
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Oops..! I Glitched It Again! How to Multi-Glitch
the Glitching-Protections on ARM TrustZone-M

Xhani Marvin Saß, Richard Mitev, and Ahmad-Reza Sadeghi,
Technical University of Darmstadt

https://www.usenix.org/conference/usenixsecurity23/presentation/sass

Oops..! I Glitched It Again!
How to Multi-Glitch the Glitching-Protections on ARM TrustZone-M

Xhani Marvin Saß
Technical University of Darmstadt

Richard Mitev
Technical University of Darmstadt

Ahmad-Reza Sadeghi
Technical University of Darmstadt

Abstract
Voltage Fault Injection (VFI), also known as power glitching,
has proven to be a severe threat to real-world systems. In
VFI attacks, the adversary disturbs the power-supply of the
target-device forcing the device to illegitimate behavior.
Various countermeasures have been proposed to address dif-
ferent types of fault injection attacks at different abstraction
layers, either requiring to modify the underlying hardware or
software/firmware at the machine instruction level. Moreover,
only recently, individual chip manufacturers have started to
respond to this threat by integrating countermeasures in their
products. Generally, these countermeasures aim at protect-
ing against single fault injection (SFI) attacks, since Multiple
Fault Injection (MFI) is believed to be challenging and some-
times even impractical.
In this paper, we present µ-Glitch, the first Voltage Fault In-
jection (VFI) platform which is capable of injecting multiple,
coordinated voltage faults into a target device, requiring only
a single trigger signal. We provide a novel flow for Multiple
Voltage Fault Injection (MVFI) attacks to significantly reduce
the search complexity for fault parameters, as the search space
increases exponentially with each additional fault injection.
We evaluate and showcase the effectiveness and practical-
ity of our attack platform on four real-world chips, featuring
TrustZone-M:
The first two have interdependent backchecking mechanisms,
while the second two have additionally integrated counter-
measures against fault injection. Our evaluation revealed that
µ-Glitch can successfully inject four consecutive faults within
an average time of one day. Finally, we discuss potential coun-
termeasures to mitigate VFI attacks and additionally propose
two novel attack scenarios for MVFI.

1 Introduction

Fault Injection (FI) has proven to form a powerful threat
to various computing platforms. All fault injection methods
temporarily disturb the physical runtime environment of the

Device under Test (DuT) to cause specific misbehavior. Com-
mon FI attacks are, e.g., conducted by disturbing the supply
voltage [3], generating malicious clock signals [49], rapidly
changing the electromagnetic environment [28], or inducing
a light pulse at the decapsulated Integrated Circuits (ICs) [59].
The possible consequences from injecting a certain type of
fault are described by a FI method’s Fault Model. Depend-
ing on the specific FI method used, the corresponding Fault
Model may, e.g., be defined as skipping of machine instruc-
tions [41], corrupting the instruction decoding [55] or altering
the data stored on a device’s internal memory [33]. Hence, FI
attacks are capable of introducing vulnerabilities. As an exam-
ple, this kind of attacks have been successfully launched on
Trusted Execution Environments (TEEs) [16, 36], embedded
devices [40, 63], smart cards [59] and recently even against
workstation processors [14, 23].
A popular class of FI and the focus of this paper is Voltage
Fault Injection (VFI), as this approach is very versatile while
exhibiting a high-impact attack vector. VFI disturbs a DuT’s
power supply to provoke a specific malfunction. To address
VFI attacks, a variety of software- [4, 5, 32, 48] as well as
hardware-based [50,61] countermeasures have been proposed
over the years.
Fortunately, the industry has recognized the severity of fault
injection attacks and individual manufacturers are react-
ing to it by integrating countermeasures into their prod-
ucts. For instance, NXP recently released multiple ARMv8-
M series Microcontroller Units (MCUs), which feature an
instruction-level FI countermeasure to protect some of their
security-critical registers from FI attacks. Moreover, ARMv8-
M MCUs that feature TrustZone-M (e.g., STM, Atmel, NXP)
are equipped with a novel hardware unit on the internal bus
system, performing additional checks on every bus access in
order to ensure the security properties of the TEE. Although
not explicitly aimed to mitigate FI attacks, this backchecking
mechanism has complex interdependencies which make FI
attacks targeting TrustZone-M highly difficult [46].
Typically, FI attacks and countermeasures are dedicated to
Single Fault Injection (SFI), although Multiple Fault Injec-

USENIX Association 32nd USENIX Security Symposium 6239

tion (MFI) seems to be much more powerful. In MFI, mul-
tiple coordinated faults of a certain type are injected after
a single synchronizing trigger signal, in order to attack
multiple target instructions during a single execution. MFI
could theoretically be used against instruction-level based
countermeasures [4, 32], however, as stated by previous work
conducting those attacks, especially Multiple Voltage Fault
Injection (MVFI) are considered highly impractical due to
the lack of precise and affordable MFI tools [4, 46] and effi-
cient parameter search algorithms. Even though, commercial
equipment for MFI is available, devices from e.g., Alphanov1

and Riscure2 were shown only to conduct Multiple Laser
Fault Injection (MLFI) which is much more resource inten-
sive than MVFI. In addition, off-the-shelf VFI devices from
NewAE [44] are incapable of injecting multiple faults based
on a single trigger.
In this paper, we address this open problem by providing
a highly precise MVFI tool and the corresponding efficient
parameter search algorithms, which enable an adversary to
inject multiple, coordinated and consecutive voltage faults
into any target device in order to attack any software-based
SFI protection on the instruction-level.
We show that our tool is able to successfully perform a pa-
rameter search for up to four consecutive voltage faults and
perform MVFI to skip the corresponding instructions in about
one day.
To realize this, we had to overcome a number of challenges:
First, to the best of our knowledge, there exists no tool to con-
duct MVFI, so we designed and built our framework, coined
µ-Glitch. Second, the timely effort required to search for multi-
ple fault parameters grows exponentially with each additional
fault, if a traditional fault parameter search (i.e., an exhaustive
search) is used. Hence, we designed, implemented and evalu-
ated novel approaches, to search for multiple fault injection
parameters, which are efficient enough for MVFI setups.
Even though our approach can be used to attack arbitrary
devices, we focus on attacking TrustZone-M (TZM), as TEEs
form highly secure targets, which, when compromised, have
shown to lead to the disclosure of highly sensitive informa-
tion [47]. While principally µ-Glitch can defeat many VFI
research proposal countermeasures, as discussed in Section 9.
However, we evaluate µ-Glitch on four real-world example
MCUs as most academic proposals are not open-sourced.
As a Proof-of-Concept (PoC), we attack two TZM MCUs
which have protections explicitly protecting against FI at-
tacks. Therefore, it cannot be successfully attacked through
SFI. We also attack two other ICs with a subset of protections.
Our main contributions are as follows:

Novel MFI Framework We present µ-Glitch, a novel fault
injection framework, which is capable of injecting multiple,

1https://www.alphanov.com/en/products-services/double-
laser-fault-injection

2https://www.riscure.com/blog/security-highlight-multi-
fault-attacks-are-practical

coordinated voltage faults into any DuT, in order to overcome
FI countermeasures implemented on the instruction level.
Parameter Search Algorithm We explore the impact of ad-
ditional faults on the search space spanned by the combi-
nations of multiple fault’s parameters and present a novel
and effective multiple fault parameter search to overcome
the exponential increase in needed resources introduced by
conventional algorithms. Our approach exhibits a 50 times
speedup when searching for two consecutive voltage fault’s
parameters and an 8.3-time speedup when searching for four
voltage fault’s parameters.
Real-world Attack We use µ-Glitch in order to inject mul-
tiple voltage faults into NXP’s LPC55SXX and RT6XX MCU
and hereby successfully circumvent all FI protections. By
this, we are able to fully compromise the security introduced
by TZM, by accessing the secure memory from within non-
secure firmware. We show that this attack can be performed
within an average time of one day. Further, we show that other
TZM ICs can be broken using a subset of faults required for
NXP ICs.
Possible Countermeasures We propose a software-level en-
hancement to the existing countermeasures, which is capable
to protect from MFI attacks by eliminating the possibility of
searching for MFI parameters.

Responsible Disclosure The results of this work have been
responsibly disclosed to NXP Semiconductors Ltd. A re-
sponse acknowledging our findings has been received. In
follow-up communication, the authors are collaborating with
NXP Semiconductors Ltd. on finding a security patch.

2 Background

In the following, we provide the background necessary in
order to understand this work.

2.1 Voltage Fault Injection
Voltage Fault Injection (VFI) is a specific Fault Injection (FI)
method to inject disturbances into the power supply line of an
Integrated Circuit (IC) and hence, violates the IC’s specified
operating conditions for a certain, controlled period. Most
ICs, like Microcontroller Units (MCUs), expect their supply
voltage to be stable and steady, i.e., there should be no point
during runtime at which the supply voltage is interrupted or
leaves a specified operating range.
Figure 1 depicts a single voltage fault injected into the supply
line of an IC running at 3.3V . Here the specified operating
supply voltage range is highlighted green (3.0V to 3.5V),
whereas the red highlighted range (0.0V to 2.9V) indicates
that the operating conditions are violated. The fault voltage
level is most commonly defined as the Ground (GND) refer-
ence, however, this may be optimized with respect to either
reliability and repeatability [9] or timely resolution [24]. A

6240 32nd USENIX Security Symposium USENIX Association

https://www.alphanov.com/en/products-services/double-laser-fault-injection
https://www.alphanov.com/en/products-services/double-laser-fault-injection
https://www.riscure.com/blog/security-highlight-multi-fault-attacks-are-practical
https://www.riscure.com/blog/security-highlight-multi-fault-attacks-are-practical

Figure 1: Example of a Voltage Fault

voltage fault is parameterized by its Offset w.r.t. a synchro-
nization point, and its Width [40]. In every VFI experiment,
the most complex part is to find the best fault parameters in
order to provide a reliable and repeatable attack [12].

The Fault Model of VFI on MCUs consists of four dif-
ferent behaviors, which all arise from the effects of VFI on
the processor’s internal pipeline stages, namely, skipping of
machine instructions, corrupting data fetches, corrupting in-
struction decodes and corrupting write-backs. Throughout
this work, we focus on applying VFI in order to skip machine
instructions. In this context, we further define the Fault Target
as the machine instruction the adversary aims to skip in order
to cause a specific misbehavior. Moreover, a Fault Target is
assumed to be hit once it is successfully attacked by injecting
a fault.

