é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

ARGUS: Context-Based Detection

of Stealthy loT Infiltration Attacks

Phillip Rieger, Marco Chilese, Reham Mohamed, Markus Miettinen,
Hossein Fereidooni, and Ahmad-Reza Sadeghi, Technical University of Darmstadt

https://www.usenix.org/conference/usenixsecurity23/presentation/rieger

This paper is included in the Proceedings of the
32nd USENIX Security Symposium.
August 9-11, 2023 » Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium
is sponsored by USENIX.

I
+ » e - = =
. JEEEES o -
R W E »

ARGUS: Context-Based Detection of Stealthy IoT Infiltration Attacks

Phillip Rieger

Markus Miettinen

Marco Chilese

Hossein Fereidooni

Reham Mohamed

Ahmad-Reza Sadeghi

Technical University of Darmstadt

Abstract

IoT application domains, device diversity and connectivity
are rapidly growing. IoT devices control various functions in
smart homes and buildings, smart cities, and smart factories,
making these devices an attractive target for attackers. On
the other hand, the large variability of different application
scenarios and inherent heterogeneity of devices make it very
challenging to reliably detect abnormal IoT device behav-
iors and distinguish these from benign behaviors. Existing
approaches for detecting attacks are mostly limited to attacks
directly compromising individual IoT devices, or, require pre-
defined detection policies. They cannot detect attacks that
utilize the control plane of the [oT system to trigger actions in
an unintended/malicious context, e.g., opening a smart lock
while the smart home residents are absent.

In this paper, we tackle this problem and propose ARGUS,
the first self-learning intrusion detection system for detecting
contextual attacks on 1oT environments, in which the attacker
maliciously invokes IoT device actions to reach its goals.
ARGUS monitors the contextual setting based on the state and
actions of IoT devices in the environment. An unsupervised
Deep Neural Network (DNN) is used for modeling the typical
contextual device behavior and detecting actions taking place
in abnormal contextual settings. This unsupervised approach
ensures that ARGUS is not restricted to detecting previously
known attacks but is also able to detect new attacks. We
evaluated ARGUS on heterogeneous real-world smart-home
settings and achieve at least an F1-Score of 99.64% for each
setup, with a false positive rate (FPR) of at most 0.03%.

1 Introduction

IoT devices are becoming an integral part of modern life in
many application domains like smart homes, smart buildings,
smart city infrastructure, and smart factories. Increasingly
IoT devices are also providing access to rich contextual in-
formation, making it possible to realize intelligent ambient
environments in which whole systems of interconnected IoT

devices are controlled in a coordinated and adaptive way. For
instance, IoT devices can sense data about the movements
and behavior of smart home users and automatically adapt
lighting, heating, or air conditioning settings accordingly.

In 2020, more than 11.3 billion IoT devices were deployed

in smart homes and more than 27 billion devices are expected
for 2025 [8]. In the US, 23% of all broadband households
have already 3 or more connected devices [46] and one can
expect this number to increase since more and more functions
will be controlled by IoT devices.
Attacks on IoT Systems. The continuously growing number
and diversity of IoT devices from different device manufactur-
ers enlarges the potential attack surface in many IoT networks.
While different approaches have been proposed to detect at-
tacks that directly compromise IoT devices, e.g., through IoT
malware [32,36,40], more stealthy attacks compromising the
contextual integrity [13] of IoT networks by misusing the
control plane of 10T devices, i.e., local and remote systems
and applications like vendor-provided smartphone apps or
cloud services that are used to control the IoT devices, have
not been sufficiently addressed yet.

Detecting attacks on contextual integrity is highly challeng-
ing. Since both, benign actions and contextual attacks, use
regular control commands for triggering legitimate actions
and also the network traffic does not necessarily differ, benign
and attack-actions are as such indistinguishable. The only
difference between them is the context of their invocations,
identified through the environmental factors and stages of the
other devices in the smart-home. Therefore the attack-actions
are invoked in a situation, where the user does not desire it.

