dollars, denoted as
µ$ (1 micro-dollar = 10−6 USD).

7 Related Work

In this section, we briefly survey some related work from
the ORAM and DORAM literature. Goldreich and Ostro-
vsky [14] first introduced ORAM in a general client-server
context and proposed the classic “square-root ORAM” pro-
tocol, so called because it introduces overhead square root
in the database size. The ORAM problem they considered
involves a client who wishes to perform some computation
over a memory of size n held by an untrusted server, while
hiding its access patterns to the memory. Over the subsequent
two decades, many works [2, 6, 7, 15, 16, 20, 25, 26, 31, 32] ad-
dressed the same basic problem but with progressively lower
communication overhead between the client and the server.

Beyond the original client-server model, ORAM can be
useful in the context of secure computation. In such a setting,
the client operations are implemented as a circuit. Wang,
Chan, and Shi’s work [30] introduced a tree-based ORAM
that optimizes the circuit size. Gentry, Goldman, Halevi, Julia,
Raykova, and Wichs [11] improve upon the Tree ORAM [25].
There have been other notable works using Tree ORAM. For
example, Gordon, Katz, and Wang [17] in 2018 presented a
2-server ORAM combining Tree ORAM with an extension of
a 2-server PIR protocol. There have been other notable works
in this direction. Jarecki and Wei [19] present a 3-party MPC
ORAM. Faber, Jarecki, Kentros, and Wei [10] show a 3-party
secure computation ORAM that is a variant of the binary tree
ORAM by Shi et al. [25]. Zahur, Wang, Raykova, Gascon,
Doerner, Evans, and Katz [33] revisited square-root ORAM.
Their work showed that relaxing the asymptotic bounds of
access complexity would produce smaller circuits. They pro-

posed an ORAM scheme with cost O(

√
n(lgn)3) that yields

significant improvements over any of the tree-based ORAM
schemes in practice. The FLORAM work by Doerner and
shelat [8], which we discussed in this paper and is the closest
to our work, took it a step further and presented an ORAM
scheme with O(n) local computation while improving upon
square-root ORAM in practice. Three-party DPF-based DO-
RAM schemes have also been studied by Bunn, Katz, Kushile-

vitz, and Ostrovsky [5]. However, they use 3-party DPFs that
have size O(

√
n). Hamlin and Varia [18] present a 2-server

DORAM for secure computation that achieves both constant
round communication and sub-linear work. However, unlike
DUORAM, their work has a O(

√
n · lgn) bandwidth cost. Sub-

logarithmic DORAM has also been studied by Kushilevitz
and Mour [21]. Their three-party protocol requires memory
to be laid out in a complicated data structure, which is dif-
ferent from DUORAM, where the memory is laid out in an
array. They also present a four-server ORAM protocol whose
memory layout is as simple as the one DUORAM uses.

8 Conclusion

In this paper, we presented 2-party and 3-party variants of
DUORAM, a Distributed ORAM protocol. One of the crucial
improvements that DUORAM offers compared to previous
work like FLORAM is that it uses much less bandwidth and
communication rounds, and so is much less sensitive to net-
work bandwidth and latency. Two key innovations that enable
this are our novel constructions for (i) evaluating dot products
of certain secret-shared vectors using communication that
is only logarithmic in the vector length, and (ii) generating
distributed point functions (and CSPIR queries) in a prepro-
cessing phase, before the target point or message is known,
both of which vastly reduce the online cost of the protocol.

Acknowledgements

We thank the anonymous reviewers and shepherd for their
helpful comments in improving this paper. This research
was undertaken, in part, thanks to funding from the Canada
Research Chairs program, Cisco Research, and an NSERC
Discovery Grant. This work benefited from the use of the
CrySP RIPPLE Facility at the University of Waterloo.

References

[1] Donald Beaver. Efficient Multiparty Protocols Using
Circuit Randomization. In CRYPTO, pages 420–432,
1991.

USENIX Association 32nd USENIX Security Symposium 3921

[2] Dan Boneh, David Mazieres, and Raluca Popa. Remote
Oblivious Storage: Making Oblivious RAM Practical.
Technical report, MIT, 2011. https://dspace.mit.
edu/handle/1721.1/62006.

[3] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function Se-
cret Sharing. In Advances in Cryptology - EUROCRYPT
2015, pages 337–367, 2015.

[4] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing: Improvements and extensions. In CCS,
pages 1292–1303, 2016.

