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Abstract
Algorand has recently grown rapidly as a representative of the
new generation of pure-proof-of-stake (PPoS) blockchains.
At the same time, Algorand has also attracted more and more
users to use it as a trading platform for non-fungible tokens.
However, similar to traditional programs, the incorrect way
of programming will lead to critical security vulnerabilities
in Algorand smart contracts. In this paper, we first analyze
the semantics of Algorand smart contracts and find 9 types
of generic vulnerabilities. Next, we propose Panda, the first
extensible static analysis framework that can automatically
detect such vulnerabilities in Algorand smart contracts, and
formally define the vulnerability detection rules. We also con-
struct the first benchmark dataset to evaluate Panda. Finally,
we used Panda to conduct a vulnerability assessment on all
smart contracts on the Algorand blockchain and found 80,515
(10.38%) vulnerable smart signatures and 150,676 (27.73%)
vulnerable applications. Of the vulnerable applications, 4,008
(4.04%) are still on the blockchain and have not been deleted.
In the disclosure process, the vulnerabilities found by Panda
have been acknowledged by many projects, including some
critical blockchain infrastructures such as the decentralized
exchange and the NFT auction platform.

1 Introduction

As decentralized cryptocurrencies continue to evolve, the
problems of the old blockchain platforms (e.g., Bitcoin [1]
and Ethereum [2]) gradually emerge, and new ones are being
developed. Traditional blockchain platforms face many prob-
lems, such as heavy electricity consumption and high latency
due to the Proof-of-Work consensus protocol [3, 4]. Solving
the problems left by the old platforms has become the driving
force for the development of new platforms.

Algorand is proposed to overcome the blockchain trilemma,
or the three fundamental difficulties that blockchain sys-
tem faces today: security, scalability, and decentralization,

∗The corresponding authors.

by adopting a new consensus protocol [5]. It is the first
blockchain that provides immediate transaction finality, and
its transaction throughput is comparable to large payment and
financial networks since its blocks can be finalized in sec-
onds. To promote the development of Algorand, the Algorand
Foundation proposed a 250 million Algo Grants Program in
2020 [6]. As a result, Algorand has grown rapidly in recent
years, becoming one of the most popular blockchain platforms.
In March 2022, the number of transactions on the Algorand
platform exceeded 11 million a week [7], and the total number
of accounts exceeded 23 million [8].

In contrast to traditional contract law, smart contracts en-
able traceable and irreversible transactions without the need
for third parties. However, smart contracts bring new security
challenges, and attackers are particularly motivated to uncover
and exploit vulnerabilities in smart contracts that hold cryp-
tocurrencies due to their considerable monetary value. For
example, the attack on the DAO contract resulted in a loss of
$60 million for the Ethereum community [9].

Unlike Ethereum and other blockchain platforms with only
one type of smart contract, Algorand supports two kinds of
smart contracts. One is stateful smart contracts, which imple-
ment the business logic of applications, similar to the smart
contracts in Ethereum and other blockchain platforms. The
other one is stateless smart contracts (aka smart signatures),
which are attached to transactions and used to determine
whether or not the transactions should be approved. By do-
ing so, Algorand can implement some more complex logic
and functionality such as delegate signature authority (see
§2.3.2). To avoid ambiguity, in this paper, we use applications
and smart signatures to represent stateful smart contracts and
stateless smart contracts, respectively, and use smart contracts
to cover both stateful smart contracts and stateless smart con-
tracts. To facilitate the development of smart contract based
applications, Algorand introduces many new features such
as different types of transactions (see §2.4), atomic trans-
fers [10] and Algorand Standard Assets [11]. Moreover, to
support these new features, Algorand provides a new runtime
for executing its smart contracts.
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Unfortunately, these new features in Algorand enlarge the
attack surface of its smart contracts, which could be exploited
by adversaries to launch various attacks causing severe finan-
cial loss. For example, the attack against the Tinyman contract
on the Algorand platform caused a loss of $1.8 million [12].
Even worse, little is known about the potential security weak-
nesses of Algorand smart contracts and the prevalence of
vulnerable smart contracts.

In this paper, we conduct the first systematic study on the
security of Algorand smart contracts through three steps. First,
we carefully study the design of Algorand with a focus on its
smart contracts and identify 9 types of generic vulnerabilities
that may exist in Algorand smart contracts. Second, we design
a new extensible framework based on symbolic execution to
detect vulnerable Algorand smart contracts after tackling sev-
eral new challenges resulting from Algorand virtual machine
(AVM)(see §4.4) and its data types as well as the interactions
of two kinds of smart contracts (see §4.3). We formally define
the detection rules to capture the 9 types of vulnerabilities (see
§5). Third, we develop a prototype of the detection framework
named Panda. It not only includes the detection methods for
uncovering the 9 types of vulnerabilities but also supports
new detection methods for revealing unknown vulnerabili-
ties as plugins. Applying Panda to 543,412 applications and
775,848 smart signatures, we found that 27.75% applications
and 10.38% smart signatures contain at least one of the vulner-
abilities. In the disclosure process, the vulnerabilities found
by Panda have been confirmed in a number of projects, in-
cluding some critical blockchain infrastructures such as the
decentralized exchange (FXDX [13]) and the NFT auction
platform (ALGOxNFT [14]).

In summary, we make the following major contributions.

• Vulnerability discovery. To the best knowledge, we are
the first to conduct a systematic investigation on the vulnera-
bilities in Algorand smart contracts. After in-depth research,
we discovered 9 types of generic vulnerabilities in them.
• New framework and prototype. We present Panda, the
first extensible static analysis framework for detecting vul-
nerabilities in Algorand smart contracts. The evaluation re-
sults show that Panda achieves excellent performance. To
foster the security research of Algorand smart contracts, we
will make Panda available to the research community after
the vulnerability disclosure is complete. Besides, we con-
struct the first dataset of vulnerable Algorand smart contracts
for evaluating Panda and future detection tools.
• Precise detection rules. After scrutinizing the semantics

of the TEAL programs and the 9 types of vulnerabilities, we
precisely define the formal detection rules for them. These
detection rules strictly follow the TEAL semantics and pro-
vide a guarantee of soundness.
• Comprehensive evaluation. We use Panda to vet the se-

curity of 543,412 applications and 775,848 smart signatures.
The experimental results show the prevalence of security

issues in Algorand smart contracts. Specifically, there are
150,676 (27.73%) applications and 80,515 (10.38%) smart
signatures that may have been exposed to the threats posed
by these vulnerabilities. In addition, we also investigated pos-
sible attacks against vulnerable smart contracts (see §6.4).

2 Background

2.1 Account Management

Algorand adopts the account-based model and stores specific
on-chain data in accounts [15], such as Algo balances, asset
balances, and the local state of joined applications. Algorand
accounts are classified into three categories.
External accounts They have the same definition as the
EOA (externally owned accounts) [16] in Ethereum. Each
external account is associated with a public key, which can
be transformed into an Algorand address, and a private key,
which is used to sign transactions.

Application accounts They are controlled by stateful smart
contracts (see §2.3.1), each of which is associated with an
Algorand address and an application ID. Thus, spending on
application accounts depends on the logic of the application
instead of private keys like external accounts. Application
accounts are similar to Ethereum’s contract accounts [16].

Signature accounts Every smart signature (see §2.3.2) can
be hashed to obtain a unique Algorand address that repre-
sents a signature account [17]. Anyone can submit transac-
tions that spend from a signature account as long as the logic
of the smart signature approves it. That is, to spend from a
signature account, we only need to create a transaction that
makes the logic of the smart signature evaluate to true.