For instance, an attacker who infiltrated the vendor’s cloud
service, e.g., due to weak credentials, could instruct a smart
lock in the apartment of the victim user to open the door
while the user is absent so that the attacker can then break
into the user’s home. The attacker could also compromise
the safety of a smart home by sending a command to turn on
the smart stove, causing a potential fire hazard. Also other,
non-intentional device or system failures may compromise
the safety of the target environment, e.g., if the [oT-controlled

USENIX Association

32nd USENIX Security Symposium 4301

heating system fails and turns off completely while the user is
on vacation, such that the indoor temperature falls below the
freezing point. Unlocking the door, turning off the heating,
or, turning on the stove, considered individually, are perfectly
normal actions. Consequently, if the attacker uses the control
plane to trigger these actions, the related commands look like
perfectly benign commands. Since the commands are sent in
these examples by the vendor-specific cloud platform, the net-
work traffic does not differ from the traffic of benign actions.
Therefore, in order to detect such attacks, also the context of
actions that IoT devices undertake needs to be considered.
Existing Defenses. Existing approaches for IoT intrusion
detection systems often focus on analyzing the network traf-
fic [24,36,37]. However, these approaches cannot detect con-
textual attacks, as the network traffic of attack commands is
indistinguishable from benign commands. The remaining ap-
proaches that consider contextual information fall into differ-
ent categories. The most relevant categories are: 1) Validation
of Sensor Values, 2) Policy Enforcement (either defined rules
or dynamically through graph representations), and 3) sys-
tems for Contextual Anomaly Detection. The systems in the
first category [9,35,49,50] often focus on detecting anomalies
only with regard to a specific sensor. This enables them to
detect wrong measured sensor values, but making them fail
to recognize abnormal physical system states. For example,
if the door of an apartment is physically opened during the
users’ absence, then the values of the sensors are correct when
indicating this, although opening the door while nobody is at
home should be considered anomalous.

Approaches in the second category use fixed policies
[15, 20, 25, 33, 47, 48] that are often determined by non-
dynamic processes. A user must either extract these policies
from the source code/description of apps that control IoT
devices, ignoring the actual user behavior, or they must be
manually defined by the users, which is inconvenient.

Existing approaches that fall into the third category by train-
ing anomaly detection modules based on captured training
data [10,26,41—43] also suffer from the requirement of seman-
tic information about the IoT devices [26], being restricted to
having example data for the attacks [43], to analyzing only the
commands [10], or cannot model the relationships between
the individual devices accurately [41,42].

An autonomous approach that monitors the context of the
IoT devices without requiring access to source code is there-
fore needed. If the attack is detected in time, the user can take
countermeasures in time to mitigate the attack, e.g., by calling
the police if the door lock is opened while she is absent.
Our Approach. In this paper, we propose ARGUS, a novel
approach for detecting contextual attacks against IoT net-
works, i.e., attacks which perform benign actions in a wrong
context. ARGUS is a complementary solution augmenting
existing network traffic monitoring-based intrusion detection
approaches that focus on detecting direct attacks on [oT de-
vices (e.g., [oT malware attacks) but cannot detect contextual

attacks utilizing the control plane. To detect such stealthy,
contextual attacks, ARGUS is inspired by the notion of con-
textual integrity [13] and makes use of the observation that
the acceptability and permissibility of an action are highly de-
pendent on the contextual setting in which the action is taking
place. It models the context in terms of events, user actions,
device actions, and triggered automation rules to overcome
the limitation of network-traffic-based approaches. Another
challenge that ARGUS addresses is that what is considered
"normal" behavior is highly dependent on individual networks
and users, preventing the use of simple static policies for dis-
tinguishing between malicious and benign actions. To address
this challenge, ARGUS trains a Deep Neural Network (DNN)
for capturing the interdependence between contextual factors
and events and device actions. With the help of the trained
DNN, ARGUS evaluates the actions of IoT devices in the
network and determines for each action an anomaly score to
detect anomalous situations in which an invoked action is not
consistent with the contextual setting in which it is occurring.
Our contributions are as follows:

* We present ARGUS, a context-based intrusion detection
framework for IoT networks capable of detecting IoT
infiltration attacks in which the adversary compromises
the control plane of the network, e.g., cloud servers or
mobile apps, to stealthily manipulate the behavior of de-
vices to achieve malicious goals. Thus, ARGUS detects
contextual attacks where the individual device actions
are normal but are performed in a wrong context (§3.1).