[5] Paul Bunn, Jonathan Katz, Eyal Kushilevitz, and Rafail
Ostrovsky. Efficient 3-Party Distributed ORAM. In
Security and Cryptography for Networks, pages 215–
232, 2020.

[6] Kai-Min Chung, Zhenming Liu, and Rafael Pass.
Statistically-secure ORAM with O((logn)2) Overhead.
In Asiacrypt, pages 62–81, 2014.

[7] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus
Nielsen. Perfectly Secure Oblivious RAM without
Random Oracles. In TCC, 2011.

[8] Jack Doerner and Abhi Shelat. Scaling ORAM for
Secure Computation. In CCS, pages 523–535. ACM,
2017.

[9] Wenliang Du and Mikhail J. Atallah. Protocols for Se-
cure Remote Database Access with Approximate Match-
ing. In E-Commerce Security and Privacy (Part II),
Advances in Information Security, Feb 2001.

[10] Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and
Boyang Wei. Three-Party ORAM for Secure Com-
putation. In ASIACRYPT 2015, pages 360–385, Berlin,
Heidelberg, 2015. Springer-Verlag.

[11] Craig Gentry, Kenny Goldman, Shai Halevi, Charanjit
Julta, Mariana Raykova, and Daniel Wichs. Optimizing
ORAM and Using it Efficiently for Secure Computation.
In Privacy Enhancing Technologies Symposium, pages
1–18, 2013.

[12] Niv Gilboa and Yuval Ishai. Distributed Point Functions
and Their Applications. In Advances in Cryptology -
EUROCRYPT 2014, pages 640–658, 2014.

[13] Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
How to Construct Random Functions. J. ACM,
33(4):792–807, 1986.

[14] Oded Goldreich and Rafail Ostrovsky. Software Pro-
tection and Simulation on Oblivious RAMs. J. ACM,
43(3):431–473, 1996.

[15] Michael T. Goodrich and Michael Mitzenmacher.
MapReduce Parallel Cuckoo Hashing and Oblivious
RAM Simulations. CoRR, abs/1007.1259, 2010. http:
//arxiv.org/abs/1007.1259.

[16] Michael T. Goodrich, Michael Mitzenmacher, Olga
Ohrimenko, and Roberto Tamassia. Oblivious Ram
Simulation with Efficient Worst-Case Access Overhead.
In ACM Cloud Computing Security Workshop, pages
95–100, 2011.

[17] S. Dov Gordon, Xiao Wang, and Jonathan Katz. Simple
and Efficient Two-Server ORAM. In Asiacrypt, pages
141–157, 2018.

[18] Ariel Hamlin and Mayank Varia. Two-server Dis-
tributed ORAM with Sublinear Computation and Con-
stant rounds. In PKC, pages 499–527, 2021.

[19] Stanislaw Jarecki and Boyang Wei. 3PC ORAM with
Low Latency, Low Bandwidth, and Fast Batch Retrieval.
In Applied Cryptography and Network Security, pages
360–378, 2018.

[20] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On
the (in)Security of Hash-Based Oblivious RAM and a
New Balancing Scheme. In SODA, pages 143–156,
2012.

[21] Eyal Kushilevitz and Tamer Mour. Sub-logarithmic
Distributed Oblivious RAM with Small Block Size. In
PKC, pages 3–33, 2019.

[22] Steve Lu and Rafail Ostrovsky. Distributed Oblivious
RAM for Secure Two-Party Computation. In Theory of
Cryptography, pages 377–396, 2013.

[23] Samir Jordan Menon and David J. Wu. Spiral: Fast,
High-Rate Single-Server PIR via FHE Composition. In
IEEE Symposium on Security and Privacy (SP), pages
930–947, 2022.

[24] Moni Naor and Benny Pinkas. Oblivious Transfer and
Polynomial Evaluation. In STOC, pages 245–254, 1999.

[25] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and
Mingfei Li. Oblivious RAM with O((logn)3) Worst-
Case Cost. In Asiacrypt, pages 197–214, 2011.

[26] Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hu-
bert Chan, Christopher Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path ORAM: An Extremely
Simple Oblivious RAM Protocol. J. ACM, 65(4), 2018.

[27] Adithya Vadapalli, Fattaneh Bayatbabolghani, and Ryan
Henry. You May Also Like... Privacy: Recommenda-
tion Systems Meet PIR. Proc. Priv. Enhancing Technol.,
2021(4):30–53, 2021.