2.2 Algorand Virtual Machine

The Algorand virtual machine (AVM) [18] executes the byte-
code compiled from the TEAL programs [19]. In AVM, all
the operands are pushed and popped from the stack, and the
temporary data is stored in the scratch space. Algorand has
two persistent storage, global state and local state, which are
stored in the form of key-value pairs. The global state stores
the general data of the application, while the local state saves
the private data for a specific account. Moreover, there are two
data types in AVM: byte strings and unsigned 64-bit integers.
When an Algorand application writes data to the blockchain,
the blockchain stores both the value and its data type.

There are some commonly used opcodes. Specifically, bz
and bnz are jump opcodes that pop an element from the top of
the stack and decide whether to jump to the target label based
on its value. The gtxn opcode is used to access a specific
transaction in a group of transactions, and the txn opcode
is used to access the transaction currently being processed.
Some other opcodes and transaction parameter related content
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will be used in the following, and readers may refer to the full
specification of Algorand opcodes [20].

2.3 Algorand Smart Contracts

There are two types of smart contracts in Algorand, the state-
ful smart contracts [21] and the stateless smart contracts (aka
smart signatures) [22]. The stateful smart contracts represent
applications that reside on the blockchain and are remotely
callable. A smart signature is submitted to the blockchain
along with a transaction, and its logic is used to determine
whether or not the transaction will be approved. Algorand
smart contracts are primarily developed in PyTeal [23], and
then compiled into the TEAL program.

2.3.1 Stateful Smart Contract

We use a simple example in Listing 1 to explain the concepts
of applications. Unlike Ethereum smart contracts, an Algo-
rand application is composed of two programs [24], the ap-
proval program (starting on line 4) and the clear state program
(starting on line 1). The clear state program is used to han-
dle the clear-state transactions, and like most programs,
the clear state program in line 2 approves the clear-state
transaction. The approval program handles the other types of
transactions mentioned in §2.4, which is usually more com-
plex. To be specific, the entry point of the approval program
starts with a conditional statement in line 13, which is similar
to a dispatcher that uses the type of the OnComplete parame-
ter [25] to determine which program branch to execute. For
example, if we set the OnComplete to UpdateApplication,
then the program will execute the logic in line 7 to update
the smart contract. Note that the OnComplete is one of the
parameters of the application call transactions (see §2.4).

2.3.2 Smart Signature

Smart signatures refer to stateless smart contracts. The reason
why they are called stateless smart contracts is that the global
state, local state as well as inner transactions are not allowed
to be used in them. Specifically, a smart signature is accom-
panied by a transaction, and its logic is used to determine
whether the transaction will be approved. Listing 2 shows an
example of a smart signature that checks the transaction type,
fee, receiver, amount (lines 2-7), and some critical parameters
(lines 8-11). If all the conditions are met, then the transac-
tion will be approved. Smart signatures are mainly used as
signature accounts (see §2.1) or as delegate signature author-
ity. Readers may refer to the official documentation [26] for
more details about use cases. Importantly, sometimes a smart
signature will specify a transaction that invokes a specific
application, where additional transaction parameter checks
will be performed in this application, and in this paper, we
refer to this application as a Validator.

1 def clear_state_program():
2 return Approve()
3

4 def approval_program():
5 on_c = Txn.on_completion()
6 appID = Txn.application_id()
7 on_update = Seq([
8 ...
9 ])

10 on_delete = Reject()
11 ... # define on_creation
12 ... # define on_call
13 program = Cond(
14 [appID == Int(0), on_creation],
15 [on_c == OnComplete.NoOp, on_call],
16 [on_c == OnComplete.UpdateApplication, on_update],
17 [on_c == OnComplete.DeleteApplication, on_delete],
18 ...
19 # handle OptIn and CloseOut
20 )
21 return program

Listing 1: An example of application

1 def smart_signature():
2 params_conds = And(
3 Txn.type_enum() == TxnType.Payment,
4 Txn.fee() == Int(1000),
5 Txn.receiver() == Addr(" ... "),
6 Txn.amount() == Int(10000)
7 )
8 safety_conds = And(
9 Txn.close_remainder_to() == Global.zero_address(),

10 Txn.rekey_to() == Global.zero_address()
11 )
12 recurring_conds = And( ... )
13 program = And(params_conds, safety_conds,

recurring_conds)↪→

14 return program

Listing 2: An example of smart signature

2.4 Algorand Transaction
Algorand supports six types of transactions [27], each of
which contains some subtypes. In this paper, we mainly focus
on three commonly used transaction types.

Payment The payment transaction is used to send Algos,
the native currency of the Algorand blockchain, from one
account to another. There are two important optional pa-
rameters in payment transactions: CloseRemainderTo and
RekeyTo, which are Algorand addresses. If one of these two
parameters is set, the transaction will perform some crucial
operations in addition to transferring Algos. Specifically, if
the CloseRemainderTo parameter is set, all the remaining
balance of the sender’s account will be transferred to the
CloseRemainderTo account [28]. If the RekeyTo parame-
ter is set, then the sender’s future transaction must be signed
by the RekeyTo account’s private key [29]. In other words,
the RekeyTo account will take over the sender’s account,

USENIX Association 32nd USENIX Security Symposium    1813



and the private key of the sender’s account will not be able
to sign subsequent transactions.

Asset Transfer The asset transfer transaction is used to trans-
fer assets from one account to another. Similar to the pay-
ment transaction, the asset transfer transaction also has the
RekeyTo parameter, and the AssetCloseTo parameter [30]
corresponding to CloseRemainderTo.

Application Call There are seven types of application
call transactions: create, update, delete, opt-in,
close-out, clear-state and NoOp. Specifically, the
create, update, delete transactions are used to create,
update and delete a stateful smart contract respectively. If a
stateful smart contract uses the local state, users who want to
interact with this contract must first send an opt-in transac-
tion to it. The close-out, clear-state transactions are
used to delete the local state of a contract from the sender’s
balance record. The key parameters in an application call
transaction include AppID, which specifies the application to
call, and Oncomplete, which determines the program branch
will be executed.

3 Vulnerabilities in Algorand Smart Contracts

By delving into the Algorand platform, we discover 9 types
of vulnerabilities and one potential risk. For ease of descrip-
tion, we group the vulnerabilities into five categories, three of
which target applications (see §3.2, §3.3 and §3.4) and two of
which target smart signatures (see §3.5 and §3.6).

3.1 Threat Model
Since data on the blockchain is publicly accessible, attackers
can download and audit the deployed smart contracts and ex-
ploit the vulnerability to launch attacks. Specifically, attackers
only need an external account to exploit the vulnerabilities
listed in this paper without the need of any privileges. That is,
an attacker can deliberately construct a transaction or a group
transaction to bypass logical checks and launch a successful
attack. In the exploit against applications, the victim is an ap-
plication account, and in the attack against smart signatures,
the victim is a signature account or an external account.

3.2 Unexpected Delete and Update Operation
There are 7 types of application call transactions includ-
ing update and delete transactions as mentioned in §2.4.
If an attacker initiates an application update transaction
(OnComplete equals to UpdateApplication) and attaches a
malicious application in this transaction, then the program
will execute the logic in Listing 1 (line 7) and the current
application will be replaced by the malicious one after the
transaction is recorded in the blockchain. In contrast, if an
attacker attempts to submit an application delete transaction

(OnComplete equals to DeleteApplication), then the trans-
action will be rejected (line 10). Specifically, the Reject()
function in line 10 is equivalent to the instruction sequence
"int 0; return". This transaction will be rejected by the
blockchain because the top of the stack element is 0 when the
application executes the return instruction.