* We develop a dynamic tuning scheme for the classifica-
tion boundary of events’ anomaly scores that automati-
cally adapts to different setups (§4.3).

* We collect and provide the first real-world dataset, captur-
ing the behavior of different smart-homes to be utilized
by research community for conducting future research
in this area' (§5.1).

* We extensively evaluate ARGUS on the collected real-
world dataset, consisting of 5 heterogeneous smart-home
setups (§5.2).

2 Problem Setting

In this section, we first briefly elaborate on recent IoT attacks
and then explain our system model and design to mitigate
such attacks. Afterward, we describe the contextual threat
model and challenges that ARGUS is designed to solve.

2.1 Recent IoT Attacks

In the course of IoT market proliferation, an increasing num-
ber of attacks on IoT devices have been reported [38]. Some
prominent attacks were related to Mirai botnet [11] and its

Thttps://github.com/TRUST-TUDa/argus-data

4302 32nd USENIX Security Symposium

USENIX Association

https://github.com/TRUST-TUDa/argus-data

e

loT Vendor
Cloud Services

Figure 1: ARGUS system model

successors [29], where a massive number of compromised
IoT devices was used to stage one of the largest DDoS attacks
ever recorded on the internet. However, recently other attacks
have emerged that specifically target functions controlled by
IoT devices, for instance, a botnet of IoT devices was able
to effectively incapacitate the heating system of a large resi-
dential building while the temperature outside was far below
freezing [22]. Obviously, such attacks could have even more
damaging consequences, if instead of a heating system, e.g.,
vital devices in a hospital would be targeted.

These examples demonstrate the need for effective coun-
termeasures against attacks targeting the control plane of
IoT networks, i.e., the systems, protocols, and mechanisms
controlling the functionality of the IoT devices.

2.2 System and Context Model

Our system model, shown in Fig. 1, considers a heterogeneous
IoT network consisting of different IoT devices controlling
various functions related to their ambient environment and
measuring different parameters of the environment and their
operational context. Some of the IoT devices may be associ-
ated with vendor-specific IoT cloud services and may utilize
associated mobile applications for allowing the user to re-
motely control these devices. All devices are connected to
the local network, which typically also provides access to the
internet via an access gateway. Devices connect to the local
network using Ethernet or WiFi, or, a specific hub device pro-
viding IP-connectivity for devices using wireless proximity
protocols like Bluetooth, ZigBee, or Z-Wave.

Via the internet, the IoT devices are connected to the con-
trol plane, consisting of all local and remote systems and
applications that are used to legitimately control the IoT de-
vices. In the rest of the paper, we assume that the attacker
compromises one of these entities (cf. §2.3).

An example of such a setup is shown in Fig. 1. Here, the
smart-home consists of a light-bulb (connected through WiFi),
a smart-lock (connected through Bluetooth), an IP-Camera
(connected through LAN), and a smart thermometer (con-
nected through ZigBee via a hub). Each device uses a different
cloud platform and the user controls them via vendor-specific
applications on its mobile phone. The cloud platforms and
the mobile applications represent here the control plane of the