Fault Injection Setups can be divided into two main
classes of Cooperative FI and Non-Cooperative FI [42]. In
the former, the attacker is able to reprogram the Device under
Test (DuT). Here, the attacker commonly implements a proto-
col to communicate with the device. By this, it is possible to,
e.g., call a subroutine on the device that shall be tested against
FI, by issuing a corresponding command. In addition, in co-
operative FI, the DuT is notifying the FI framework when
entering the code region to be tested by asserting the synchro-
nizing signal, referred to as Trigger. Cooperative setups are
commonly encountered in Proof-of-Concepts (PoCs). In the
latter, the adversary is unable to reprogram the DuT. Non-
Cooperative FI is commonly encountered in attack scenarios,
which focus on attacking proprietary targets.

3 Adversary Model

The adversary model includes a physical access attacker. Fur-
ther, the adversary is capable of performing slight modifica-
tions to the DuT in order to make VFI possible, similar to
related literature [40] (e.g., attaching copper wires, detach-
ing bypass-capacitors). In order to define Fault Targets, the

μ-Glitch Design
Overall Success

Function

Translation Multiple
Parameter Search

Fuzzyfication Integration

Partial Success
Function

Evaluation

1 2

4 3

5 6

7

Figure 2: High level overview of our µ-Glitch design

adversary has some knowledge about the targets firmware,
which may be, e.g., through the use of a public library [41] or
a previous binary firmware disclosure [60].

4 µ-Glitch Design

In this section, we present our novel Multiple Fault Injection
(MFI) design, named µ-Glitch.
Similarly to Single Fault Injection (SFI) attacks, we adopt
the high-level flow, which consists of defining the experiment
success function, performing fault injection by exhaustively
searching the fault’s parameters and analyzing and comparing
success rates3.
The complexity of searching multiple fault parameters at once
increases exponentially with every additional fault, using con-
ventional parameter search algorithms. Therefore, we intro-
duce our novel, efficient sweeping approach to be used in MFI
setups.
The overall attack flow is depicted in Figure 2:

1. Define Overall Success Function:
In order to decide about the outcome (i.e. overall success
or failure) of a MFI attempt, a Success Function (SF) has
to be defined. This is a binary function that is evaluated
in later steps in order to indicate either a success, if and
only if all the Fault Targets are hit at once or a failure
in all other cases.

2. Define Partial Success Functions:
The parameter search needs to distinguish between hit
Fault Targets. This is achieved by defining Partial Suc-
cess Functions (PSFs), which are needed to recognize, if
some, but not all, Fault Targets have been hit, whereas
the SF only allows determining, if all the Fault Targets
have been faulted during a single, consecutive execution.

3. Perform Multiple Parameter Search:
The goal of performing the Multiple Parameter Search
is equal to this of the Parameter Search in SFI, i.e. valid

3https://github.com/newaetech/chipwhisperer-jupyter/tree/
92307484b155394a01c7021f1d21123efccee4aa/courses/fault101

USENIX Association 32nd USENIX Security Symposium 6241

https://github.com/newaetech/chipwhisperer-jupyter/tree/92307484b155394a01c7021f1d21123efccee4aa/courses/fault101
https://github.com/newaetech/chipwhisperer-jupyter/tree/92307484b155394a01c7021f1d21123efccee4aa/courses/fault101

fault parameters have to be discovered, which lead to
an experiment success. Even though there are multiple
such parameter pairs to be discovered throughout this
step, the process of finding the right parameters is similar
to the one in SFI: The adversary uses a single fault in
order to search in an increased space, spanned by all
Fault Targets parameters. We refer to this process as
sweeping. As PSFs have previously been defined, when
the injected fault hits one of the Fault Targets, it will be
detected by evaluating the corresponding PSF.

As there is only a single fault per execution injected, the
SF is not evaluated during this step. The result is a set of
sets of absolute parameters, i.e., one set per Fault Target,
absolute to a common synchronization Trigger.

4. Translating Absolute Parameters:
The previously discovered absolute fault parameters
need to be translated into relative parameters (i.e., rela-
tive to the preceding fault), by using the inductive defini-
tions in Equation 1 and Equation 2.

R0 = A0 (1)

Rn = An − (An−1 +Wn−1) (2)

That is, the first faults relative Offset R0 is always equal
to the first absolute Offset A0 found by our sweeping
approach. Every additional fault’s relative Offset Rn
is defined recursively in terms of its absolute Offset
An, its previous global Offset An−1 and the previous
fault’s width Wn−1. All the fault’s Widths may be di-
rectly adopted.

5. Fuzzyfy Parameters:
Due to the non-deterministic behavior of the Device un-
der Test (DuT) in the presence of voltage faults, every
preceding fault may affect its succeeding ones param-
eters in unpredictable ways. In order to address this
uncertainty, slight modifications have to be applied to
the relative Offsets. We refer to this process as fuzzy-
fication. Here, every fault’s Offset is not considered a
single value, but rather a very small interval bound by
±Ψ : Ψ ∈ N. The hereby generated intervals serve as
input for the following integration step.

6. Integrate Fuzzyfied Parameters:
As the uncertainty and hence the provided sets are con-
sidered to be very small, it is viable to perform an ex-
haustive search on multiple fault’s parameters. As all
the required voltage faults are hereby injected at once,
this represents the first step in which the actual attack
is performed. Therefore, each MFI attempt is evaluated
based on the overall SF, instead of the PSFs.

7. Evaluate and Analyze Repeatability:
Finally, analyzing combinations of multiple fault’s
parameters, which in combination led to an overall
success, is needed. Further, if there are multiple such
combinations available, the different combinations have

to be qualified and compared w.r.t. their success
rates.

4.1 Transforming Non-Cooperative Setups

µ-Glitch is also able to cope with non-cooperative setups,
in which there are no PSFs definable, by transforming non-
cooperative setups to cooperative ones.
In general, an adversary can perform a parameter search on a
physically identical but cooperative setup, before transferring
the identified parameters to the non-cooperative setup, as in
this case, defining PSFs is easy [43]. This approach is feasible
whenever the firmware can (partly) be reproduced and the
offset in between Fault Targets remains constant.
As every Integrated Circuit (IC) manufacturer (e.g., STM,
Atmel and NXP) provide their own Software Development
Kit (SDK) in order to generate the machine instructions for the
target device, and it is considered to be best practice and highly
encouraged by the manufacturers to use this example code
to set up TrustZone-M (TZM), every non-cooperative setup
using these public SDKs can be transformed to a cooperative
one in the sense of the parameter search.
Therefore, in such a scenario, it is possible to transfer the
parameters of several Fault Targets to a non-cooperative setup,
thus reducing complexity drastically and enabling attacking
proprietary black-box software on these devices.

5 µ-Glitch Attack on TrustZone-M

In this section, we describe a real-world attack on TrustZone-
M (TZM) using µ-Glitch, as compromising these highly se-
cured environments usually leads to the disclosure of sensitive
information.
The goal of our attack is to leak secrets stored in secure
memory of the TZM from within non-secure firmware. Even
though µ-Glitch is able to circumvent all duplication-based
instruction-level countermeasures, as stated in Section 9, we
chose to attack the duplication-based protection of NXP.
NXP is an Integrated Circuit (IC) manufacturer, which re-
cently adapted Fault Injection (FI) countermeasures similar
to protections proposed by academia in their real-world threat
modeling processes for their ARMv8-M series Microcon-
troller Units (MCUs). The chips are protected by implement-
ing a modified version of the duplication-based approach of
Barenghi et al. [4], which is referred to as Duplicate Reg-
isters [38, 39]. We will elaborate on this in more detail in
Section 5.2.1. We also evaluate this attack on other ARMv8-
M MCUs (namely, STM32L5 and Atmel SAML11) which can
be compromised with a subset of Fault Targets of this attack.
First, we provide preliminary background on TZM.

6242 32nd USENIX Security Symposium USENIX Association

5.1 TrustZone-M Background

TZM is a Trusted Execution Environment (TEE) for em-
bedded processors, i.e., it introduces system-wide hardware-
enforced computation and memory isolation mechanisms,
which are built directly into the processor. The TZM platform
is configured by different memory attribution units, which are
elaborated in the following and depicted in Figure 3.

The Security Attribution Unit (SAU) is specified and de-
signed by ARM. Here, it is possible to define up to eight
different memory regions, which can be either Secure (S),
Non-Secure (NS) or Non-Secure Callable (NSC). The final se-
curity state of a memory region is defined in conjunction with
the Implementation Defined Attribution Unit (IDAU).

The Implementation Defined Attribution Unit (IDAU) is
specified by the corresponding IC manufacturer. It defines
memory regions to be either S or NS. Defining NSC is a priv-
ilege granted exclusively to the SAU. On most of the com-
mercially available ARMv8-M TZM processors, the IDAU
is implemented to perform a bit check on the 28th bit of a
requested address. For an arbitrary address, the IDAU returns
S if the 28th bit is set, otherwise NS.

The final Security State is determined by the strongest
output security state from SAU and IDAU for a requested
address, where the partial order of S > NSC > NS holds.

The Transition between S and NS takes place based on
novel ARMv8-M instructions.
The non-secure code is linked against a set of function headers,
called the veneer table, which is exported during the compila-
tion of the S firmware.
To switch from NS to S, it is required to take a detour through
calling a veneer function in a NSC region, which consists of a
Secure Gateway (SG) instruction4.
To switch from S to NS, it is necessary to use either the Branch
with eXchange to Non-Secure state (BXNS) or the Branch with
Link and eXchange to Non-Secure state (BLXNS) instruction.
Here it is important to note that the security level transition
will only happen, if the Least Significant Bit (LSB) of the NS
address is unset5.