3922 32nd USENIX Security Symposium USENIX Association

https://dspace.mit.edu/handle/1721.1/62006
https://dspace.mit.edu/handle/1721.1/62006
http://arxiv.org/abs/1007.1259
http://arxiv.org/abs/1007.1259

[28] Adithya Vadapalli, Ryan Henry, and Ian Goldberg. Duo-
ram: A Bandwidth-Efficient Distributed ORAM for
2- and 3-Party Computation. https://eprint.iacr.
org/2022/1747, 2023.

[29] Adithya Vadapalli, Kyle Storrier, and Ryan Henry.
Sabre: Sender-Anonymous Messaging with Fast Au-
dits. In IEEE Symposium on Security and Privacy (SP),
pages 1953–1970, 2022.

[30] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit
ORAM: On Tightness of the Goldreich-Ostrovsky
Lower Bound. In CCS, pages 850–861, 2015.

[31] Peter Williams and Radu Sion. Usable PIR. In NDSS,
2008.

[32] Peter Williams, Radu Sion, and Bogdan Carbunar.
Building Castles out of Mud: Practical Access Pattern
Privacy and Correctness on Untrusted Storage. In CCS,
pages 139–148, 2008.

[33] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià
Gascón, Jack Doerner, David Evans, and Jonathan Katz.
Revisiting Square-Root ORAM: Efficient Random Ac-
cess in Multi-party Computation. In IEEE Symposium
on Security and Privacy, pages 218–234, 2016.

A Generating AND and Dot-Product Triples

This section presents two methods to generate the multipli-
cation triples that were discussed in Section 2.2.1. We use
XOR-shared AND triples in the 2-party and 3-party READ
and UPDATE preprocessing protocols.

Using a third party. Here, a stateless third party (which
does not collude with either other party) samples the 5-
tuple (X0,X1,Y0,Y1,T) uniformly and sends the AND triples
(X0,Y0,(X0 ∧Y1)⊕T) and (X1,Y1,(X1 ∧Y0)⊕T) to P0 and
P1 respectively. This process of generating AND triples using
a noncolluding third party results in a protocol called the Du–
Atallah protocol [9]. Du–Atallah’s multiplication protocol
is a variant of the more celebrated Beaver triples protocol,
where we replace the OT with a third party.

Using Oblivious Transfer. The Du–Atallah triples used
in MPC bitwise multiplication can be generated without the
third party by using Oblivious Transfer with the following
protocol:

1. P0 picks (X0,Y0) at random from {0,1}w and P1 picks
(X1,Y1) at random from {0,1}w.

2. P0 and P1 pick random words T0 ∈ {0,1}
w and T1 ∈

{0,1}w respectively. Let T = T0⊕T1.

3. P0 acts as the sender in w parallel 1-of-2 oblivious trans-
fers with the ith bits of (T0,X0⊕ T0) as the input. P1
uses the bits of Y1 as the selection bits. Therefore, P1
learns (X0∧Y1)⊕T0 and computes (X0∧Y1)⊕T0⊕T1 =
(X0∧Y1)⊕T .

4. In parallel, P1 acts as a sender with the words (T1,X1⊕
T1), and P0 uses Y0 as the selection word, so P0 learns
(X1∧Y0)⊕T1 and computes (X1∧Y0)⊕T1⊕T0 = (X1∧
Y0)⊕T .

B Proofs of DUORAM Operations

This section presents the correctness proofs of various DUO-
RAM protocols. We will begin this section by proving the
correctness of the READ protocol.

Proof of Lemma 1.

read0 + read1 = 〈D0 + D̃1, t
(1)
0 〉−〈ζζζ0, t

(3)
0 − t (1)

0 〉+ γ0

+ 〈D1 + D̃0, t
(1)
1 〉−〈ζζζ1, t

(2)
1 − t (1)

1 〉+ γ1

= 〈D0 +(D1 +ζζζ1), t
(1)
0 〉−〈ζζζ0, t

(3)
0 − t (1)

0 〉+ γ0

+ 〈D1 +(D0 +ζζζ0), t
(1)
1 〉−〈ζζζ1, t

(2)
1 − t (1)

1 〉+ γ1

= 〈D, t (1)
0 〉+ 〈ζζζ1, t

(1)
0 〉−〈ζζζ0,(t

(3)
0 − t (1)