setup. The goal of ARGUS is to monitor the actions taken by
individual IoT devices, e.g., turning on the light or unlocking
the door, and notify the user in case it detects device actions
that are not consistent with the current contextual setting.
The main focus of ARGUS are contextual attacks where
the attacker uses benign functions of IoT devices triggered in
incorrect contextual settings to stage attacks for achieving its
attack goals. For detecting such attacks, we model the context
of the IoT network in terms of a number of context features
characterizing the system’s contextual state. The considered
contextual features can be roughly classified into three main
categories: 1) Ambient and temporal features describing the
environment (noise level, luminosity, humidity, temperature,
time of the day, etc.), 2) Features indicating the context of
the user (asleep/awake, present/absent, etc.), 3) Device states
(device state changes, triggered automation rules, event notifi-
cations, device alarms, etc.).
The context features can be automatically harvested from
the monitored IoT system using appropriate APIs of individ-
ual IoT devices, their associated cloud services, and possible
home automation systems installed in the user’s network. As
described in more detail in §3, ARGUS aggregates these con-
textual factors and feeds them to a machine learning algorithm
used to profile the contextual state of the local IoT setup and
perform anomaly detection.

2.3 Adversary Model

We consider an adversary A that compromises a part of the
IoT control plane to trigger normal-looking actions on the IoT
devices but in the wrong context. Therefore, the legitimate
user does not want these actions to be executed. Note that for
staging the attacks A4 does not need to actually compromise
the targeted IoT devices and execute malicious code locally
on the IoT device itself. It is sufficient to abuse the com-
promised control plane to invoke commands. The invoked
commands look, when considering them individually, benign
and might, in another context, be also invoked by the user
itself. Therefore, only the context of invocation allows to
distinguish benign actions and attacks.

For compromising the control plane, there exist a number
of attack vectors, e.g., when the IoT device or the related cloud
service use insufficient authentication (weak, default [3], or
even missing passwords [5]), or a malware placed on the
smartphone of the user targeting specific IoT apps.

An example of a contextual attack is shown in Fig. 1. 4
compromises an app on the user’s mobile phone, which is part
of the control plane and uses it to post a control command to
the smart lock, causing it to open the door while the user is
asleep or not at home. In general, unlocking the door using
the mobile phone is a benign event, which is also invoked by
the user. However, the normal context for such actions would
be, e.g., that the lock opens when the user is returning home
and approaching the door. The fact that the user is asleep, or,

USENIX Association

32nd USENIX Security Symposium 4303

Status

Update
—

Processed
Events

:((.tn)l

Device
Monitoring

ARGUS

@]

Malicious
Event

Anomaly
Score

a

Anomalous
Score
Classification

Benign
Event

User Behavior
Recognition

Figure 2: High-Level Overview of the components of ARGUS

absent from home clearly represents an abnormal context for
the smart lock action of opening the door.

The motivation of 4 for the attack is to invade the users’
privacy, cause financial damages to the user, or harm the user
in some other way.

However, we assume that 4 neither compromises the actual
IoT devices nor ARGUS, as we will elaborate in our trust
model (cf. §3.2).

2.4 Requirements and Challenges

For detecting contextual attacks in realistic real-world
settings in an effective and user-friendly manner, the ARGUS
system should satisfy the following requirements:

R1 Fast detection: Since contextual attacks can potentially
lead to significant physical damages or monetary loss to
the user, attacks must be detected in near real-time when
new incoming events take place in the system in order
to allow sufficient reaction time for taking appropriate
countermeasures.

R2 Cause identification: The system must be able to identify
the device or event that is causing an alarm to be triggered.
This is necessary to allow the user to understand what the
root cause is and choose appropriate countermeasures to
mitigate the attack.

R3 Minimizing false alarms: The system must not generate
many false alarms to ensure that the user is not overwhelmed
with false alarm notifications. Otherwise, the user will likely
start ignoring incoming alerts, or, disable the protection
system altogether to avoid unnecessary inconveniences.

R4 Autonomous operation: The system must run with
minimal configuration input from the user. Users should
be required to perform only the basic configurations while
the system should take care of training and applying the
necessary contextual models for attack detection. Otherwise,
the system will not be practical as users are not likely to
have sufficient expertise and be willing to spend considerable
effort in configuring the system.