The Backchecking Mechanism represents a TEE protec-
tion available on MCUs featuring TZM, which ensures con-
fidentiality and integrity on a system level. In this concept,
additional integrity checks are realized by introducing new
hardware units on the internal system bus, referred to as Ad-
vanced High-Performance Bus (AHB).
The three novel hardware units residing on the AHB matrix
are:

4https://developer.arm.com/documentation/100690/0201/
Switching-between-Secure-and-Non-secure-states

5https://developer.arm.com/documentation/100235/0004/
the-cortex-m33-instruction-set/branch-and-control-
instructions/bxns-and-blxns

Cortex-M33

IDAU

WUSecurity
State

M
C

Bus
Masters
(e.g., DMA)

PC

SAU MPU

Addresses

Security State

Privilege Level

Memories

Peripherals
Secure AHB Controller
Duplicate Register

Figure 3: Example implementation of the Backchecking
Mechanism on the AHB, a flash denotes parts to be faulted

Wrapper Units (WUs) are used to wrap TZM unaware bus
masters to signal side-band information on the AHB ma-
trix. This additional information determines the Security
State and the Privilege Level for a requested address.
Based on this information, the Checker Units perform
additional checks upon every bus access.

Memory Checkers (MCs) are used to protect memory de-
vices, such as Flashes, Random Access Memorys
(RAMs) and Read-only Memorys (ROMs) from unin-
tended access of an application.

Peripheral Checkers (PCs) are used to protect the periph-
erals which are directly connected to the AHB or via
Advanced Peripheral Bridge (APB) from unintended
access of an application.

NXP refers to this concept as Secure AHB Con-
troller [38], STMicroelectronics to Global TrustZone Con-
troller (GTZC) [52] and Atmel to Peripheral Access Control
(PAC) [1].

5.2 Attack Internals
Throughout this section, we describe our concrete attack
against NXP-based implementations of the TrustZone-M and
their FI countermeasures.

5.2.1 NXP’s Duplicate Register

NXP’s FI countermeasure, referred to as the Duplicate Reg-
isters method, deploys for every security-critical register a
second, equally structured register in memory space. If active,
both of these registers are written sequentially in firmware.
Once Single Fault Injection (SFI) is applied in order to skip
or modify an assignment to a secured register, its duplicate
register would afterward still be written as intended. Based on
the introduced inconsistency between the original register and

USENIX Association 32nd USENIX Security Symposium 6243

https://developer.arm.com/documentation/100690/0201/Switching-between-Secure-and-Non-secure-states
https://developer.arm.com/documentation/100690/0201/Switching-between-Secure-and-Non-secure-states
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-instruction-set/branch-and-control-instructions/bxns-and-blxns
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-instruction-set/branch-and-control-instructions/bxns-and-blxns
https://developer.arm.com/documentation/100235/0004/the-cortex-m33-instruction-set/branch-and-control-instructions/bxns-and-blxns

1 BOARD_InitTrustZone:
2 ; configure secure regions
3 ...
4 ; activate SAU
5 MOVS R2, #1
6 STR R2, [0xE000EDD0]; SAU_CTRL
7 ; configure secure AHB controller
8 ...
9 ; activate secure AHB controller

10 MOVW R2, #0xAAA5
11 STR R2, [0x500ACFF8]; Duplicate
12 ...
13 MOVW R2, #0xAAA5
14 STR R2, [0x500ACFFC]; Original

Listing 1: Simplified version of NXP’s TrustZone-M Setup
Routine

its duplicate register, any SFI attempt is detected in hardware.
This advanced countermeasure is, e.g., encountered in NXP’s
LPC55S6X [38] and RT6XX [39] series MCUs. We have identi-
fied Duplicate Registers being used in Debugging Features,
Physical Unclonable Function (PUF) Index Configuration and
the Activation of the Secure AHB Controller.

5.2.2 Interdependency of Protections

As the checks performed by SAU and IDAU and the checks
performed by NXP’s Secure AHB Controller are performed
sequentially, attacking only one of these checks would always
be detected by the respective counterpart. In addition, the
activation of the Secure AHB Controller is further protected
by Duplicate Registers. Hence, in order to succeed, all of
these have to be successfully attacked during one consecutive
execution. While conducting our experiments, NXP proces-
sors seem to lock themselves into erroneous states when the
TrustZone-M specific instructions to switch the security con-
text are issued, whenever the SAU is not active. Moreover,
the activation of the IDAU cannot be skipped, as it is active
by default after Power-On Reset (POR).

5.2.3 Fault Targets

With the FI countermeasure and interdependencies of the
TZM protections in mind, we define the following Fault Tar-
gets and their technical details, which are represented by a
flash symbol in Figure 3.

Activation of the Security Attribution Unit (SAU) The
SAU is activated in the TZM setup routine, a system routine
that is executed before the trusted and secure user code is
executed. The relevant Fault Target is depicted in line 6 of
Listing 1, and is commented with SAU_CTRL.
Once the Fault Target is hit, i.e. the STR instruction is skipped,
the SAU is disabled. As later on the Secure AHB Controller
is setup as intended, it would detect any invalid bus accesses
due to a mismatch of the configuration of both hardware units.
This inconsistency between the Secure AHB Controllers con-

1 __gnu_cmse_nonsecure_call:
2 ; clear all registers , prevent leaks
3 ...
4 ; transition to non secure world based
5 ; on parameter R4
6 BXNS R4
7 ; secure main function
8 main:
9 ; Set up system and peripherals

10 ; Execute user specific code
11 ...
12 ; Unset the LSB by shift -out-shift -in
13 ; R4 is storing the NS destination address
14 LSRS R4, R4, #1
15 LSLS R4, R4, #1
16 ; clear unbanked registers , prevent leaks
17 ...
18 ; transition to NS will be handled here
19 BL __gnu_cmse_nonsecure_call
20 ; endless loop , should never be reached
21 B .

Listing 2: GCC generated Code to switch the Security
Context

figuration and TZM configuration is what prevents a success-
ful attack at this point.
Activation of Secure AHB Controller To resolve this in-
consistency, the adversary must prevent the Secure AHB Con-
troller from being activated. The Fault Target that needs to
be hit in order to prevent activation is shown in line 15 of
Listing 1 and is commented with Original. Once this store
instruction is skipped, the Secure AHB Controller is kept de-
activated. Due to the use of Duplicate Registers however, any
successful FI attempt will still be detected.
Duplicate Register for Secure AHB Controller At this
point, the processor would be able to detect an inconsistency
between the deactivated Secure AHB Controller and its active
Duplicate Register. Hence, the assignment to the Duplicate
Register forms another Fault Target, which is shown in line
13 of Listing 1 and is commented with Duplicate.
Prevent Switching of Security Context After the previous
Fault Targets are all hit, the SAU and all the TZM protec-
tions are fully disabled. After the boot process, the bootloader
passes execution to S firmware, in which the TZM is config-
ured6. Afterward, the main function of the user-defined code
sets up the system and peripherals, before ultimately passing
the execution to NS code, which at this point is invalid and
therefore the IC would lock itself into an erroneous state. This
transition is performed by the TZM specific BXNS instruction.
In Listing 2, we present the relevant disassembled parts of
the binary, generated by Gnu Compiler Collection (GCC) for
transitioning from S to NS.
In order to prevent the internal security context switch from
S to NS, it is sufficient to skip the shift-out shift-in operation,
implemented by the LSRS and LSLS instructions defined in

6https://www.nxp.com/design/software/development-
software/mcuxpresso-software-and-tools-/mcu-bootloader-
for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab

6244 32nd USENIX Security Symposium USENIX Association

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcu-bootloader-for-nxp-microcontrollers:MCUBOOT?tab=Design_Tools_Tab

Clock
Trigger
Offset
Width

Fault Out
Fault Done32

32

Figure 4: Block Diagram of a Single Fault Unit

line 16 and 17. As this code is executed in S state, the LSB is
always set.
It is worth noting that even though we have been using NXP’s
toolchain to generate the firmware, the herein-described privi-
lege escalation can be performed on almost every commercial
available TZM MCU, as most IC manufacturer release their
toolchains based on GCC. Moreover, in ARM-based compil-
ers clearing the LSB is performed by a single bit clear (BIC)
instruction.

5.3 µ-Glitch Hardware Framework
The Fault Targets in the Multiple Fault Injection (MFI) attack,
need to be successfully hit all at once, in one continuous
execution in order to fully break the security granted by NXP’s
TZM implementation. A lack of suitable commercial MFI
tools led to the development of our µ-Glitch MFI framework,
which will be introduced throughout this section.
Our custom MFI framework consists of six components,
namely the Clock Generation Unit, the Host Communication
Unit, the I/O Buffer Unit, internal Configuration Registers,
the Multiple Voltage Fault Unit and the Serial Target I/O Unit.
In the following, we elaborate on the Multiple Voltage Fault
Unit in more detail, as it represents one of the main parts
of our framework. However, in order to introduce our MFI
hardware, it is important to first understand the Single Fault
Unit (SFU) design, which is commonly encountered in SFI
setups7.
Figure 4 shows a block diagram of a typical SFU. Similar
designs are commonly used to inject a single voltage fault
into a Device under Test (DuT). A voltage fault is defined by
its Width and its Offset, w.r.t. a synchronization point re-
ferred to as the Trigger (cf. Section 2.1). In our SFU design,
the Width and Offset are both defined as 32−Bit inputs. A
SFI is initiated, once the single bit Trigger input signal is
asserted. Starting with this external Trigger event, the hard-
ware starts counting, using the reference Clock signal. Once
the defined Offset has been reached, the Fault Out signal
is set high and remains high for exactly Width clock cycles.
The Fault Out signal is routed directly into the gate of an
N-Channel metal–oxide–semiconductor field-effect transistor
(MOSFET), with its source connected to the fault voltage

7https://github.com/chipfail/chipfail-glitcher/tree/
master/chipfail-glitcher.srcs/sources_1/new

level and its drain connected to the power supply line of the
DuT. This circuit is referred to as the Crowbar-Circuit [40]
and represents the state-of-the-art method used to inject a volt-
age fault. To indicate that the fault attempt has been processed,
an additional output signal named Fault Done is asserted for
a single clock cycle.