Note that anyone can send application update transactions
and application delete transactions, and whether the transac-
tion is approved depends on the program logic. For example,
the program can only allow the application creator to modify
the application by comparing the transaction sender’s address
and the application creator’s address. However, things may not
always go well, and bad program logic (e.g., a programming
mistake) may allow anyone to delete or update applications.
Specifically, some developers may expect the application to
reject all application update and delete transactions, but
some programming mistakes may cause the program to not
perform as expected logic, allowing an attacker to take advan-
tage of the situation. In §B.1, we give a case study about an
on-chain application with this vulnerability. When an attacker
finds this type of vulnerability, they can perform a denial of
service attack by deleting the application or taking over the
application account by updating the application code.

3.3 Local State Dependency

As mentioned in 2.3.1, a stateful smart contract is com-
posed of an approval program and a clear state program.
When a clear-state transaction is submitted, the clear state
program will execute. Regardless of whether the program
is successfully executed or not, the sender’s local state of
that application will be deleted permanently [24]. That is, a
clear-state transaction can force deletion of the sender’s
local state. Thus, if the program logic depends on other users’
local state, it is vulnerable because other users (attackers) can
submit a clear-state transaction to delete their local states
to make the program do some unexpected behavior.

The discovery of this vulnerability was inspired by
the forced-ether-to-contract vulnerability in Ethereum [31].
Specifically, some of the Ethereum smart contract developers
may incorrectly assume that the fallback or payable functions
are executed every time Ether is transferred to the smart
contract. In fact, when an application that is self-destructing
sends its remaining Ether to other applications, the recipi-
ent’s fallback or payable function is not executed. As a result,
attackers can use the self-destruct mechanism to break the
above assumptions and trigger potential logic flaws. Similarly,
some Algorand developers may think that deleting the local
state must satisfy the application’s specific logic for handling
close-out and clear-state transactions. Unfortunately,
this is not always the case, and the clear-state transaction
will force the deletion of the sending account’s local state in
the target application regardless of whether the transaction is
successfully executed or not.
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3.4 Unchecked Transaction Receiver

In Ethereum, users can transfer money to an application while
calling it, and all tasks can be completed in one transac-
tion, but Algorand does not support such a feature. To im-
plement similar functionality in Algorand, the atomic trans-
action group must be used to bind payment transactions and
application call transactions together. These two transactions
have no relation, as a result, the sender and receiver can be
arbitrary. Unfortunately, developers may make some wrong
assumptions, e.g., the recipients of these transactions are all
current applications. If a smart contract does not check the
transaction receiver of the payment transaction or the asset
transfer transaction, an attacker can specify the receiver as
himself to break the program logic.

For example, suppose an application implements bank-like
functionality and asks the user to use the atomic transaction
group when making a deposit in order to transfer money while
invoking the application. If the application does not check the
receiver of the payment transaction, an attacker can set the
receiver as himself when making a deposit using group trans-
actions. After the blockchain approves the group transactions,
the attacker’s balance recorded in the bank increases, but no
money is transferred to the bank. Finally, the attacker only
needs to withdraw the balance in the bank to make a profit.

3.5 Unchecked Transaction Fee

On Algorand, the sender of the transaction pays the trans-
action fees. Fees are calculated based on the size of the
transaction and the minimum fee is 1000 microAlgos (i.e.,
0.001 Algos) [32]. A user can also choose to increase fees
to give the transaction a higher priority to be accepted by
the blockchain. However, this feature may be exploited for
launching attacks. Consider the example in §2.3.2, if this
smart signature is used as a signature account and does not
restrict the transaction fees (i.e., removing line 4 of Listing 2),
then anyone can use this account to send a transaction with
huge fees, and this transaction will wipe out all of its balance.

3.6 Unchecked Transaction Parameters

Consider the example of in §2.3.2, if the smart signature is
used as a signature account and does not check some critical
transaction parameters (i.e., removing lines 8-11 of Listing 2),
then anyone can exploit these defects to make profits. For ex-
ample, an adversary can set the RekeyTo parameter to his pub-
lic address, and then he will take over this signature account.
If the CloseRemainderTo parameter is set, then he will by-
pass the amount and receiver limits and get all the Algos in
the signature account. Similarly, if a smart signature is used
to approve asset transfer transactions and the AssetCloseTo
parameter is not checked, an adversary can exploit it to get
all the assets belonging to the signature account.

4 Panda

4.1 Overview

Figure 1 depicts the workflow and architecture of Panda,
which consists of 6 major components. We will first intro-
duce each component and then describe how we tackle two
technical issues in §4.3 and §4.4.
User Interface The User Interface takes in user
command-line parameters, including user-defined settings
and the smart contract file or the AppID to be checked. Panda
supports several user-defined settings (e.g., Z3 timeout, global
timeout, block search deep, and block access count) to meet
different needs. Specifically, Z3 timeout refers to the time
limit for solving path constraints, global timeout refers to the
time limit for the whole analysis, block search deep refers to
the maximum depth of the search algorithm, and block access
count refers to the maximum access number for each basic
block. The purpose of setting these parameters is to serve
as heuristic pruning strategies for users. For example, block
access count can limit the depth of loops and function calls.
Blockchain Explorer Given AppID, the Blockchain
Explorer loads the program bytecode and the global state
from the blockchain via the Algorand SDK [33]. Then, it dis-
assembles the bytecode into a TEAL program using Algorand
SDK, and other components will conduct program analysis
on this TEAL program. After that, it will save the global state
into two symbolic arrays in Memory Modeler according to
the data type. In a nutshell, Blockchain Explorer is the
interface between Panda and the Algorand blockchain.
CFG Builder The CFG builder takes the TEAL program as
input and parses the jump labels to construct the control flow
graph. Notably, when a smart signature contains a Validator,
we need to merge the smart signature and the Validator into
a new smart signature (see §4.3) before constructing a control
flow graph for analysis, because the Validator may also
contain code for checking transaction parameters. In other
words, we can think of a Validator as a complement to the
smart signature code.
Memory Modeler The Memory Modeler contains all
the symbolic arrays used by Symbolic Executor. After
Blockchain Explorer reads the global state from the
blockchain, the Memory Modeler will use the loaded data
to initialize the global state related symbolic arrays. More-
over, depending on the type of array selector and stored values,
a symbolic array may have several entities. Because of Algo-
rand’s language features, about a hundred different symbolic
arrays are used during symbolic execution. All these symbolic
arrays are stored in Memory Modeler, and the corresponding
access interfaces are also provided. After integrating all sym-
bolic arrays into a single module, these symbolic arrays can
be accessed in a uniform way in Symbolic Executor. Such
design also aims to achieve low coupling between modules.
Symbolic Executor The Symbolic Executor consists of an
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Figure 1: Workflow and architecture of Panda

opcode handle registry and an executor. Specifically, each
opcode is implemented as a Python function that is included
in the opcode handle registry. This is an extensible program-
ming approach, and each new opcode added in subsequent
TEAL versions can be written as a separate Python function
and added to this registry so that the Symbolic Executor
can support these opcodes. It is worth noting that our tool sup-
ports two runtime modes for applications. The symbolic mode
treats the data on the blockchain as fully controllable by the
user (symbolic variables), while the constant mode treats the
data on the blockchain as immutable constant values. When
the program is executed, the executor traverses the control
flow graph generated by the CFG Builder and executes each
instruction symbolically by calling the functions in the op-
code handle registry. For each conditional jump instruction,
the executor calls Z3 to solve the constraints to prune out
unreachable branches. If a return instruction is reached and
the top value of the stack is non-zero, a feasible path is found
and thus the executor will invoke the Analysis Plugins
to detect potential vulnerabilities in the current execution
path. During symbolic execution, the Symbolic Executor
records a lot of information for vulnerability detection (see
§5.1). Note that the data type differences will bring some
challenges for the symbolic execution engine (see §4.4).
Analysis Plugins In Analysis Plugins, we provide a reg-
istry to which all vulnerability detection rules are added as
independent detection functions. This is an extensible pro-
gramming approach similar to the opcode handle registry in
the Symbolic Executor. During the symbolic execution pro-
cess, once a feasible path is found, the Symbolic Executor
will traverse and call all functions in the registry to perform
vulnerability detection. Besides, the Symbolic Executor
will provide Analysis Plugins with all data structures used
to perform vulnerability detection (i.e., all mathematical sets
defined in §5.1).