0)〉+ γ0

+ 〈D, t (1)
1 〉+ 〈ζζζ0, t

(1)
1 〉−〈ζζζ1,(t

(2)
1 − t (1)

1)〉+ γ1

= 〈D,ei∗〉+ 〈ζζζ1,ei∗〉+ 〈ζζζ0,ei∗〉
−〈ζζζ0, t

(3)
0 〉−〈ζζζ1, t

(2)
1 〉+ γ0 + γ1

= 〈D,ei∗〉+ 〈ζζζ1,ei∗〉+ 〈ζζζ0,ei∗〉
−〈ζζζ0, t

(3)
0 〉−〈ζζζ1, t

(2)
1 〉−〈ζζζ0, t

(3)
1 〉−〈ζζζ1, t

(2)
0 〉

= 〈D,ei∗〉+ 〈ζζζ1,ei∗〉+ 〈ζζζ0,ei∗〉−〈ζζζ1,ei∗〉−〈ζζζ0,ei∗〉

= 〈D,ei∗〉

Next, we will prove the correctness of the REFRESH-
BLINDS protocol.

Proof of Lemma 3.

D̃′0 = D̃0 +v (2)
1 −v (1)

1

= (D0 +ζζζ0)+v (2)
1 −v (1)

1

= (D0 +ζζζ0)+(M · ei∗ −v (2)
0)− (M · ei∗ −v (1)

0)

= (D0 +v (1)
0)+(ζζζ0−v (2)

0)

= (D′0 +ζζζ
′
0)

and similarly for D̃′1.

Finally, we will prove the correctness of the 2P-DUORAM
READ protocol.

USENIX Association 32nd USENIX Security Symposium 3923

https://eprint.iacr.org/2022/1747
https://eprint.iacr.org/2022/1747

Proof of Lemma 4.

read0 + read1 = c0− r0 + c1− r1

= D1[i
∗]+ r1− r0 +D0[i

∗]+ r0− r1

= D1[i
∗]+D0[i

∗]

= D[i∗]

C DPF Generation Algorithm

The following protocol is the DPF generation presented in
the FLORAM paper by Doerner and shelat [8]. Suppose that
we want to create DPF at the target location, i∗. Represent
i∗ as a binary bit vector ~i∗. The parties P0 and P1 start
with XOR shares ~i∗0 and ~i∗1 of ~i∗, and create random seeds
v ()

0 ∈ {0,1}
λ and v ()

1 ∈ {0,1}
λ respectively to use as the roots

of binary trees. They use a length-doubling PRG to construct
the remainder of the trees, as outlined below. We denote by
vb,` the nodes at level `, and by tb,` the flags at level `, both in
the tree share held by Pb. We first set the least significant bit
(lsb) of Pb’s root as b; i.e. set lsb(v ()

0)← 0 and lsb(v ()

1)← 1.
Set t0,0[0]← lsb(v ()

0) and t1,0[0]← lsb(v ()

1).
For each layer ` starting at the root with `= 0:

1. For b∈{0,1}, Pb uses the PRG to construct the labels on
the children of each node in this level. The left and right
children of node i at this layer are denoted as (v (i‖L)

b,` ,v
(i‖R)
b,`).

Therefore, we have vb,`+1[2 ·i] = v (i‖L)
b,` and vb,`+1[2 ·i+

1] = v (i‖R)
b,` .

2. For b∈ {0,1}, Pb computes Lb←
⊕2`−1

j=0 v (j‖L)
b,` and Rb←⊕2`−1

j=0 v (j‖R)
b,` .

3. P0 and P1 use an MPC AND protocol (using
the AND triple generation described in Ap-
pendix A) to compute the correction word
cw (`+1) ←

((
~i∗0[`]⊕ ~i∗1[`]

)
∧ (L0⊕L1)

)
⊕((

1⊕ ~i∗0[`]⊕ ~i∗1[`]
)
∧ (R0⊕R1)

)
.

4. Pb computes cwtbL ← lsb(Lb) ⊕ ~i∗b[`] and cwtbR ←
lsb(Rb)⊕ ~i∗b[`], and exchanges those values with the
other party; the parties then both compute cwtL ←
cwt0L⊕ cwt1L⊕1 and cwtR← cwt0R⊕ cwt1R.