5.3.1 Multiple Fault Injection Hardware

The SFU discussed previously builds the base for the design of
our MFI unit. By chaining multiple SFUs together, we are able
to inject multiple, coordinated faults using a single trigger. For
this purpose, the Trigger input of a unit is connected to the
Fault Done signal of its predecessor, whereas the first SFU’s
Trigger is directly connected to the external Trigger signal,
forming a chain of units. The Fault Out lines are combined
by using the logical Or operator, whereas the signal indicating
the termination of each MFI attempt is solely defined by the
last SFU’s Fault Done signal. By chaining SFUs a single
trigger signal can be used to perform MFI.
While this approach is capable of injecting multiple, coordi-
nated faults into a DuT, the number of injected faults is fixed
by design. Once there are n ∈ N SFUs downloaded to the
Field Programmable Gate Array (FPGA), the framework is
determined to generate exactly n voltage faults, each time it
gets triggered.
With respect to our attack flow described in Section 4, the
dynamical configuration of the number of injected faults is
desirable. Hence, we propose a slightly more complex de-
sign, which enables the dynamic activation and deactivation
of SFUs, even after the hardware has been downloaded to
the FPGA. By introducing multiplexers in between each of
the SFUs, as shown in Figure 5, the design is dynamically
configurable.
In this depiction, the routing of the Clock, Offset and Width
signals of each SFU are intentionally omitted, in order to fo-
cus on the interconnection of multiple SFUs. In addition, all
the Fault Out signals (Fault 0, Fault 1, . . .) are assumed
to be combined using the logical Or operator. The hereby gen-
erated signal controls the gate of the MOSFET of our Crowbar
circuit implementation. The blocks labeled 1:2 Demux are
demultiplexers, i.e., hardware units that forward an input sig-
nal (In) to one of the multiple output signals (Out1 or Out2),
depending on the state of another input signal (Sel). The se-
lection lines (Sel SFU0, Sel SFU1, . . .) may be modified by
the controlling host system, by updating the MFI framework’s
internal registers. The first demultiplexer, which routes its in-
put to Out1 asserts one of the Done signals, which indicates
the end of this MFI attempt and interrupts the forwarding of
Done-Signals to succeeding SFUs. Each of the Fault Done
signals (i.e. Done 0, Done 1, Done 2, . . .) are also combined
using the logical Or operator, to form a single output signal.

USENIX Association 32nd USENIX Security Symposium 6245

https://github.com/chipfail/chipfail-glitcher/tree/master/chipfail-glitcher.srcs/sources_1/new
https://github.com/chipfail/chipfail-glitcher/tree/master/chipfail-glitcher.srcs/sources_1/new

Clock
Fault Out
Fault Done32

32

Trigger
Offset
Width

Done 2
Fault 1

Clock
Fault Out
Fault Done32

32

Trigger
Offset
Width

Fault 0

Done 0

Done 1

Sel SFU0

External
Trigger

Sel SFU1

In
Sel

Out1
Out2

1:2
Demux

In
Sel

Out1
Out2

1:2
Demux

Figure 5: Block Diagram of the Multiple Voltage Fault Unit

6 Evaluation

To thoroughly test our µ-Glitch Multiple Fault Injection (MFI)
hardware design and novel parameter search algorithm, we
conduct multiple evaluations throughout this section. First,
we show the feasibility of attacking the Duplicate Registers
countermeasure, this method is mimicked and attacked based
on a cooperative as well as a non-cooperative firmware simu-
lation. By this, our novel approach of searching for parameters
can be compared to performing an exhaustive search, with
optimized conventional parameter search algorithms.
Moreover, in order to prevent the security context switch, we
perform a privilege escalation on code generated by Gnu
Compiler Collection (GCC). The Fault Target is two immedi-
ately successive instructions, which have both to be attacked
at once. For this purpose, we evaluate, whether it is more
promising to inject two, narrow faults or a single, wider fault
when aiming at attacking such successive instructions.
We conclude our evaluation by performing our real-world
attack, in which we attack NXP’s TrustZone-M (TZM) imple-
mentation with all the new protections activated, by hitting
all Fault Targets introduced in Section 5.2.3 in one execution.

6.1 Attacking Duplicate Registers

To show the feasibility of circumventing the Duplicate Reg-
ister Fault Injection (FI) countermeasure and evaluate our
proposed MFI parameter search algorithm
we implement an isolated simulation of this countermeasure.

It is possible without loss of generality since the Duplicate
Register method and our simulation both translate to equal
Fault Targets. In the following, we describe our simulation ap-
proach for cooperative as well as non-cooperative parameter
searches. Afterward, multiple parameter searches for both the
different setups are performed. We conclude this simulation
by analyzing the success rates for attacking our simulation of
the Duplicate Registers FI countermeasure.

6.1.1 Fault Targets

In order to simulate the Duplicate Registers Fault Injection
countermeasure, we first define two functions, which are
used for the different MFI setups (i.e., cooperative and non-
cooperative), and whose source code is provided as a ref-
erence in the Appendix in Listing 4 and Listing 5. In both
functions two, zero-initialized variables are defined. These
represent our Fault Targets, i.e., a register to be protected and
its duplicate register. After their definitions, these are written
sequentially with the same, non-zero value.
The goal of the adversary is to skip both assignments in one
execution, hence compromising the protection introduced by
the Duplicate Registers method.
In our cooperative simulation Partial Success Functions
(PSFs) are defined, which allows the use of our efficient ap-
proach, as described in Section 4. For comparison, in the
non-cooperative simulation, PSFs are assumed to be impossi-
ble to define, and an optimized exhaustive search is performed.
We chose to use the exhaustive search approach as proposed
by NewAE, as it represents the state-of-the-art in Single Fault
Injection (SFI) attacks8

Each assignment to a Fault Target is preceded with a random
delay, which is determined during compile-time. Through this,
the binary firmware exhibits exactly the same behavior during
each execution. Once the firmware is re-compiled, another
binary is generated which exhibits different timely behavior.
This way we ensure that parameters discovered throughout
one experiment are very unlikely to fit another experiment.
In order to compare the different setups, the same delays for
both setups have been used.

6.1.2 Parameter Search

The different search algorithms used to discover MFI param-
eters are performed several times based on the introduced
random delays, before comparing the results of the different
approaches to each other. Table 1 compares an exhaustive
search (left) to our efficient sweeping approach (right). Each
row represents a single comparison of an exhaustive search to

8https://github.com/newaetech/chipwhisperer-jupyter/tree/
92307484b155394a01c7021f1d21123efccee4aa/courses/fault101,
which tests all possible combinations of FI parameters. This search requires
no additional knowledge in contrast to other approaches which require
time-consuming model training [64] for every glitch or the definition of a
fitness function [12], which may not always be possible.

6246 32nd USENIX Security Symposium USENIX Association

https://github.com/newaetech/chipwhisperer-jupyter/tree/92307484b155394a01c7021f1d21123efccee4aa/courses/fault101
https://github.com/newaetech/chipwhisperer-jupyter/tree/92307484b155394a01c7021f1d21123efccee4aa/courses/fault101

Delay 1 Delay 2 Exhaustive Sweeping
7 43 12:31h 00:06h + 00:09h
33 19 21:01h 00:18h + 00:10h
4 50 07:46h 00:02h + 00:09h
22 1 16:04h 00:11h + 00:10h

Table 1: Comparing optimized, exhaustive search
(Exhaustive) to our efficient approach (Sweeping)

our cooperative approach, based on the depicted compile-time
delays. The results for applying our sweeping approach are
divided into the time to search the parameters based on PSFs
(left) and their integration (right). It shows that our novel
approach in a MFI context is much more efficient than the
traditional exhaustive search. Here, for every comparison, our
novel approach required approximately two percent of the
time required by the exhaustive search.

6.1.3 Evaluation And Repeatability

For each of the previous MFI parameter searches, multiple
combinations of MFI parameters have been returned, which
have shown to evaluate the Success Function (SF) to success.
Moreover, both parameter search algorithms yielded similar
fault parameters, which exhibit only negligible differences.
When performing an actual attack, an adversary would always
choose the combination of parameters, which has the highest
probability for an attack to succeed. Therefore, each previ-
ously determined successful combination has to be qualified
by means of its reliability and repeatability.
For this, we first define the most promising attack parame-
ters as the parameters, which show the highest success rate
of our attack. To estimate the most promising parameters,
we perform MFI 1,000 times based on different successful
parameter configurations. Once the most promising attack
parameters have been determined, 100,000 MFI attempts are
performed. The experiment returned a success rate of 0.212
and a respective failure rate of 0.788. This means, that by
using our highly precise MFI design about every fifth attempt
of injecting two consecutive faults into our Device under Test
(DuT) in order to overcome the Duplicate Registers simula-
tion succeeded.

6.2 Attacking Successive Instructions

As mentioned in Section 5.2.3, besides skipping the activation
of the Security Attribution Unit (SAU) and the activation of
the Secure Advanced High-Performance Bus (AHB) Con-
troller, an additional privilege escalation is required.
The Fault Targets are two, directly succeeding shift instruc-
tions, which, under normal circumstances, unset the Least
Significant Bit (LSB) of the NS target address.
With the following simulation, we aim to evaluate if immedi-
ately successive instructions, as they are encountered in this

1 #include <stdint.h>
2 uint32_t succeeding_fault_targets(void) {
3 uint32_t a = 0x13;
4 set_trigger() ; // synchronization
5 reset_trigger(); // purposes
6 asm volatile (
7 "lsrs%[address],%[address],#1" "\n\t"
8 "lsls%[address],%[address],#1" "\n\t"
9 : [address]"=r" (a)

10);
11 return a;
12 }

Listing 3: Simulation of our privilege escalation. The inline
assembler performs the shift-out-shift-in operation used by

GCC to clear the LSB of the NS target address

scenario, are best to be attacked by a single, wider fault or by
multiple, narrow ones.

6.2.1 Fault Targets

Our Fault Targets are depicted in lines 10 and 11 of our coop-
erative firmware example in Listing 3. This simulation defines
a variable labeled a and assigns it an odd value of 0x13, i.e.,
the LSB is set. Based on the returned value, an adversary
is able to distinguish which Fault Targets have been hit. If
e.g., only the left shift instruction has been skipped, then the
returned value must be equal to 0x9. Under normal circum-
stances both shift operations are performed, clearing the LSB
and resulting in a returned value of 0x12.

6.2.2 Parameter Search

Throughout this simulation, we assume that the most promis-
ing attack parameters are already known and computed by
using our efficient search approach.