4.2 Symbolic Execution Process
Algorand provides an official opcode specification [20], and
Panda strictly follows it. We provide a detailed example in §A
to show the symbolic execution process and how the detection

rules described in §5 are applied. In the symbolic execution
process, Panda converts the termination conditions specified
in the specification (such as integer overflow, division by
zero, substring opcode out-of-bounds access, etc.) into path
constraints. When the path constraints cannot be satisfied, the
termination condition is always true, and Panda will treat this
as an unreachable path and prune it out.

Since AVM is a stack-based virtual machine, during the
symbolic execution process, variables are popped from the
stack, and new symbolic variables are constructed and then
pushed into the stack again. Every time a variable is pushed
onto the stack, Panda will call the built-in function in Z3 to
simplify the symbolic variable. When the return instruction
is reached, Panda will check whether the symbolic variable at
the top of the stack can be a non-zero value under the current
path constraints, and if so, the current path is feasible. When
a feasible path is found, Panda will perform vulnerability
detection on this path. When the symbolic execution process
is complete, Panda will output the backtrace of the execution
paths of all found vulnerabilities.

Panda models both the global state and the local state as
two symbolic arrays, which store two different types of vari-
ables respectively. When reading or writing data to the global
state or local state, it will determine which symbolic array
to operate on according to the data type. Moreover, Panda
maintains an instruction cost counter during execution. The
maximum number of executed instructions is 700 for applica-
tions and 20,000 for smart signatures [34]. When the counter
exceeds the limit, the path is considered unreachable, and the
executor will backtrack to search for other feasible paths.

For cryptography-related opcodes (e.g., ed25519verify
and keccak256), Panda constructs new symbolic variables
for representation. To keep the soundness of the evalua-
tion results, Panda currently performs vulnerability detection
only when the execution path does not contain cryptography-
related opcodes. That is, only execution paths that do not
contain cryptography-related opcodes are considered feasible.
Note that users can design their own detection rules to allow
performing vulnerability detection even if the execution path
involves cryptography-related opcodes.
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4.3 Handling Smart Signatures with Valida-
tors

As shown in §6, the most popular use scenario of smart signa-
ture is associating a signature account with a Validator. It is
relatively easy to detect and verify the vulnerabilities of smart
signatures discussed in §3, but things get complicated when
the Validator is included in smart signatures. Specifically,
the checks of transaction parameters in both smart signatures
and the Validator need to be taken into consideration. To
address this challenge, Panda merges the smart signature and
the Validator into a new smart signature before constructing
the control flow graph.

Figure 2 illustrates the merging process of a smart signa-
ture and the Validator. In the first step, the AppID of the
Validator is identified, and its bytecode is downloaded from
the blockchain. Next, the jump labels in the smart signature
are renamed to prevent the name conflict with the labels in the
Validator. Afterward, all return instructions in the smart
signature are replaced with bnz instructions that jump to the
entry point of Validator. By doing so, when the end of the
smart signature is reached, Symbolic Executor will jump
to the entry point of the application and continues execution.
Finally, a new smart signature is constructed by directly con-
catenating the Validator to the smart signature. Then, the
new smart signature will be further processed to construct the
control flow graph.

It is worth mentioning that not all execution paths of a smart
signature contain code that calls Validator. To handle this
issue, when the Symbolic Executor executes the instruction
"bnz app_label", it first checks if the current execution path
contains the code that calls Validator. If that is the case,
it executes the instruction "bnz app_label". Otherwise, it
treats this bnz instruction as the original return instruction.
That is, if the execution path does not include a Validator,
the execution should stop at the end of the smart signature
instead of jumping to the Validator to continue execution.

4.4 Recognizing Data Types

Since Algorand has two different data types, we adopt two
new techniques for handling data types.

4.4.1 Runtime Type Checking

Different from other blockchain platforms, there are two data
types in Algorand, i.e., the Uint type and the Bytes type.
Furthermore, most of the opcodes in Algorand distinguish the
two data types explicitly. For example, the opcode "+" pops
two Uint type variables from the stack and adds them numer-
ically. The concat opcode pops two Bytes type variables
from the stack and concatenates them into a new byte string.
If the variable data type does not match the specification of
the opcode, the execution will fail and all the operations in-

Figure 2: Smart signature merging process

volved will be reverted. For example, if the concat opcode
encounters an operand of type Uint, the execution will fail.

To perform runtime type checking, we use a Python dic-
tionary to represent a variable. Specifically, the dictionary
contains two elements: one stores the symbolic value of the
variable, and the other stores the data type. By doing so, we
can bind the data to its type. During the symbolic execution
process, the operand data type of all the opcodes will be veri-
fied accordingly, and the computational results are also stored
in the Python dictionary. Note that one of the main differ-
ences between our tool and other popular symbolic execution
tools (e.g., oyente [35] and klee [36]) is that our tool has to
handle different data types separately and perform runtime
type checking explicitly.

4.4.2 Asynchronous Type Binding

The Algorand storage (i.e., global state and local state) has
two data types. The Bytes type is internally implemented as
a variable-length character sequence while Uint type has an
8-byte fixed length. When reading data from the blockchain,
the value and its type are loaded together. Panda uses Z3
Theorem Prover v4.11.2 [37] as the constraint solver. How-
ever, the Bytes type variable in Algorand cannot be directly
represented by Bitvector in Z3, because it is difficult to use
Z3 to handle Bitvector with dynamic length. Specifically,
the length of Bitvector is also a symbolic variable, and Z3
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Figure 3: Asynchronous type binding.

currently has no direct way to handle this complex situation.
Therefore, we use the Z3 String sort and the Bitvector
sort to simulate Bytes type variables and Uint type variables.
Since Algorand introduces different types of variables, when
a symbolic variable is generated (e.g., loading a value from a
local state or global state), we should determine its type simul-
taneously. Incorrect variable types will not pass the runtime
type check and will cause the symbolic execution to fail.

To determine the type of the symbolic variables, we pro-
pose a new technique named asynchronous type binding. Our
innovation was inspired by the lazy binding technique [38]
used in the ELF executable file format. Specifically, lazy bind-
ing is the method of deferring symbol resolution for function
calls until the first time the function is called. Here we will use
a similar approach to determine the variable type at runtime.
To be specific, when reading data from the global state of the
blockchain, we set the data type to Undefined. Only when
the executor uses the data later and there is an opcode that
can assist in determining the data type, the data type will be
finally determined.

Figure 3 illustrates the working process of asynchronous
type binding. When the executor runs to the app_global_get
instruction, it pushes an Undefined type of value to the stack.
The Undefined type indicates that the type of this variable is
currently unknown and should be determined later. The value
field of this variable contains the metadata which will be used
to restore the actual value when its type is determined. In
this example, the value field indicates that this variable is a
global state with the key "price". When the "+" instruction
is executed, it instructs the executor to pop two Uint type
symbolic variables from the stack. Then, the executor will
pop two variables from the stack and perform runtime type
checking of these two variables. During runtime type check-
ing, the executor finds that the type of one of the variables
is Undefined. As a result, the executor will define the vari-
able type according to the opcode specification and fetch the
symbolic value by parsing the metadata in the value field. In
this example, the executor will modify the Undefined type
variable to Uint type and load the symbolic value from the
global state with Uint type.