5. Pb computes tb,`+1[2 ·i]← lsb(vb,`+1[2 ·i])⊕ (tb,`[i] ·
cwtL) and tb,`+1[2 · i + 1] ← lsb(vb,`+1[2 · i + 1]) ⊕
(tb,`[i] · cwtR), for all i ∈ [0,2`).

6. Pb updates vb,`+1[2 ·i]← vb,`+1[2 ·i]⊕ (tb,`[i] ·cw
(`+1))

and vb,`+1[2 ·i+1]← vb,`+1[2 ·i+1]⊕(tb,`[i] ·cw
(`+1)),

for all i ∈ [0,2`).

D Converting an XOR-shared standard basis
vector to additive shares

In this section, we elaborate upon the informal description
of the share conversion algorithm described in Section 4.1.1.
Recall that P0 and P1 hold DPFs without the final correction
word; that is, P0 holds (v0, t̊0,F0) and P1 holds (v1, t̊1,F1)
such that t̊0⊕ t̊1 = eri and v0 +v1 =−(F0 +F1) · eri. Their
goal is to end up with vectors t0 and t1 such that t0 + t1 = eri.
An important point to note is that, in this case, t̊b and the pair
(vb,Fb) are not of the same DPF (but have the same target
index). In other words, we use an additional DPF to perform
the share conversion.

1. P0 interprets its flag vector as a word vector. P1 also
interprets its flag vector as a word vector and multiplies
it by −1. In other words, P0 computes t̂0[i]← (t̊0[i])
for all i, and P1 computes t̂1[i]←−(t̊1[i]) for all i.

2. For b ∈ {0,1}, Pb computes pmb← ∑i t̂b[i].

3. For b∈ {0,1}, Pb selects a random word rb to blind pmb,
and the Pb exchange pmb + rb.

4. For b ∈ {0,1}, Pb updates t̂′b ← t̂b · ((pm1−b + r1−b)+
pmb + rb).

5. The parties use MPC to compute shares F̃0 and F̃1 of
(F0 +F1) · (pm0 +pm1).

6. The parties then compute F ′0 ← F̃0 + r0 and F ′1 ← F̃1 +
r1 respectively, and exchange them to reconstruct F ′←
F ′0 +F ′1 .

7. For b ∈ {0,1}, Pb updates tb← t̂′b−vb− (̂tb ·F
′).

Lemma 5. After running the above protocol, t0 + t1 = t̊0⊕
t̊1 = eri.

Proof. Denote pm = pm0 +pm1. First observe that t̂0[i]+
t̂1[i] = 0 for i 6= ri, so pm = t̂0[ri] + t̂1[ri] = t̊0[ri]−
t̊1[ri], which is either +1 or −1, and so pm2 is always 1.
Also note that t̂0 + t̂1 = pm · eri.

Let r = r0 + r1, F = F0 +F1, F̃ = F̃0 + F̃1.
Then t̂′b = t̂b · (pm + r), so t̂′0 + t̂′1 = (pm · eri) ·

(pm + r) = eri · (1 + pm · r). Also F̃ = F · pm, and
F ′ = F̃ + r = F · pm + r. Finally, recall that v0 +
v1 = −F · eri, so that t0 + t1 = (̂t′0 + t̂′1)− (v0 + v1)−
(̂t0 + t̂1) · F

′ = eri ·
(
(1+pm · r)+F −pm ·F ′

)
= eri ·

((1+pm · r)+F −pm · (F ·pm+ r)) = eri.

3924 32nd USENIX Security Symposium USENIX Association

	Introduction
	Overview of State of the Art
	Our Contributions
	System Overview

	Background
	Distributed Point Functions (DPFs)
	DPF Construction

	Secure Multi-Party Computation (MPC)
	AND and Dot Product on Secret Shares

	Communication Efficient 3-Party DORAM
	High-level Working of Duoram
	Read Operation
	Update Operation

	3P-Duoram: The Details
	Preprocessing Phase
	A (2+1)-party protocol to generate DPFs

	3-Party Online Phase
	Adjusting the Random DPFs
	Read Protocol
	Update Protocol

	2P-Duoram
	Evaluation
	Analytical Evaluation
	Experimental Evaluation
	Head-to-Head Comparison with Floram
	Internet vs. Local Network Conditions
	Scaling Duoram

	Related Work
	Conclusion
	Generating AND and Dot-Product Triples
	Proofs of Duoram Operations
	DPF Generation Algorithm
	Converting an XOR-shared standard basis vector to additive shares