6.2.3 Evaluation And Repeatability

We evaluate performing both, a broad SFI as well as two nar-
row MFI on the previously introduced Fault Targets to demon-
strate how MFI compares to SFI when attempting to attack
instructions that immediately follow another. For this evalua-
tion, 100,000 FI attempts have been performed. Throughout
this experiment, we define the group of invalid results as
these results, where the DuT is either not responding after per-
forming MFI or which cannot be explained by either skipping
of the shift instructions.
Using a single, wider fault in order to fault two successive
shift instructions resulted in a success rate of 24%, whereas
attacking the same instructions using two, narrow faults re-
sulted in a success rate of 15%. Moreover, the group of invalid
results increased by 9%. Hence, with respect to the success
rate it is more reasonable for an adversary to inject a single
fault, utilizing an increased Width, in order to attack the two
successive shift instructions. The complete results are shown
in the Appendix in Table 4.

USENIX Association 32nd USENIX Security Symposium 6247

Brute Force Search Time
Sweeping Search Time
(Search + Integration)

>24h 06:17h + 00:28h
>24h 08:07h + 00:28h
>24h 13:22h + 00:30h

23:40h 02:58h + 00:28h

Table 2: Comparison of exhaustive search (left) to our novel
sweeping approach (right) when searching the parameters of

four voltage faults used to attack the TrustZone-M.

6.3 Attacking The TrustZone-M

In this part, we evaluate our novel approach by attacking
NXP’s implementation of the TZM and all of the additional
countermeasures in a real-world scenario. Throughout this
experiment, the MFI framework’s frequency is specified as
being 20 times higher, than the frequency of the DuT. By
oversampling of our MFI framework w.r.t. the DuT, we gain
additional precision for each of our FI attempts. Note, that it
is possible to increase the success rate by increasing the over-
sampling rate or synchronizing the glitch to the DuT’s clock
signal [44]. This, unfortunately, would also mean introducing
more assumptions.
The firmware has been built based on the unmodified NXP’s
Software Development Kit (SDK) TZM examples. The Fault
Targets have been described in detail throughout Section 5.2.3,
as the activation of the SAU, the activation of the Secure AHB
Controller, the duplicate register for the activation of Secure
AHB Controller and performing privilege escalation.
After all these Fault Targets have been hit during a single,
consecutive execution of the targets firmware, the NS code is
able to arbitrarily access any S and NS resources. In the context
of Trusted Execution Environments (TEEs), this represents
a full compromise, as e.g., any secrets stored within secure
memory may be disclosed and any secure-defined peripheral
may be arbitrarily accessed and controlled from within non-
secure code.
Moreover, up to this point, all parts of our attack have already
been proven feasible and practical, by attacking isolated sim-
ulations.
We are presenting our results, in terms of repeatability and
reliability of our attack, in comparison with the conventional
exhaustive parameter search.

6.3.1 Search For Parameters

The search for parameters is evaluated for a cooperative setup
as well as a non-cooperative setup, in which no PSFs can be
defined.
The results of comparing both parameter searches are depicted
in Table 2.
Four different search passes for the same four Fault Targets
have been performed with a limit of 24 hours.
While the exhaustive approach led in only one of four pa-

rameter searches to a result within the given time limit, our
sweeping approach has returned correct parameters for every
single attempt. Moreover, the fastest exhaustive search has
been shown to be eight times slower, than the corresponding
sweeping approach. The results of the sweeping approach
are again split into the time it took to search the single fault
parameters (left) and the time it took to integrate the respec-
tive parameters (right). It is worth noting, that there is quite
some variance contained in the depicted results, which can be
explained by the non-deterministic behavior of FI, i.e., even
if the parameters are perfectly set, the injected fault can never
guarantee success.
Due to the non-deterministic discovery of fault parameters,
we implemented our parameter searches to restart them-
selves, if either no total success has been observed for a non-
cooperative setup, or not at least one partial success has been
observed for every Fault Target, in a cooperative setup.
Note, that in this attack scenario, it is possible to escalate a
non-cooperative setup to a cooperative by using the parameter
transfer described in Section 4.1.

6.3.2 Evaluation and Repeatability

After conducting the MFI parameter searches, for each setup a
set of sets of fault parameter configurations has been returned,
based on which the SF evaluated to success.
As the parameter found by both search algorithms differ only
negligibly we used the parameters returned by our efficient,
MFI parameter search, in order to determine the most promis-
ing attack parameters. After these parameters are estimated,
these are used to perform 1,000,000 MFI attempts, in order
to compromise the TZM.
Moreover, this evaluation has been performed two times. The
averaged results of both experiments are depicted in Table 3.

Fault Targets Success Rate
SAU 0.451
SAU & AHB CTRL 0.0251
SAU & AHB CTRL & DUPL 0.0023
SAU & AHB CTRL & DUPL & PE 0.0000003

Table 3: Results of performing our MFI attack against NXP’s
TrustZone-M. Results are given for an increasing amount of

consecutive hit Fault Targets in one single execution.

The success rates when injecting exactly one (only disabling
the SAU) up to four (completely disabling TZM) faults based
on the most promising attack parameters are depicted. SAU
is referring to the first Fault Target, i.e., the activation of the
SAU, AHB CTRL is referring to the activation of the Secure
AHB Controller, DUPL is referring to the Duplicate Regis-
ter of the Secure AHB Controller and PE is referring to the
privilege escalation. These results indicate that almost every
second attempt (45.1%) to inject four faults into the DuT is
deactivating the SAU. Moreover, 2.52% of the performed FI

6248 32nd USENIX Security Symposium USENIX Association

attempts successfully disabled the Secure AHB Controller
in addition. An average of 0.23% of FI attempts succeeded
in attacking the activation of the SAU, the activation of the
Secure AHB Controller as well as the Duplicate Register of
the Secure AHB Controller all at once. And finally, 0.0003%
MFI attempts resulted in total success. Conducting such high
amounts of FI attempts may seem excessive at first, however,
performing one million FI attempts took only one and a half
days, translating to one successful attempt in half a day. With
respect to the potential damage this practical attack may cause,
once successful, we consider this attack critical.

6.3.3 µ-Glitch Transferability

We evaluated the end-to-end attack for disabling TZM, both
on cooperative as well as non-cooperative Multiple Voltage
Fault Injection (MVFI) setups, on different target Integrated
Circuits (ICs), namely STMs STM32L5, Atmels SAML11 and
NXPs LPC55S69 and RT6600 Microcontroller Units (MCUs).
In the Appendix in Table 5 we show the attacked chips and
the necessary Fault Targets to achieve disabling TZM per chip.
In addition, we show the time for baseline exhaustive search
(capped at 48h) in contrast to our sweeping approach and the
combined success rate of all glitches combined. RT600 is con-
ceptionally similar to the LPC55S69 and can be attacked using
the same Fault Targets. SAML11 configuration is stored in Non-
Volatile-Memory (NVM) space and either modifying read in-
formation or glitching the bootloader is necessary. In order to
disable the Brownout Detection (BoD) of the STM32L5, which
may interfere with Voltage Fault Injection (VFI), glitching
of the Phase Locked Loop (PLL) configuration is necessary,
in order to run the chip with a clock frequency of ≤ 32MHz
in case the chip is configured to run faster. According to our
evaluation µ-Glitch can successfully attack conceptionally
similar ICs.

7 Potential Countermeasure

Inspired by the insights of our evaluation we propose a po-
tential countermeasure against Multiple Fault Injection (MFI)
attacks.
We propose an Information Level Countermeasures (ILC),
as this kind of countermeasure may also be applied on al-
ready deployed hardware, i.e., no novel hardware revision is
required in order to deploy physical sensors.
By attacking the Duplicate Registers method throughout this
work, we have shown that single-fault injection protections on
the instruction level may be overcome by injecting additional
faults. This is possible due to the fact that the Fault Targets
are located at always the same offsets. Hence, an adversary is
able to conduct a multiple-parameter search and thus form a
reliable attack.
Our concept of randomizing the Duplicate Registers makes
use of random delays, in order to strengthen the Duplicate

Register method against MFI attacks, by removing the possi-
bility of searching for MFI parameters. For this, we propose
the use of a compiler pass, which introduces a compiler at-
tribute that can be used to security critical assignments. As
the random delay is only introduced when the aforementioned
attribute is encountered, the overhead on the computation, in
general, is negligible.
The goal is to generate machine instructions, which force the
processor to stall for a small, random period of time. With
this, a parameter search can not be successfully carried out
as the Offset of the Fault Targets varies on a per-execution
base. Hereby, however, a trade-off is introduced between in-
creasing the parameter search space by introducing a large
delay and the minimization of overhead in processor time
by using a small delay. When conducting our experiments,
the MFI framework’s internal frequency has been chosen to
be up to 20 times higher than that of the Device under Test
(DuT). Here we have observed, that a timing difference of
less than a single DuT’s clock cycle leads to no successes.
Hence we assume that the stall time can be kept low without
compromising security.
As by this method, there is no possibility to conduct a pa-
rameter search, the best possible attack is to inject, random
parameterized faults into the DuT, which leads to the im-
practicability of a MFI attack, by decreasing its success rate
tremendously.
By utilizing this approach to attack two Fault Targets, which
have a random preceding delay of 0-9 cycles, the probability
of injecting two successful glitches is 100 times lower than
without this protection.

8 Discussion

We argue µ-Glitch to be applicable to most Microcontroller
Units (MCUs) with TrustZone-M (TZM), as the adversary
only needs to have access to the power supply of the IC,
no need to supply the DuT‘s clock signal by using oversam-
pling and the TZM setup code of most MCUs is open source
knowledge in form of Software Development Kits (SDKs).
Naturally, µ-Glitch is not limited to conduct attacks against
TZM. Van den Herrewegen et al. [58] used Single Fault In-
jection (SFI) to deactivate debugging protections to exfiltrate
data. In recent MCUs by NXP, the debug interfaces are pro-
tected by duplication-based approaches, therefore, SFI attacks
cannot be used anymore. Hence, in order to overcome the
debug features protection, µ-Glitch Multiple Voltage Fault
Injection (MVFI) approach becomes mandatory.
We also evaluated using µ-Glitch to overcome the mitigating
effects of Brownout Detection (BoD) against Voltage Fault
Injection (VFI). Even though it is intended to be a safety
feature to power down an embedded device whenever the
battery-based voltage supply drops below a certain threshold,
it has also been shown to detect the voltage drops caused by
VFI. In sampling based BoD approaches, the supply voltage

USENIX Association 32nd USENIX Security Symposium 6249

is measured periodically, which is commonly encountered in
embedded devices, as it has a relatively low power consump-
tion. If the BoD sampling frequency is high enough, it may
happen that a voltage fault can be detected. We, therefore,
propose to split a single, wider voltage fault into several, nar-
rower ones exhibiting a similar effect on the target. Based
on this, we were able to overcome a sampling-based BoD
by using two voltage faults, instead of a single fault which
triggered the BOD. Unfortunately, the success rate of using
two narrower glitches instead of one, is lower, as the chance
to find a sweet spot is decreasing which each additional glitch.
Exemplary, the original and the first of the split glitches have
the same offset. The width of the original glitch is 400ns.
A double-fault inheriting a similar experiment outcome is
represented by the two widths of 170ns and 140ns with an
in-between offset of 100ns. A graphic depiction can be seen
in Figure 6.