In some complex cases, data read from the blockchain may
have been copied to multiple storage areas by the dup and
store instructions before the type is determined. To handle
this case, we set both the dup and store instructions to shal-
low copies, and the new values generated by both instructions
point to the same memory area. In this way, when the type
of the value in one storage area is determined, other areas
will also be determined because the data stored in these areas
refers to the same entity.

5 Vulnerability Detection

5.1 Notational Conventions

We now explain some notational conventions to better explain
the logic of vulnerability detection.

• groupTxns is a set that contains all the accessed transac-
tions by the gtxn opcode in the current execution trace.
• local_accounts is a set that contains all the accounts
involved in the current execution trace.
• traces is a set that contains all the distinct opcodes of the
current execution trace.
• GroupSize represents the atomic transaction group size.
• Version represents the TEAL program version.
• currentTxn represents the transaction being executed
(equivalent to the Txn opcode).
• path_constraints is a set that contains all path con-
straints from the program entry point to the end instruction.
• path_constraint_variables is a set that contains all
the symbolic variables that make up path_constraints.

To accurately express the vulnerability detection rules,
we define 4 predicates P(constraints), Q(variables), and
R(opcodes) and I(txn, type). Specifically, P(constraints) is
true if the path constraint set is solvable after adding the new
path constraints. In other words, P(constraints) holds if the
following set is solvable: path_constraints∪ constraints

Q(variables) holds if none of the variables in the param-
eter set (i.e. variables) are contained in the current path
constraint. In other words, Q(variables) is true when there
is no constraint on any of the variables in the parameter
set. The equivalent form of this predicate is: variables ∩
path_constraint_variables =∅

R(opcodes) holds if at least one opcode in the parameter
set is used in the current execution trace. The equivalent form
of this predicate is: opcodes∩ traces ̸=∅

Note that transaction types may not be checked explicitly
in Algorand smart contracts. Instead, the transaction type can
be uniquely restricted by accessing some transaction fields.
For example, if the Amount field of a transaction in the atomic
transaction group is used in the smart contract (included in
the path constraints), then the type of this transaction must be
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payment (we call it the implicit transaction type). The pred-
icate I(txn, type) checks the implicit type of the transaction
and returns true if the type of the transaction is the same as
that specified in the second parameter. Finding the implicit
transaction type requires checking a large number of transac-
tion fields. Panda checks all fields strictly according to the
official specification [39].

5.2 Detection rules
This section elaborates on the detection rules, whose formal
definitions are summarized in Table 1, for the vulnerabili-
ties discussed in §3. These detection rules strictly follow the
TEAL semantics and provide a guarantee of soundness but
not completeness. For the ease of description, we divide the
detection rules into multiple parts and distinguish them with
red superscripts. For a better understanding, interested readers
may refer to the detection example in §A.

5.2.1 Unchecked Transaction Fee

This type of vulnerability corresponds to detection rule 1 in
table 1. In part 1, Panda examines if any code does not check
the current transaction fee by checking if it is included in
the path constraints. Checking the current transaction fee is
equivalent to checking the fee of all transactions in the atomic
transaction group. In part 2, Panda checks whether the size
of the atomic transaction group is larger than the number
of accessed transactions. If so, there is at least one transac-
tion whose parameters are not checked by any code. In part
3, Panda examines whether there is a transaction txn of the
atomic transaction group whose transaction fee is not included
in the path constraints. In part 4, Panda checks whether the
sender of txn can be the address of the signature account.
Besides, Panda also checks if the index of txn in the atomic
transaction group can be equal to the index of the current
transaction. If it is not the case, the current transaction cannot
be the vulnerable transaction txn. In part 5, Panda checks
whether the senders of all transactions in the atomic trans-
action group except txn can be arbitrary addresses or zero
addresses. This check ensures that the execution path is reach-
able from any account address.

5.2.2 Unchecked Transaction Parameters

These types of vulnerabilities correspond to detection rules
2-4 in table 1. In rule 2, parts 1, 3, 4, 5, and 6 have similar
logic to the four parts in rule 1. In part 1, Panda also checks
the TEAL version, as the RekeyTo parameter was introduced
in version 2. Parts 2 and 5 also check whether the transac-
tion parameters CloseRemainderTo and AssetCloseTo are
equal to ZeroAddress; if one of them is set to a valid address,
the RekeyTo parameter will have no effect.

In rule 3, parts 1, 4, 7, and 8 have similar logic to the afore-
mentioned rules. Parts 2 and 5 of this rule check whether

the type of the current transaction and the transaction txn
is payment because the CloseRemainderTo parameter can
only be used in payment transactions. Furthermore, not all
smart signatures explicitly check the transaction type. Some
smart signatures implicitly determine the transaction type by
accessing the parameters of a particular type of transaction.
Parts 3 and 6 determine the type of transaction by examining
the presence of path constraints on these particular transaction
parameters. The detection rule 4 is similar to rule 3, except
that parts 3 and 6 of rule 3 check whether the transaction type
is payment, while rule 4 checks whether the transaction type
is asset transfer.

5.2.3 Unexpected Delete and Update Operation

These types of vulnerabilities correspond to rules 5-6
in table 1. For these vulnerabilities, Panda first checks
whether the OnCompletion equals UpdateApplication or
DeleteApplication and whether AppID equal to 0. It
checks AppID because AppID is 0 only in the create trans-
action. In other words, the execution path with the constraint
AppID equal to 0 is unreachable after the application is cre-
ated. Next, part 2 ensures that the local state is not used in the
execution path. This check is to exclude the special case of
indirectly specifying privileged accounts through local state.
Finally, Panda checks whether the sender of the current trans-
action is included in the path constraints. If not, it means any
user can update or delete the application.

5.2.4 Local State Dependency

This type of vulnerability corresponds to detection rule 7 in
table 1. In part 2, panda checks OnCompletion and AppID.
Next, it checks if there exist operations on the local state of
other users (not the transaction sender). If so, and the current
execution trace contains some transaction-related or state-
change opcode (results of part 1), Panda considers the appli-
cation vulnerable to the local state dependency vulnerability.

5.2.5 Unchecked Transaction Receiver

These types of vulnerabilities correspond to detection rules
8-9 in table 1. In part 1, panda checks whether the current
execution trace contains some state-change opcodes. In the
bank application example in §3.4, an attack is successful only
when the attacker’s account balance changes. In part 2, panda
checks AppID and GlobalSize. Parts 3 and 4 are used to
determine the transaction type. In part 5, panda checks if
there is a payment transaction whose Receiver field does
not exist in the path constraints or if there is an asset transfer
transaction whose AssetReceiver field does not exist in the
path constraints. Finally, part 6 ensures that key parameters,
such as transaction amount, are used in the execution path.
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Index & Mode &
Vulnerability Type Detection Rules

(1) [SIG]
Unchecked
transaction fee

1Q({currentT xn.Fee})∧ (2P({GroupSize > |groupT xns|})∨∃txn ∈ groupT xns,
3Q({txn.Fee})∧ 4P({txn.Sender = LogicAddr, txn.Index = currentT xn.Index})∧
5 ∧

t∈groupT xns−{txn} P({t.Sender = RandomAddr∨ t.Sender = ZeroAddr}))

(2) [SIG]
Unchecked
RekeyTo

1Version >= 2∧Q({currentT xn.RekeyTo})∧
2P({currentT xn.CloseRemainderTo = ZeroAddr,currentT xn.AssetCloseTo = ZeroAddr})∧
(3P({GroupSize > |groupT xns|})∨∃txn ∈ groupT xns,4Q({txn.RekeyTo})∧
5P({txn.Sender = LogicAddr, txn.CloseRemainderTo = ZeroAddr,
txn.AssetCloseTo = ZeroAddr, txn.Index = currentT xn.Index})∧
6 ∧

t∈groupT xns−{txn} P({t.Sender = RandomAddr∨ t.Sender = ZeroAddr}))