To cater to the above requirements, the system must thus solve
the following technical challenges:

C1 Detecting attacks consisting of benign actions: As dis-
cussed in §2.2, contextual attacks constitute situations, in
which the adversary triggers actions in wrong contextual sit-
uations where the actions themselves represent legitimate
benign actions of the device. The main challenge is how one
can detect an attack consisting of benign actions? Some ex-

isting approaches monitor the network traffic of IoT devices
to detect known attack patterns, or, deviating traffic patterns
caused by potential attacks [24,28,32,36,37,40]. In the setting
of contextual attacks, these approaches are, however, not appli-
cable, as the traffic patterns used to stage the attack represent
in essence 'benign’ operations of the devices.

ARGUS seeks to resolve this challenge by utilizing a context
model detailed in §4 that explicitly links device actions with
the contextual setting they take place in. This allows the de-
tection model to enforce contextual integrity by learning what
sequences of events are benign, normal event sequences, and
what represent potential attacks. This also allows to detect
attacks immediately when they occur (R1) and to specifically
indicate, which particular action it was that triggered detec-
tion, thus helping in identifying what device action caused a
potential alarm (R2).

C2 Autonomous defense personalization: For minimizing
the number of false alarms (R3), the detection system must
be tailored to the local IoT set-up and personalized to con-
sider personal preferences and habits of users. The challenge
here is, how this can be done without requiring extensive
manual configuration of enforcement policies to enable au-
tonomous operation of the system (R4)? Earlier systems ad-
dressing contextual attacks heavily depend on explicit input
from the user to define policies determining permissible and
undesired IoT device actions in particular contextual situa-
tions [16,23,28,44]. Such approaches are unlikely to work
in general in real-life settings, since regular IoT users are
very unlikely to have the required experience or motivation
to spend a considerable amount of time and effort in setting
up secure and effective security policies for their [oT devices
that sufficiently accurately match their IoT set-up and per-
sonal preferences. ARGUS seeks to tackle this challenge by
replacing pre-specified static policies by a trained detection
model that can be trained requiring only minimal explicit
inputs from users.

3 System Design

In the following, we provide a high-level overview of
ARGUS, the first context-based IoT intrusion detection frame-
work that monitors connected IoT devices together with their
context to detect abuse. ARGUS uses an anomaly detection
approach that compares newly captured events against the
modeled behavior to detect anomalous actions (e.g., unseen
attacks). In §3.2 we elaborate on the considered trust model
and security assumptions.

4304 32nd USENIX Security Symposium

USENIX Association

3.1 High-Level Overview

A high-level overview of ARGUS is depicted in Fig. 2. It
involves the following entities: Device Monitoring, Context
Modeling, and Anomaly Score Classification components to
monitor the actions of the IoT devices and detect anomalous
behavior. In the following, we outline the role of each compo-
nent. Details for each component are discussed in §4.
Device Monitoring. The monitoring component collects the
status updates and event notifications from the observed loT
devices and preprocesses them for the following components.
For managing the different APIs of different IoT ecosystems,
ARGUS makes use of a home automation platform that con-
nects to the individual APIs of the various IoT devices in-
stalled in the system.

Context Modeling. This component utilizes an Auto-
Encoder (AE) architecture [14] which is an unsupervised
DNN approach, since it uses only benign data for training.
The AE predicts anomaly scores for each new incoming event
that is captured by the Device Monitoring component. The
score indicates the similarity of the captured events with the
modeled expected behavior.

Anomaly Score Classification. The final component of
ARGUS uses a dynamically calculated threshold as classi-
fication boundary to discriminate each event based on its
anomaly score as benign or malicious. The threshold is based
on the anomaly scores of the previous day as well as the pre-
vious threshold. An event is considered to be an attack, if the
anomaly score is higher than the threshold.