Figure 6: Oscilloscope recording of the original, wider fault
and its corresponding double-fault representation.

9 Related Work

In the following, we provide a summary of existing Fault
Injection (FI) attacks, attacks on Trusted Execution Environ-
ments (TEEs) as well as FI countermeasures.

Fault Injection Attacks: Several FI attacks have been pro-
posed over the last years, which we utilize in this work. Our
work builds on top of Roth [46], who has attacked several
implementations of the TrustZone-M by injecting a single
voltage fault. The author aimed at hitting Fault Targets, which
set the lower bounds of NS regions, therefore extending the
regions to ultimately access sensitive, secure data. For this
purpose, firmware examples were attacked, which did not
activate the vendor-specific backchecking mechanisms of
TrustZone-M implementations. In contrast to this, we focus
on providing a reliable and repeatable procedure for conduct-
ing Multiple Fault Injection (MFI) attacks, which is able to
circumvent all protections which are enabled by default in
NXP’s Software Development Kit (SDK). Trichina et al. [56]
propose two-fault attacks on protected CRT-RSA implemen-
tations running on an advanced 32-bit ARM Cortex M3 core.
The authors performed two-fault Laser Fault Injection (LFI)
on a protected cryptographic application, as LFI exhibits a
high spatial resolution. Nashimoto et al. [35] combined stack
based Buffer Overflow (BO) attacks with two-fault Clock

Fault Injection (CFI), in order to prevent the BO from being
detected. Colin O’Flynn [40] showed that Voltage Fault Injec-
tion (VFI) may exhibit a high temporal resolution based on his
proposed Crowbar circuit, which we utilize in this work. We
have shown that by using this circuitry, it is further possible
to inject multiple voltage faults within a short period of time.
Bozzato et al. [9] replaced the Crowbar circuit by a Digital
to Analog Converter (DAC). This way, improving VFI by in-
creasing transferability to other hardware, being able to attack
Brownout Detection (BoD) enabled Integrated Circuits (ICs)
and injecting faults based on arbitrary waveforms. While the
authors mention being able to inject multiple faults, they fell
short of showing MFI attacks using their hardware and pro-
vided no evaluation, as they focus in their work on increasing
the reliability and repeatability of Single Fault Injection (SFI).
Timmers et al. [55] performed VFI to corrupt the instruction
decoding stages of the internal processor pipeline, with the
goal of hijacking the control flow by setting the Peripheral
Checker (PC) to predefined addresses stored in general pur-
pose registers. In a later work, Timmers et al. [54] showed
that in an embedded Linux Operating System (OS), the priv-
ileges could be escalated from user to system privileges by
performing VFI. By performing VFI against AMD’s Secure
Processor (SP), Buhren et al. [11] were able to control the key
management and by this, compromise the security of AMD’s
Secure Encrypted Virtualization (SEV). An overview of fault
attacks on embedded devices is provided by Yuce et al. [65].
Werner et al. [62] generate fault models for LFI based on fault
injection simulations.
The first Multiple Clock Fault Injection (MCFI) has been
demonstrated by Blömer et al. [8], attacking two consecutive
instructions during a single execution by directly modify-
ing the clock signal. For this attack to succeed the external
clock signal has to be fed directly into the processing part
of the Device under Test (DuT). However, as of today, most
ICs use Phase Locked Loops (PLLs), which were shown to
gracefully protect against clock glitching. Further, MFI has
been performed by Colombier et al. [15] using a LFI setup.
Due to its sophisticated spatial and timely resolution, opti-
cal fault injection forms a promising candidate for MFI. LFI
setups, however, are quite costly. A single LFI setup is com-
monly encountered in the magnitude of $100.000, whereas
the cost for a multiple LFI setup is even higher. Moreover, in
order to conduct LFI attacks, in general, a much more inva-
sive preprocessing of the DuT is required, in comparison to
VFI. Electromagnetic Fault Injection is commonly not con-
sidered to be used in MFI setups, as the internal capacitor
banks take too much time in order to be recharged, thus, rapid
successfully injected consecutive faults cannot be guaranteed.
Commercial equipment for MFI, e.g., Alphanov’s double
laser fault injection microscope (D-LMS) and Riscure’s VC
Glitcher, are fairly expensive and only shown to conduct Mul-
tiple Laser Fault Injection (MLFI). Devices from NewAE [44]
cannot conduct Multiple Voltage Fault Injection (MVFI) but

6250 32nd USENIX Security Symposium USENIX Association

need a separate trigger for every glitch to be injected.
In contrast, µ-Glitch is capable of reliably performing MVFI
based on low-cost hardware. We aim at attacking setups, in
which commonly only a single, synchronizing trigger signal
can be asserted. To the best of our knowledge, the possibility
of conducting MVFI has not been studied before.
Cryptographic Attacks: Differential Fault Analysis (DFA)
has first been described by Biham and Shamir [7]. It poses a
cryptanalytic attack that exploits computational errors in order
to disclose cryptographic keys. In recent years publications at-
tacking today’s Advanced Encryption Standard (AES) [18,51,
57], Rivest-Shamir-Adleman-Cryptosystem (RSA) [2], Data
Encryption Standard (DES) [64], recent cryptographic Hash
Functions [27, 29] and many more [6, 13, 20, 26] emerged.
Trusted Execution Environment Attacks: In recent years
attacks utilizing different attack vectors against popular TEEs
like ARM’sTrustZone (TZ) as well as Intel’s Software Guard
Extension (SGX) were published.
Tang et al. [53] presented the CLKSCREW attack, which ex-
ploited an on-chip energy regulation mechanism in order to
break the security promises by ARM’s TrustZone. Kenjar et
al. [23] described another software-controlled, but hardware-
based fault injection approach in which the authors were able
to compromise any operating mode of Intel processors by
modifying the frequency and voltage through privileged soft-
ware interfaces. The authors showed that software manage-
ment interfaces can be exploited to undermine the system’s
security. Qui et al. [45] performed a software-based voltage
fault injection by abusing the Dynamic Voltage and Frequency
Scaling (DVFS) techniques for energy efficiency, allowing
them to attack a secure software implementation of AES.
Ryan [47] showed, that ARM’s TZ is susceptible to cache-
based attacks, which exhibit high temporal precision, high
spatial precision and low noise. The author was able to fully
recover a 256-bit private key from Qualcomm’s version of the
hardware-backed keystore. Ning et al. [37] exploited security
vulnerabilities in ARMs software debugging features to ex-
tract sensitive information from TZ. Jang et al. [21] performed
a denial-of-service against SGX, in which the CPU could be
shut down by performing a Rowhammer [34] attack. Lee et
al. [25] found that it is indeed possible to circumvent the hard-
ware protections provided by the SGX design by performing
Return Oriented Programming (ROP) attacks.
Different attack vectors were used in the past to attack TEEs,
including TZ, however, these attack vectors are not suitable
for MVFI and therefore not able to overcome SFI based pro-
tection mechanisms such as utilized by LPC55SXX and RT6XX
Microcontroller Units (MCUs).
Fault Injection Countermeasures: Due to the vast amount
of proposed work in this field, we present an overview in
the Appendix in Table 6, where we list several proposed FI
countermeasures, which are further classified into Informa-
tion Level Countermeasuress (ILCs) [4, 5, 32, 38, 39, 48] and
Hardware Level Countermeasuress (HLCs) [10, 17, 19, 22,

30, 31, 50, 61]. Due to the higher abstraction of ILCs, these
protect against a certain Fault Model, whereas the HLCs are
generally deployed to protect against a certain type of FI. The
last column determines whether or not this countermeasure
is theoretically able to protect from voltage MFI attacks, as
described throughout our work. A check (✓) indicates, that
the respective countermeasure is able to protect from multiple
voltage fault injection, whereas a cross (×) indicates, that it
is not. Regarding the ILCs, these must be directed against
Instruction Skipping in order to protect from our proposed
MFI attack, whereas the HLCs must be deployed in order to
detect VFI.
Moro et al. [32] proposed a duplication based ILC replace-
ment approach for most Thumb-2 instructions. Moreover,
Barry et al. [5] proposed a follow-up ILC, as not every in-
struction could be automatically replaced by the modified Low
Level Virtual Machine (LLVM) based compiler and hence,
required manual analysis.
The authors base their countermeasures on the assumption
that attacking successive instructions using FI is hard. We
showed in Section 6.2 that, in principle, µ-Glitch is able to
attack successive instructions. Therefore, we denote this with
a checkmark in parenthesis in Table 6.
Vosoughi et al. [61] propose a HLC which is able to miti-
gate the effect of VFI on the IC. Naturally, it can also protect
against MFI using VFI, but it depends on specific on-chip
voltage regulators to be present in the IC, which is not present
at all times. Similarly, Singh et al. [50] propose an applica-
tion specific HLC, which has to be adapted to the specific
application to be protected.

10 Conclusion

In this paper, we introduced a novel multiple voltage fault
injection platform, coined µ-Glitch, which is capable of inject-
ing multiple, coordinated voltage faults into arbitrary target
devices, in order to attack multiple fault targets during a single
execution of the target’s firmware.
We proposed and evaluated a novel, efficient parameter search
algorithm for multiple voltage fault injection attacks.
By the hereby introduced attack vector, a novel threat model
emerges, in which the adversary is capable of defeating most
instruction-level countermeasures, as they are mostly imple-
mented to protect from single fault injection attacks.
We have shown, that by using our novel approach a TrustZone-
M implementation can be attacked, in which there are mul-
tiple, interdependent fault targets to overcome, including a
specific fault injection protection.
Finally, we have discussed possible countermeasures to thwart
multiple fault injection attacks.