(3) [SIG]
Unchecked
CloseRemainderTo

1Q({currentT xn.CloseRemainderTo})∧
2P({currentT xn.TypeEnum = 1,currentT xn.Type = ”pay”})∧
3I(currentT xn,Payment)∧ (4P(GroupSize > |groupT xns|)∨
∃txn ∈ groupT xns,5P({txn.TypeEnum = 1, txn.Type = ”pay”, txn.Sender = LogicAddr,
txn.Index = currentT xn.Index})∧ 6I(txn,Payment)∧ 7Q({txn.CloseRemainderTo})∧
8 ∧

t∈groupT xns−{txn} P({t.Sender = RandomAddr∨ t.Sender = ZeroAddr}))

(4) [SIG]
Unchecked
AssetCloseTo

1Q({currentT xn.AssetCloseTo})∧
2P({currentT xn.TypeEnum = 4,currentT xn.Type = ”ax f er”})∧
3I(currentT xn,AssetTrans f er)∧ (4P(GroupSize > |groupT xns|)∨
∃txn ∈ groupT xns,5P({txn.TypeEnum = 4, txn.Type = ”ax f er”,
txn.AssetSender = LogicAddr, txn.Sender = ZeroAddr, txn.Index = currentT xn.Index})∧
6I(txn,AssetTrans f er)∧ 7Q({txn.AssetCloseTo})∧
8 ∧

t∈groupT xns−{txn} P({t.Sender = RandomAddr∨ t.Sender = ZeroAddr}))
(5) [APP]
Arbitrary update

1P(currentT xn.OnCompletion = ”U pdateApplication”∧ currentT xn.AppID ̸= 0)∧
2¬R(”app_local_get”})∧ 3Q(currentT xn.Sender)

(6) [APP]
Arbitrary delete

1P(currentT xn.OnCompletion = ”DeleteApplication”∧ currentT xn.AppID ̸= 0)∧
2¬R(”app_local_get”})∧ 3Q(currentT xn.Sender)

(7) [APP]
Local state
dependency

1R({”itxn_submit”,”app_global_put”,”app_local_put”})∧
∃account ∈ local_accounts,2P({account ̸= currentT xn.Sender,currentT xn.AppID ̸= 0,
(currentT xn.OnCompletion = ”NoOp”∨ currentT xn.OnCompletion = ”CloseOut”)})

(8) [APP]
Unchecked
payment receiver

1R({”app_global_put”,”app_local_put”})∧ 2P({currentT xn.AppID ̸= 0,GroupSize >= 2})∧
∃txn ∈ groupT xns,3P({txn.TypeEnum = 1, txn.Type = ”pay”})∧
4I(txn,Payment)∧ 5Q({txn.Receiver})∧ 6¬Q({txn.Amount})

(9) [APP]
Unchecked
asset receiver

1R({”app_global_put”,”app_local_put”})∧ 2P({currentT xn.AppID ̸= 0,GroupSize >= 2})∧
∃txn ∈ groupT xns,3P({txn.TypeEnum = 4, txn.Type = ”ax f er”})∧
4I(txn,AssetTrans f er)∧ 5Q({txn.AssetReceiver})∧ 6¬Q({txn.AssetAmount, txn.X f erAsset})

Table 1: The formal definition of vulnerability detection rules. SIG: smart signature, APP: application.

6 Evaluation

Implementation. Panda uses Algorand Indexer [40] to
fetch the transaction data and the application data from the
blockchain and employs Z3 Theorem Prover v4.11.2 [37] as
the constraint solver. We implement Panda in Python with
more than 7,000 lines of code.

Experimental Setup. Our experiment is performed on a
server running Ubuntu 20.04.3 LTS with 128 vCPU AMD
EPYC 7H12, 256GB RAM, and three 3.75 TiB Samsung SSD.
An Algorand archive node and an Algorand Indexer v2.14.2

are installed on this server. As mentioned in §4, our tool sup-
ports several user-defined configuration options. During our
experiments, we empirically set the block search depth as 50,
the block access count as 3, the Z3 timeout as 30 seconds, and
the global timeout as 900 seconds.

Dataset. To construct the dataset, we download the Algo-
rand blockchain data from the first block until block num-
ber 25,347,825 (06 Dec 2022 05:59:29 GMT). We process
all 969,268,777 transactions in these blocks and finally find
775,848 smart signatures and 543,412 (65,650 unique) appli-
cations (including the historical version).
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6.1 RQ1: Accuracy of Vulnerability Detection
Although there are some studies on benchmark generation by
vulnerability injection, such as LAVA [41], none of them can
be directly used to generate benchmarks for the Algorand plat-
form, because it uses a new type of virtual machine, whose
opcodes are completely different from those used in other
platforms. Moreover, the vulnerabilities defined and detected
in this paper are quite different from traditional vulnerabili-
ties. As a result, we develop a new technique to generate the
benchmark for the Algorand platform.

Instead of injecting vulnerable code into safe code, we
adopt a program synthesis based approach to construct the
vulnerable Algorand smart contracts. More precisely, each
smart contract consists of multiple execution paths made up
of three types of basic blocks. The first is security check basic
blocks, which perform checks on specific security semantics.
These basic blocks check some critical transaction parame-
ters such as CloseRemainderTo. To generate security check
basic blocks, we developed an automated tool that accepts
the vulnerability type as a parameter to generate the corre-
sponding check code. The other two types of basic blocks
are used to check the semantic correctness of the symbolic
execution tool. One is generated by the automated program
developed by ourselves based on Algorand semantics. The
other includes hand-constructed basic blocks which are used
to cover more corner tests. Finally, we connect these basic
blocks together and output them as test files by recursively
constructing data streams.

We use the aforementioned method to construct a bench-
mark dataset consisting of 3,500 safe cases and 7,500 vulner-
able cases. The evaluation results show that all the vulnerable
and safe samples can be correctly classified by Panda.

6.2 RQ2: Prevalence of Vulnerabilities in
Smart Signatures

Among all 775,848 smart signatures, 512,631 contain
Validator and 263,217 do not. For smart signatures that
contain Validator, we will use the technique mentioned in
§4.3 to merge the Validator and the smart signature into a
new smart signature before performing symbolic execution.

6.2.1 Overall Results

Whether contain Validator
YES NO

Type Vulnerable (%*) Vulnerable (%*)
Unchecked transaction fees 15,539 (3.03%) 23,251 (8.83%)
Unchecked rekey_to 751 (0.15%) 8,713 (3.31%)
Unchecked close_remainder_to 42,084 (8.21%) 4,509 (1.71%)
Unchecked asset_close_to 900 (0.18%) 3,206 (1.22%)
Total 57,120 (11.14%) 23,395 (8.89%)

Table 2: Results of smart signatures

Table 2 shows the overall results. It is worth noting
that a total of 57,120 (11.14%) smart signatures containing
Validator are flagged as vulnerable, while the number of
smart signatures without Validator is 23,395 (8.89%). The
total number of vulnerable cases is 80,515 (10.38%). From
the experimental results, we know that these four vulnerabili-
ties are prevalent in smart signatures, revealing the urgency
of identifying and preventing such vulnerabilities. Interested
readers may refer to §B.2 and §B.3 for the case study.