3.2 Security and Trust Assumptions

We make following assumptions with regard to the capabili-
ties of the adversary A4 and the trusted system components:

» Aligned with existing work ARGUS considers only at-
tacks that compromise the control plane of the IoT net-
work but not direct attacks against the IoT devices them-
selves [33]. This is because there exists a large body of
work focusing on detecting direct attacks against IoT
devices [24,28,32,36,37,40]. ARGUS should thus be
seen as a complementary approach augmenting these de-
fenses by providing the ability to detect also contextual
attacks targeting the control plane. Consequently, since
A cannot compromise the IoT devices, e.g., to run code
locally, it also cannot suppress or fake status updates. It
also cannot utilize IoT devices to impersonate other IoT
devices [27,42], as this would require compromising the
utilized IoT devices first.

» Aligned with previous work [16,47], we assume the indi-
vidual components of ARGUS to be trusted. While dur-
ing the development of IoT devices there is less focus on
security considerations, ARGUS is specifically designed
to increase the security, such that security experts are
involved in its implementation and also it is reasonable

to expect the system to be hardened for security. Because
of the focus on security considerations during the imple-
mentation and the limited set of functions, we assume
that 4 cannot compromise the components of ARGUS.

* Aligned with previous work [26,36], we assume the local
IoT setup to be not compromised during training time.

4 ARGUS

In the following we describe the individual components of
ARGUS (Device Monitoring, Context Modeling, Anomaly
Score Classification) in detail.

4.1 Device Monitoring

The Device Monitoring component collects status updates
from the individual IoT devices, allowing ARGUS to also con-
sider the context of an invoked action to determine whether
the action is benign (addressing C1). A challenge here is the
very heterogeneous IoT device landscape. Different devices
from different manufacturers use different protocols, are con-
nected to different cloud platforms and mobile applications,
and might even use different communication technologies.
For example, one device might use WiFi to connect to the
local network while other devices might use ZigBee and must
use a dedicated ZigBee hub device as a gateway to connect to
the local network. For these reasons, most existing intrusion
detection systems (IDS) consider only the LAN and WiFi
traffic but do not consider other wireless communication pro-
tocols [24,36,37].

The Device Monitoring component of ARGUS addresses
this challenge by making use of a home automation system.
A number of such systems that integrate various [oT devices
and allow to control them in one central place have been de-
veloped in the past [1, 2,4, 6]. While some manufacturers
might put less focus on security aspects, an easy integration
and access is vital for deployment and user acceptance of
IoT devices creating a strong motivation for manufactuers to
allow a simple integration into existing HAPs. The Device
Monitoring of ARGUS exploits this by utilizing the automa-
tion system for the integration of the devices, maintaining the
adapters to use the APIs of the different [oT ecosystems, and

Table 1: Model Hyperparameters

Variable Setting
Encoder Layer Type [GRU, GRU]
Decoder Layer Type [GRU, GRU]
Encoder Hidden Units [GRU:256, GRU:64]
Decoder Hidden Units [GRU:64, GRU:256]
Optimizer Adam

Loss Function MSE
Learning Rate Decaying from 1073 to 1076
Dropout Value 0.3

Epochs Max 35000
Batch Size 64

USENIX Association

32nd USENIX Security Symposium 4305

collecting the events from IoT devices of different vendors
and technologies. This allows ARGUS to use all available
devices for monitoring the context.

When a device changes its status, the device reports this
status update to the home automation system. The remain-
ing part of the Device Monitoring component then records
the status update, parses the status if necessary to ensure a
standard data format, adds the new event to the sequence of
previous events, orders all events by their occurrence time,
and forwards them to the Context Modeling component.

4.2 Context Modeling

In order to distinguish between a normal scenario and a sus-
picious event in view of the usual user and system behavior,
the Context Modeling component of ARGUS models the
expected behavior and its context based on the previously
collected training data. In the following subsections, we will
describe the data preprocessing as well as the architecture of
the Deep Neural Network (DNN) that is used for modeling
the user’s expected behavior.

4.2.1 Data Preprocessing
The data preprocessing is performed in the following steps:

1. Parsing log data: The captured events are parsed in order
to store the information about the devices’ and sensors’
status update events. For the ease of presentation, in the
following device states refer to the states of the individ-
ual IoT devices as well as the captured values of the
individual sensors.