Acknowledgments The authors would like to thank NXP
Semiconductors Ltd. for their timely and professional commu-
nication following the responsible disclosure of our findings.

USENIX Association 32nd USENIX Security Symposium 6251

References

[1] Atmel. SAM L10/L11 Family Datasheet, 2019.

[2] Christian Aumüller, Peter Bier, Wieland Fischer, Peter
Hofreiter, and J-P Seifert. Fault attacks on rsa with
crt: Concrete results and practical countermeasures. In
International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2002.

[3] Alessandro Barenghi, Guido Bertoni, Emanuele Par-
rinello, and Gerardo Pelosi. Low voltage fault attacks
on the rsa cryptosystem. In 2009 Workshop on Fault Di-
agnosis and Tolerance in Cryptography (FDTC), 2009.

[4] Alessandro Barenghi, Luca Breveglieri, Israel Koren,
Gerardo Pelosi, and Francesco Regazzoni. Counter-
measures against fault attacks on software implemented
aes: Effectiveness and cost. In Proceedings of the 5th
Workshop on Embedded Systems Security, WESS ’10.
Association for Computing Machinery, 2010.

[5] Thierno Barry, Damien Couroussé, and Bruno Robisson.
Compilation of a countermeasure against instruction-
skip fault attacks. In Proceedings of the Third Workshop
on Cryptography and Security in Computing Systems,
CS2 ’16. Association for Computing Machinery, 2016.

[6] Eli Biham, Louis Granboulan, and Phong Q. Nguyen.
Impossible fault analysis of rc4 and differential fault
analysis of rc4. In Henri Gilbert and Helena Handschuh,
editors, Fast Software Encryption. Springer Berlin Hei-
delberg, 2005.

[7] Eli Biham and Adi Shamir. Differential fault analysis
of secret key cryptosystems. In Burton S. Kaliski, edi-
tor, Advances in Cryptology — CRYPTO ’97. Springer
Berlin Heidelberg, 1997.

[8] Johannes Blömer, Ricardo Gomes da Silva, Peter Gün-
ther, Juliane Krämer, and Jean-Pierre Seifert. A practical
second-order fault attack against a real-world pairing
implementation. In 2014 Workshop on Fault Diagnosis
and Tolerance in Cryptography, 2014.

[9] Claudio Bozzato, Riccardo Focardi, and Francesco Pal-
marini. Shaping the glitch: Optimizing voltage fault
injection attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2019(2), 2019.

[10] Jakub Breier, Shivam Bhasin, and Wei He. An elec-
tromagnetic fault injection sensor using hogge phase-
detector. In 2017 18th International Symposium on
Quality Electronic Design (ISQED), 2017.

[11] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels,
and Jean-Pierre Seifert. One glitch to rule them all:
Fault injection attacks against amd’s secure encrypted

virtualization. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’21. Association for Computing Machinery, 2021.

[12] Rafael Boix Carpi, Stjepan Picek, Lejla Batina, Federico
Menarini, Domagoj Jakobovic, and Marin Golub. Glitch
it if you can: Parameter search strategies for success-
ful fault injection. In Aurélien Francillon and Pankaj
Rohatgi, editors, Smart Card Research and Advanced
Applications. Springer International Publishing, 2014.

[13] Hua Chen, Wenling Wu, and Dengguo Feng. Differential
fault analysis on clefia. In Sihan Qing, Hideki Imai, and
Guilin Wang, editors, Information and Communications
Security. Springer Berlin Heidelberg, 2007.

[14] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward
Dean, David Oswald, and Flavio D. Garcia. Voltpillager:
Hardware-based fault injection attacks against intel SGX
enclaves using the SVID voltage scaling interface. In
USENIX Security. USENIX Association, 2021.

[15] Brice Colombier, Paul Grandamme, Julien Vernay, Ém-
ilie Chanavat, Lilian Bossuet, Lucie de Laulanié, and
Bruno Chassagne. Multi-spot laser fault injection setup:
New possibilities for fault injection attacks. In Vincent
Grosso and Thomas Pöppelmann, editors, Smart Card
Research and Advanced Applications. Springer Interna-
tional Publishing, 2022.

[16] Ang Cui and Rick Housley. BADFET: Defeating mod-
ern secure boot using second-order pulsed electromag-
netic fault injection. In 11th USENIX Workshop on Of-
fensive Technologies (WOOT 17). USENIX Association,
2017.

[17] Chinmay Deshpande, Bilgiday Yuce, Leyla Nazhan-
dali, and Patrick Schaumont. Employing dual-
complementary flip-flops to detect emfi attacks. In 2017
Asian Hardware Oriented Security and Trust Symposium
(AsianHOST), 2017.

[18] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo.
Differential fault analysis on a.e.s. In Jianying Zhou,
Moti Yung, and Yongfei Han, editors, Applied Cryptog-
raphy and Network Security. Springer Berlin Heidelberg,
2003.

[19] Wei He, Jakub Breier, Shivam Bhasin, Noriyuki Miura,
and Makoto Nagata. An fpga-compatible pll-based sen-
sor against fault injection attack. In 2017 22nd Asia
and South Pacific Design Automation Conference (ASP-
DAC), 2017.

[20] Michal Hojsík and Bohuslav Rudolf. Differential fault
analysis of trivium. In Kaisa Nyberg, editor, Fast Soft-
ware Encryption. Springer Berlin Heidelberg, 2008.

6252 32nd USENIX Security Symposium USENIX Association

[21] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo
Kim. Sgx-bomb: Locking down the processor via
rowhammer attack. In Proceedings of the 2nd Workshop
on System Software for Trusted Execution, SysTEX’17.
Association for Computing Machinery, 2017.

[22] Raúl Jiménez-Naharro, Fernando Gómez-Bravo,
Jonathan Medina-García, Manuel Sánchez-Raya, and
Juan Antonio Gómez-Galán. A smart sensor for
defending against clock glitching attacks on the I2C
protocol in robotic applications. Sensors (Basel), 17(4),
2017.

[23] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael
Franz, and Ahmad-Reza Sadeghi. V0LTpwn: Attacking
x86 processor integrity from software. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX
Association, 2020.

[24] Christian Kudera, Markus Kammerstetter, Markus Müll-
ner, Daniel Burian, and Wolfgang Kastner. Design and
implementation of a negative voltage fault injection at-
tack prototype. In 2018 IEEE International Workshop on
Physical Attacks and Inspection of Electronics (PAINE),
2018.

[25] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun
Kwak, Yeseul Choi, Changho Choi, Taesoo Kim, Mar-
cus Peinado, and Brent ByungHoon Kang. Hacking
in darkness: Return-oriented programming against se-
cure enclaves. In 26th USENIX Security Symposium
(USENIX Security 17). USENIX Association, 2017.

[26] Wei Li, Dawu Gu, and Juanru Li. Differential fault
analysis on the aria algorithm. Information Sciences,
178(19), 2008.

[27] Pei Luo, Yunsi Fei, Liwei Zhang, and A. Adam Ding.
Differential fault analysis of sha3-224 and sha3-256. In
2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2016.

[28] P. Maistri, R. Leveugle, L. Bossuet, A. Aubert, V. Fis-
cher, B. Robisson, N. Moro, P. Maurine, J.-M. Dutertre,
and M. Lisart. Electromagnetic analysis and fault injec-
tion onto secure circuits. In 2014 22nd International
Conference on Very Large Scale Integration (VLSI-SoC),
2014.

[29] Antun Maldini, Niels Samwel, Stjepan Picek, and Lejla
Batina. Genetic algorithm-based electromagnetic fault
injection. In 2018 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC). IEEE, 2018.

[30] Kohei Matsuda, Sho Tada, Makoto Nagata, Yuichi Ko-
mano, Yang Li, Takeshi Sugawara, Mitsugu Iwamoto,
Kazuo Ohta, Kazuo Sakiyama, and Noriyuki Miura. An

ic-level countermeasure against laser fault injection at-
tack by information leakage sensing based on laser-
induced opto-electric bulk current density. Japanese
Journal of Applied Physics, 59(SG), 2020.

[31] Noriyuki Miura, Zakaria Najm, Wei He, Shivam Bhasin,
Xuan Thuy Ngo, Makoto Nagata, and Jean-Luc Danger.
Pll to the rescue: a novel em fault countermeasure. In
2016 53nd ACM/EDAC/IEEE Design Automation Con-
ference (DAC). IEEE, 2016.

[32] N. Moro, K. Heydemann, E. Encrenaz, and B. Robis-
son. Formal verification of a software countermeasure
against instruction skip attacks. Journal of Crypto-
graphic Engineering, 4(3), 2014.

[33] Nicolas Moro, Amine Dehbaoui, Karine Heydemann,
Bruno Robisson, and Emmanuelle Encrenaz. Electro-
magnetic fault injection: Towards a fault model on a
32-bit microcontroller. In 2013 Workshop on Fault Di-
agnosis and Tolerance in Cryptography, 2013.

[34] Onur Mutlu and Jeremie S. Kim. Rowhammer: A retro-
spective. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(8), 2020.

[35] Shoei Nashimoto, Naofumi Homma, Yu-ichi Hayashi,
Junko Takahashi, Hitoshi Fuji, and Takafumi Aoki.
Buffer overflow attack with multiple fault injection and
a proven countermeasure. Journal of Cryptographic
Engineering, 7(1), 2017.

[36] Shoei Nashimoto, Daisuke Suzuki, Rei Ueno, and Nao-
fumi Homma. Bypassing isolated execution on risc-v
using side-channel-assisted fault-injection and its coun-
termeasure. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2022(1), 2021.

[37] Zhenyu Ning and Fengwei Zhang. Understanding the
security of arm debugging features. In 2019 IEEE Sym-
posium on Security and Privacy (SP), pages 602–619.
IEEE, 2019.

[38] NXP. LPC55S6x/LPC55S2x/LPC552x User manual,
2021. Rev. 2.3.

[39] NXP. UM11147, 2021. Rev. 1.4.

[40] Colin O’Flynn. Fault injection using crowbars on em-
bedded systems. IACR Cryptol. ePrint Arch., 2016,
2016.

[41] Colin O’Flynn. Min()imum failure: EMFI attacks
against USB stacks. In USENIX Workshop on Offensive
Technologies (WOOT). USENIX Association, 2019.