6.2.2 Manual Verification

To verify the results, we randomly selected 500 samples
marked as vulnerable and 100 marked as safe based on the
vulnerability types and the number of opcodes. Specifically,
we sort all smart signatures according to the number of op-
codes and divide them into three groups, and randomly select
samples from each interval. Since it is time-consuming to
traverse all execution paths to verify the secure examples, for
safe cases with more than 500 opcodes, we only randomly
select 10 execution paths for manual verification. The results
show that there is only one false negative case, and all other
samples are correctly classified. This false negative case calls
Validator with implicit code formatting (see §7). We also
verified the 10 vulnerable smart signatures with the highest
balance, and all of these are true positives.

6.3 RQ3: Prevalence of Vulnerabilities in Ap-
plications

As mentioned in §4, Panda supports two runtime modes for
applications. We analyze all the 543,412 (65,650 unique)
applications (including the historical version) using the sym-
bolic mode and then collect all the 99,142 (14,184 unique)
applications that have not been deleted and apply the constant
mode to analyze them. The reason of using use the symbolic
mode to analyze deleted applications is that recovering the
global state of a deleted application is currently difficult (Al-
gorand Indexer currently does not support such functionality).
In the following, we will refer to the 543,412 applications as
off-chain applications and the 99,142 applications that have
not been deleted as on-chain applications.

6.3.1 Overall Results

Table 3 and 4 report the overall results. We can see that vul-
nerabilities in Algorand applications are widespread. Notably,
4,008 (4.04%) on-chain applications and 150,676 (27.73%)
off-chain applications are marked as vulnerable. The arbi-
trary update and arbitrary delete vulnerabilities are the most
prevalent, and we provide a case study in §B.1.
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off-chain
Type Vulnerable (%*) Unique (%*)
Arbitrary update 91,246 (16.79%) 454 (0.69%)
Arbitrary delete 97,908 (18.02%) 437 (0.67%)
Force clear state 10,749 (1.98%) 441 (0.67%)
Unchecked payment receiver 1,570 (0.29%) 98 (0.15%)
Unchecked asset receiver 43,066 (7.93%) 141 (0.21%)
Total 150,676 (27.73%) 987 (1.50%)

Table 3: Results for off-chain applications

on-chain
Type Vulnerable (%*) Unique (%*)
Arbitrary update 1,420 (1.43%) 147 (1.04%)
Arbitrary delete 2,590 (2.61%) 167 (1.18%)
Force clear state 1,360 (1.37%) 141 (0.99%)
Unchecked payment receiver 710 (0.72%) 48 (0.34%)
Unchecked asset receiver 123 (0.12%) 60 (0.42%)
Total 4,008 (4.04%) 364 (2.57%)

Table 4: Results for on-chain applications

6.3.2 Manual Verification

To verify the results, we randomly selected 100 samples
marked as vulnerable and 100 marked as safe based on the
vulnerability types and the number of opcodes. As before, we
divide the number of opcodes into three groups and randomly
select samples from each interval. For safe samples, we only
check cases with less than 500 opcodes. We also verified 10
vulnerable applications with the highest number of duplicates.
The results show that all samples are correctly classified.

6.4 RQ4: The Presence of Attacks

Index Vulnerability Type Mode Suspicious Attacks
1 Unchecked transaction fee Signature 3
2 Unchecked RekeyTo Signature 5
3 Unchecked CloseRemainderTo Signature 44,428
4 Unchecked AssetCloseTo Signature 1,284
5 Arbitrary update Application 11
6 Arbitrary delete Application 7,194

Table 5: Suspicious Attacks

We developed 6 heuristic rules to check all the transactions
on the blockchain to find possible attacks exploiting the vul-
nerabilities. The results are shown in table 5. Specifically,
for the vulnerabilities of smart signatures with index 1-4, we
first find the transaction with the corresponding parameters
(or transaction fee greater than 100,000 microAlgos for in-
dex 1) and then determine whether there is a corresponding
vulnerability in the smart signature attached to the transac-
tion. For example, suppose a transaction is attached to a smart
signature with an unchecked RekeyTo vulnerability and the
RekeyTo of this transaction is set. In this case, we regard this
transaction as a suspicious attack. For the two vulnerabilities

of applications with index 5-6, we first find the application
delete or update transaction and then determine whether
the targeting application is vulnerable and whether the trans-
action’s sender is not the application’s creator. For example,
suppose there is an application update transaction targeting
a vulnerable application and the transaction sender is not the
application’s creator. In that case, we consider this transaction
a suspicious attack. Detecting the other three types of attacks
requires replaying transactions at the specific block height
and performing analysis during execution. We leave building
a replaying system to detect such attacks in future work.

6.5 RQ5: The Performance of Panda
Figure 4 reports the analysis time by running Panda. Note
that the number of applications shown in this figure is the
result before deduplication. The median and average analysis
times for applications are 15 seconds and 67 seconds, while
the results for smart signatures are 19 seconds and 35 seconds,
respectively. Note that the total analysis time of applications
and smart signatures exceeds 500 days. Due to the heavy
analysis workload, we developed a script to let Panda run in
parallel to process these smart contracts.

Figure 4: The analysis time of applications and smart signa-
tures. A point is taken at an interval of 15 seconds.

7 Discussion

Due to the functional limitations of the Z3 symbolic execu-
tion engine, some opcodes (such as the b+ opcode) in Panda
cannot handle symbolic values. The symbolic executor will
return immediately when operands of these opcodes are sym-
bolic values, and other execution paths that do not contain
these opcodes or the operands of these opcodes are constant
values can be executed successfully. There are 8,391 out of
543,412 applications and 1 out of 775,848 smart signatures
containing such opcodes.
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Another limitation of our tool is in the process of identify-
ing the Validator in the smart signature. To be specific, our
tool uses pattern matching to identify the AppID correspond-
ing to the Validator. There are a few smart signatures that
use an implicit code format to invoke the Validator; that is,
the AppID of the Validator is dynamically generated rather
than hardcoded in the smart signature. As a consequence,
there are 25,721(3.3%) cases where our method cannot iden-
tify the Validator.

8 Related Work

Algorand Analysis Besides some white papers on the under-
lying protocol and architecture of Algorand [5, 42–45], there
are some studies on smart contracts or the security of the
Algorand platform. For example, Bartoletti et al. [46] devel-
oped a formal model of Algorand smart signatures to prove
some basic properties of the Algorand blockchain. Alturki
et al. [47] presented a model of the Algorand consensus pro-
tocol and outlined the specification and formal proof of its
asynchronous safety.
Security Analysis of Ethereum Smart Contracts The se-
curity of Ethereum smart contracts has received great atten-
tion [48–53], and researchers have developed many vulnera-
bility detection tools for them. For example, Luu et al. [35] de-
veloped the first symbolic execution-based tool to detect vul-
nerabilities in Ethereum smart contracts. Sunbeom et at. [54]
combine symbolic execution with a language model for vul-
nerable transaction sequences to prioritize program paths that
are likely to reveal vulnerabilities. In addition to symbolic
execution [55], fuzzing [56, 57], pattern recognition [58–63],
formal analysis [64–68] and machine learning [69] are also
used to identify vulnerabilities. Brent et al. [58] present a
security analysis framework named Vandal which consists of
an analysis pipeline that converts low-level EVM bytecode to
semantic logic relations. Users of this framework can express
security analyses in a declarative fashion. The work presented
in [65] reviews several static analysis methodologies and dis-
cusses EtherTrust, the first proof of concept for reachability
analysis based on Horn clauses. Schneidewind et al. present
the first sound and automated static analyzer for EVM byte-
code named eThor [66], which is built on an abstraction of
the small-step EVM bytecode semantics [67].
Comparison with Ethereum analysis tools Since AVM and
EVM are totally different, we had to re-architect a new sym-
bolic execution engine for AVM. Specifically, Panda is signif-
icantly different from previous symbolic execution tools for
Ethereum (e.g. OYENTE) in the following 4 aspects. First,
since Algorand supports two different data types, Panda is
equipped with operand type checking and type inference sys-
tems. In contrast, Ethereum only has one data type (i.e. Uint),
and thus the analysis tools for it do not involve the processing
of data types. Second, due to the diversity of data types and
the complexity of functionalities, the opcodes supported by

AVM are far more complex than those of EVM. To this end,
we designed new handlers for these opcodes. Third, compared
to Ethereum smart contracts, Algorand also supports smart
signatures. To deal with the situation where the Validator
is included in the smart signature, we design the smart signa-
ture merging technique for Panda. Lastly, the vulnerabilities
in Ethereum smart contracts and those in Algorand smart
contracts are totally different. We identify 9 types of vul-
nerabilities in Algorand smart contracts after conducting an
in-depth analysis of the Algorand platform. Most importantly,
compared to the vulnerabilities in Ethereum smart contracts,
vulnerability detection in Algorand smart contracts involves
more complex program semantics. To this end, we designed
a set of sound detection rules for these vulnerabilities.