2. States’ value mapping: In order to deal with the multi-
tude of devices’ states and for facilitating the subsequent
phase of ML, all device states are mapped into numeric
values in a restricted range. Devices that have only a
limited or nominal set of states (e.g., "on" and "off")
are mapped in range [0, 1]. Each observed state is first
mapped to a cardinal number state;;, which is then nor-
malized corresponding to:

i:m'smeim (1)
where S; is the state i in the set of states for that de-
vice, |states| is the set of all states, and state;,, is the
cardinal number of that state in the set. The state S is
reserved for new values that were not observed during
the training phase. Continuous values (e.g., temperature
and humidity values) are mapped to 10 values in range
[0, 1] corresponding to [state;,, State,,q,|. The interval r;
for the values that are mapped to value i/10 is given by :
.Smax — Smin

ri = |Smin+i——F——, Smin +

Smax - Smin .
_— 1
10 (i+1)

10
@

where Spax|min 18 the max or min value of the states’
set of that device, and i € {0,...,9} is the numerical
value of each bucket of the new mapping, reserving Sy
for future unseen values.

3. Event chain construction: For each moment in time of the
recorded events, the state of each device in the system
is reconstructed from the status updates, for having a
complete view of the system at every moment in time.
The resulting chain is characterized by a list of events:
[eventy, eventy, ..., event,] where

event; = [Stateqeyice, , Statedevice; » - - - » Statedevice,,) (3)

in a particular moment in time i, where eventy is the first
event recorded and event,, is the last one.

4. Sequence building: The event chain is converted into
event windows of size /. Therefore, the chain is split
accordingly in groups of size / for producing feature
vectors with shape (I, Ngeyices)-

4.2.2 Deep Learning Model

ARGUS models the users’ normal behaviors and the con-
text to distinguish between abnormal and normal behav-
iors by using an Auto-Encoders (AE) architecture [14] for
the Deep Neural Network (DNN). AEs are widely used in
anomaly detection tasks [18, 34, 52]. They consist of two
parts, an Encoder and a Decoder. We are using an under-
complete AE, so the size of information decreases layer
by layer in the Encoder until a "bottleneck" where infor-
mation reaches the point where the model has extracted
all the hidden patterns in data (information at this stage
is known as "encoded data"). From this point on, the in-
formation will be reconstructed by the Decoder, expanding
it layer by layer, to reproduce the input data. Finally, the
amount of error made in the reconstruction is measured by
using the mean squared error (MSE). The reconstruction
error of the AE is used as the anomaly score of an event.

Since the kind of data we are dealing with has a temporal
structure we have designed an undercomplete AE made of
recurrent unit layers, in particular, based on Gated Recurrent
Units (GRU) [19]. The choice of using GRU layers is guided
by the fact that we need to be able to learn latent patterns in
temporal context for being able to recognize user’s behavior in
benign scenarios. This enables ARGUS to learn even desired
random behavior, e.g., randomly turning on/off lights during
specific times.

Encoder and Decoder are made of two recurrent layers each
one, respectively with decreasing and increasing number of
hidden units. The architecture of our AE model is depicted in
Fig. 3. The hyperparameters are shown in Tab. 1.

The training task concerns reconstructing input data. To do so,
the model learns the latent patterns and hidden representation

4306 32nd USENIX Security Symposium

USENIX Association

b

T
GRU |++[GRU)4+ ... — [GRU
' .

Fixed length encoding

of the input data

GRU [—| GRU |— =+ —| GRU |-~

| i
[propout] 1 [propout] i [propout]
I i
| i

F—

XYerxl
—_—
|

[propout] [propout| [propout] Decoder Network

GRU [—| GRU |— ---—| GRU

! 1 !