[42] Colin O’Flynn. Bam bam!! on reliability of emfi for in-
situ automotive ecu attacks. Cryptology ePrint Archive,
Report 2020/937, 2020.

USENIX Association 32nd USENIX Security Symposium 6253

[43] Colin O’Flynn. Emfi for safety-critical testing of au-
tomotive systems. Cryptology ePrint Archive, Report
2021/1217, 2021.

[44] Colin O’Flynn and Zhizhang David Chen. Chipwhis-
perer: An open-source platform for hardware embed-
ded security research. In International Workshop on
Constructive Side-Channel Analysis and Secure Design,
pages 243–260. Springer, 2014.

[45] Pengfei Qui, Dongsheng Wang, Yongqiang Lyu, and
Gang Qu. Voltjockey: Abusing the processor voltage
to break arm trustzone. GetMobile: Mobile Comp. and
Comm., 24(2), 2020.

[46] Thomas Roth. TrustZone-M(eh): Breaking ARMv8-M’s
security. CCC, 2019.

[47] Keegan Ryan. Hardware-backed heist: Extracting ecdsa
keys from qualcomm’s trustzone. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19. Association for
Computing Machinery, 2019.

[48] Junichi Sakamoto, Shungo Hayashi, Daisuke Fujimoto,
and Tsutomu Matsumoto. Constructing software coun-
termeasures against instruction manipulation attacks: an
approach based on vulnerability evaluation using fault
simulator. Cluster Computing, 2021.

[49] Bodo Selmke, Florian Hauschild, and Johannes Ober-
maier. Peak clock: Fault injection into pll-based systems
via clock manipulation. In Proceedings of the 3rd ACM
Workshop on Attacks and Solutions in Hardware Secu-
rity Workshop, ASHES’19. Association for Computing
Machinery, 2019.

[50] Arvind Singh, Monodeep Kar, Nikhil Chawla, and
Saibal Mukhopadhyay. Mitigating power supply glitch
based fault attacks with fast all-digital clock modulation
circuit. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2019.

[51] Hadi Soleimany, Nasour Bagheri, Hosein Hadipour,
Prasanna Ravi, Shivam Bhasin, and Sara Mansouri. Prac-
tical multiple persistent faults analysis. Cryptology
ePrint Archive, 2021.

[52] STM. Arm TrustZone features for STM32L5 and
STM32U5 Series, 2021. Rev. 5.

[53] Adrian Tang, Simha Sethumadhavan, and Salvatore
Stolfo. CLKSCREW: Exposing the perils of Security-
Oblivious energy management. In 26th USENIX Se-
curity Symposium (USENIX Security 17), pages 1057–
1074, Vancouver, BC, August 2017. USENIX Associa-
tion.

[54] Niek Timmers and Cristofaro Mune. Escalating priv-
ileges in linux using voltage fault injection. In 2017
Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC), 2017.

[55] Niek Timmers, Albert Spruyt, and Marc Witteman. Con-
trolling pc on arm using fault injection. In 2016 Work-
shop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2016.

[56] Elena Trichina and Roman Korkikyan. Multi fault laser
attacks on protected crt-rsa. In 2010 Workshop on Fault
Diagnosis and Tolerance in Cryptography, 2010.

[57] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh
Ali. Differential fault analysis of the advanced encryp-
tion standard using a single fault. In Claudio A. Ardagna
and Jianying Zhou, editors, Information Security Theory
and Practice. Security and Privacy of Mobile Devices in
Wireless Communication. Springer Berlin Heidelberg,
2011.

[58] Jan Van den Herrewegen, David Oswald, Flavio D Gar-
cia, and Qais Temeiza. Fill your boots: Enhanced em-
bedded bootloader exploits via fault injection and binary
analysis. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 56–81, 2021.

[59] Jasper G.J. van Woudenberg, Marc F. Witteman, and
Federico Menarini. Practical optical fault injection on
secure microcontrollers. In 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography, 2011.

[60] Sebastian Vasile, David Oswald, and Tom Chothia.
Breaking all the things—a systematic survey of
firmware extraction techniques for iot devices. In Begül
Bilgin and Jean-Bernard Fischer, editors, Smart Card
Research and Advanced Applications. Springer Interna-
tional Publishing, 2019.

[61] Ali Vosoughi and Selçuk Köse. Leveraging on-chip
voltage regulators against fault injection attacks. In
Proceedings of the 2019 on Great Lakes Symposium
on VLSI, GLSVLSI ’19. Association for Computing
Machinery, 2019.

[62] Vincent Werner, Laurent Maingault, and Marie-Laure
Potet. An end-to-end approach for multi-fault attack vul-
nerability assessment. In 2020 Workshop on Fault De-
tection and Tolerance in Cryptography (FDTC), 2020.

[63] Nils Wiersma and Ramiro Pareja. Safety != security: On
the resilience of asil-d certified microcontrollers against
fault injection attacks. In 2017 Workshop on Fault Di-
agnosis and Tolerance in Cryptography (FDTC), 2017.

6254 32nd USENIX Security Symposium USENIX Association

[64] Lichao Wu, Gerard Ribera, Noemie Beringuier-Boher,
and Stjepan Picek. A fast characterization method for
semi-invasive fault injection attacks. In Cryptographers’
Track at the RSA Conference. Springer, 2020.

[65] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman.
Fault attacks on secure embedded software: Threats, de-
sign, and evaluation. Journal of Hardware and Systems
Security, 2(2), 2018.

11 Appendix

11.1 Simulation 1

1 enum res_t = {FAILURE , SUCCESS}
2 uint32_t some_register = 0x00000000;
3 uint32_t some_register_DP = 0x00000000;
4 extern uint32_t reg_value;
5

6 res_t experiment_DR(void) {
7 DELAY_1
8 some_register = reg_value;
9 DELAY_2

10 some_register_DP = reg_value;
11 DELAY_3
12

13 // In our setup , we made sure not to
14 // glitch the if-statements
15 if (!some_register && !some_register_DP) {
16 return SUCCESS;
17 }
18 return FAILURE;
19 }

Listing 4: Simulation of Duplicate Registers:
Non-distinguishable Fault Targets

11.2 Simulation 2

1 enum res_t = {FAILURE , FIRST , SECOND , SUCCESS}
2 uint32_t some_register = 0x00000000;
3 uint32_t some_register_DP = 0x00000000;
4 extern uint32_t reg_value;
5

6 res_t experiment_DR(void) {
7 set_trigger() ; // synchronization
8 reset_trigger(); // purposes
9

10 DELAY_1
11 some_register = reg_value;
12 DELAY_2
13 some_register_DP = reg_value;
14 DELAY_3
15

16 // In our setup , we made sure not to
17 // glitch the if-statements
18 if (!some_register && !some_register_DP)
19 return SUCCESS;
20 if (!some_register && some_register_DP)
21 return FIRST;
22 if (some_register && !some_register_DP)
23 return SECOND;
24 else
25 return FAILURE;
26 }

Listing 5: Simulation of Duplicate Registers: Distinguishable
Fault Targets

USENIX Association 32nd USENIX Security Symposium 6255

11.3 Attacking Successive Instructions

#Faults Result Distribution Invalid
None (a=0x12) Only LSLS (a=0x9) Only LSRS (a=0x38) Both (a=0x13)

Single wide fault 0.31 0.09 0.17 0.24 0.19
Two narrow faults 0.17 0.19 0.21 0.15 0.28

Table 4: Distribution of results when simulating the privilege escalation for either a single, wider fault or two, narrow ones to be
injected in order to attack directly successive instructions.

11.4 Transferability

Chip FT1 FT2 FT3 FT4
Exhaustive

Search
Sweeping

Search Successrate

LPC55SXX SAU Secure AHB CTRL DR BXNS >48h 8.15h 0.0000003
RT6XX SAU Secure AHB CTRL DR BXNS >48h 8.34h 0.0000002
SAML11 SAU Bootloader* - BXNS >48h 4h 0.0002566
STM32L5 SAU Gobal TZ Configuration - BXNS >48h 47h 0.0034000

*TZ Configuration stored in Non-Volatile-Memory (NVM), which is loaded by bootloader
Table 5: Evaluation of Multiple Voltage Fault Injection (MVFI) attacks on the TrustZone-M (TZM) implementation of different

chips and the Fault Targets to be hit.

11.5 Countermeasures

Reference ILC HLC Fault Model / FI Method Protects against VMFI
Duplicate Registers [38, 39] × Instruction Skipping ×

Barenghi et al. [4] × Instruction Skipping ×
Sakamoto et al. [48] × Instruction Manipulation ×

Moro et al. [32] × Instruction Skipping (✓)
Barry et al. [5] × Instruction Skipping (✓)

Matsuda et al. [30] × Laser Fault Injection (LFI) ×
Wei et al. [19] × LFI ×

Breier et al. [10] × Electromagnetic Fault Injection (EMFI) ×
Deshpande et al. [17] × EMFI ×

Miura et al. [31] × EMFI ×
Jimenez-Naharro et al. [22] × Clock Fault Injection (CFI) ×

Vosoughi et al. [61] × Voltage Fault Injection (VFI) ✓
Singh et al. [50] × VFI ✓*

*Application specific
Table 6: List of general Information Level Countermeasuress (ILCs) and Hardware Level Countermeasuress (HLCs) and their

capability to protecting against voltage Multiple Fault Injection (MFI) attacks

6256 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Voltage Fault Injection

	Adversary Model
	u-Glitch Design
	Transforming Non-Cooperative Setups

	u-Glitch Attack on TrustZone-M
	TrustZone-M Background
	Attack Internals
	NXP's Duplicate Register
	Interdependency of Protections
	Fault Targets

	u-Glitch Hardware Framework
	Multiple Fault Injection Hardware

	Evaluation
	Attacking Duplicate Registers
	Fault Targets
	Parameter Search
	Evaluation And Repeatability

	Attacking Successive Instructions
	Fault Targets
	Parameter Search
	Evaluation And Repeatability

	Attacking The TrustZone-M
	Search For Parameters
	Evaluation and Repeatability
	u-Glitch Transferability

	Potential Countermeasure
	Discussion
	Related Work
	Conclusion
	Appendix
	Simulation 1
	Simulation 2
	Attacking Successive Instructions
	Transferability
	Countermeasures