9 Disclosure Process

We sent all the evaluation results to the Algorand foundation
and work with them to help developers fix these vulnerabil-
ities. Due to the large number of vulnerable contracts, we
only deal with applications that have not been deleted and
prioritize smart contracts that have large deposits.

A number of developers have confirmed the reported vul-
nerabilities. For example, the NFT auction platform named
ALGOxNFT [14] has many vulnerable escrow accounts. Ev-
ery auction item on this platform is implemented as a signa-
ture account. However, there is a vulnerability in the smart
signature that allows attackers to steal the NFT and all auction
deposits in the account. Panda reported 41,204 such vulnera-
ble signature accounts with a total trade volume of 2,158,009
Algos (worth more than 1 million dollars according to the
average price of Algo). We reached out to the developers
directly and helped them fix the bugs, and received a 10,000
Algos bug bounty. Another impactful example is a vulnera-
ble liquidity pool of FXDX [13] with a deposit of 541,456
Algos (worth about $120,000 at that time). Panda success-
fully detected this vulnerability, and we reported this case to
the Algorand DevRel team. They quickly notified the devel-
opers of FXDX, and the vulnerability was fixed. Interested
readers may refer to B.3 for more technical details.

We plan to deliver some lectures on Algorand smart con-
tract security and work with the Algorand team to integrate
Panda into the AlgoSDK to help more developers improve
the security of their smart contracts.

10 Conclusion

We identify 9 types of vulnerabilities on the Algorand plat-
form and formally defined the detection rules. We design and
develop Panda, a symbolic execution-based framework to
accurately detect these vulnerabilities. The large-scale evalua-
tion based on all smart contracts on the blockchain shows the
prevalence of these vulnerabilities in the Algorand ecosystem.
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A Detection Example

Figure 5: The control flow graph of the detection example

To facilitate understanding, we give a sample program to
show how the detection rules are applied. Figure 5 shows the
control flow graph of the sample program. This program is
a simple smart signature, and we have numbered each basic
block in the figure. During the running process of Panda, the
control flow graph is traversed to find feasible paths. Specifi-
cally, only paths with solvable path constraints and non-zero
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Basic Block
Number Semantic Action

1
version = 5
path_constraints.add(global.GroupSize == 2)
path_constraint_variable.add(global.GroupSize)

2
path_constraints.add(current_transaction.TypeEnum == 1)
path_constraint_variable.add(current_transaction.TypeEnum)

3
path_constraints.add(current_transaction.RekeyTo == ZeroAddress)
path_constraint_variable.add(current_transaction.RekeyTo)

4
path_constraints.add(gtxn[0].CloseRemainderTo == ZeroAddress)
path_constraint_variable.add(gtxn[0].CloseRemainderTo)
groupTxns.add(0)

5
The program reaches a feasible path and
the vulnerability detection function will be executed.

6 The program reaches an infeasible path.

Table 6: Semantics of the example program

Index
Parts

1 2 3 4 5 6 7 8 Results

1 ✓ ✓ ✓ ✓ ✓ - - - True
2 ✕ ✓ ✓ ✓ ✓ ✓ - - False
3 ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✓ True
4 ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✓ False

Table 7: The detection results. ✕ means that the vulnerability
detection result for this part is false while ✓ means it is true.

elements at the top of the stack when the program executes
the return instruction are feasible, in this case, there is only
one feasible path, that is 1->2->3->4->6.

In table 6, we list the semantics corresponding to the
instructions within each basic block. Specifically, basic
blocks 1-5 contain codes for checking transaction param-
eters. These codes will be added to path_constraints,
and the corresponding symbolic variables will be added to
path_constraint_variables. In addition, the group trans-
action with index 0 is accessed using the gtxn bytecode in
basic block 5, so the index 0 is added to groupTxns.

Table 7 shows the vulnerability detection results of this
execution trace. First, there is no check on transaction fees
in the example program, so there is an unchecked transac-
tion fee vulnerability. Second, the RekeyTo parameter of the
current transaction is checked in basic block 3 of the sample
program, so part 1 of rule 2 is false, and therefore there is
no unchecked RekeyTo vulnerability. Next, there is no check
on the CloseRemainderTo parameter of the current transac-
tion in the sample program, and the group size (assigned to
2 in the basic block 1) is larger than the size of groupTxns
(only index 0 is accessed in basic block 4, so the size is 1).
This means that there is at least one transaction in the atomic
transaction group whose CloseRemainderTo parameter has
not been checked by any code, and in this example, the index
of this transaction is 1. As a result, there is an unchecked
CloseRemainderTo vulnerability. Finally, the sample pro-
gram defines the type of the current transaction as payment in
basic block 2 (i.e., TypeEnum equals to 1), so part 2 of rule 4 is
false, so there is no unchecked AssetCloseTo vulnerability.

B Case Study

During our manual analysis of the experimental results, we
found many vulnerable smart contracts. In the following, we
will analyze several typical examples in detail.

B.1 Unexpected Delete and Update Operation

Figure 6: case 1

In figure 6, we give an example code of a smart contract that
includes both arbitrary update and arbitrary deletion vulnera-
bilities. The reason for the vulnerability in this code is appar-
ently due to a programming mistake by the developer. Specifi-
cally, the code has no correct constraint on the OnCompletion
parameter. Note that we give the corresponding fixed code
(on the right of the arrow) to help understand the cause of
the vulnerability. Note that this vulnerable example has a
duplicate of 333 on the blockchain.

B.2 Unchecked group size
In figure 7, we give a simplified example code for a smart sig-
nature that includes vulnerabilities for unchecked transaction
fees and unchecked transaction parameters (corresponding
to indexes 1-4 in table 1). This code is vulnerable because
the group size is not a fixed value, and at least one of the
transactions whose parameters have not been checked. As
before, we give a fixed version of this code. Remember that
we have to specify the group size explicitly and check all the
parameters of each of these transactions in smart signatures
or in the Validator.

B.3 Validator can be bypassed
During the evaluation process, we found that a large num-
ber of smart signatures used an incorrect way to call the
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Figure 7: case 2

Figure 8: case 3

Validator. As shown in figure 8, the logic of these smart
signatures restricts the Validator’s application ID but does
not restrict the Oncomplete parameter. Therefore, an attacker
can use opt-in, close-out, or clear-state transactions
to bypass the validation logic. This is because the main logic
of the Validator is located in the NoOp branch, while other
branches do not contain validation code. Panda has reported
a large number of smart signatures with this vulnerability
pattern such as the 41,204 vulnerable escrow accounts of AL-
GOxNFT [14] and the vulnerable liquidity pool of FXDX [13]
mentioned in §9.
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