Xy X, X,
Encoder Network

Figure 3: ARGUS Auto-Encoder (AE) architecture

of data, i.e., learning the user’s behavior. The AE architec-
ture allows to use only benign data for training the DNN
such that the model at end of the process will only be able
to reliably reconstruct the benign data (i.e., benign scenar-
i0s), while abnormal data, i.e., suspicious events, cannot be
encoded effectively (resulting in a larger reconstruction error)
since they are not exposed to the model during the training. A
large reconstruction error that exceeds a threshold allows the
ARGUS system to recognize an event as malicious.

4.3 Anomaly Score Classification

The Anomaly Score Classification uses the anomaly scores,
i.e., the reconstruction errors, which were predicted by the
Context Modeling component to determine whether the
given status update is benign or malicious. To discriminate
these values, a threshold 7 is determined dynamically based
on the previously observed anomaly scores and used as
classification boundary. An event is classified as benign iff its
reconstructions error is smaller or equal to 7, otherwise an
alarm is raised.

For calculating the threshold 7; that is used on day d + 1, for
each previous day d* < d a so-called threshold candidate Cy-
is calculated:

Cg- =max (Eg«) +B- (max (Eg«) —min (Eg)) (4)

where E;+ is the set of reconstruction errors of all events
that were collected on day d* and P represents the security
level. To prevent that exceptional high reconstruction errors
significantly affect the threshold, a momentum [31] is used to
combine C; with the previous threshold 7;_;. The threshold
T; is then given by:

Co d=0 ©)

{(X'le +(1-0)-C; d>0
T; =

where o is the aging factor that determines the impact of
the previous threshold. The higher a is, the more impact the
previous threshold has.

Since ARGUS captures the events and calculates the anomaly
score without any delay, ARGUS fulfills by design R1 (Fast

detection). As an anomaly score is determined for every new
event, it is possible to identify the reason of the anomaly by
presenting the last event as well as a short list of preceding
events to the user such that ARGUS also fulfills R2.

4.4 Implementation

In the following, we describe the implementation details of
the evaluation of ARGUS in §5. Further, we define the values
for the parameters of ARGUS, such that the only adaption
that users need to make is the decision, which devices shall
be monitored. Therefore, ARGUS fulfills R4 (Autonomous
operation).

Device Monitoring. For the monitoring, ARGUS utilizes a
home automation platform (HAP) that connects different de-
vices and collects their states. In addition, the user can specify
and create specific automation rules or configurations for his
own network. Using a HAP enables ARGUS to monitor a
large variety of devices from different manufacturers and
ecosystems for observing the context. The HAP keeps track
of the status of each connected device or sensor in the local
home network. Thus, it enables ARGUS to monitor the con-
textual features automatically, without requiring it to set any
feature manually.

For the experiments, we used Home Assistant, an open-
source platform that supports at the time of writing more than
1000 devices and also protocols like MQTT [4]. Users can
also control the connected devices from outside the network,
e.g., via a mobile app.

A further advantage of the remote access to the HAP is
that it allows a flexible deployment of ARGUS. Due to the
separation of individual components, the Context Modeling
and Anomaly Score Classification can be placed outside the
user’s home, e.g., on some trusted cloud servers. Then, only
the Device Monitoring needs to be placed inside the user’s
network, such that this component can be installed, e.g., on a
low-performance device. Alternatively, Especially in the case
of privacy concerns of the user, the design and implementation
of ARGUS also allow a completely local deployment, e.g.,
on a low-performance device like a RaspberryPi (cf. App.B).
By this, ARGUS also allows a network setup where no data
related to the IoT devices leaves the local network.

Context Modeling. As described in §4.2.2, the ARGUS
AE architecture is generally applicable and depends only on
the number of devices involved in the analysis and on the
width of the event window size [= 16. By this, ARGUS ad-
dresses C2. Encoder and Decoder are made of two layers each
with a fixed number of hidden units, respectively, decreasing
(from 256 down to 64) and increasing (from 64 up to 256 for
compressing and then reconstructing the input.

For analyzing the user’s behavior, the temporal context
encoded in the event sequences, needs to be considered. So,
we need to take into account the temporal structure of data

USENIX Association

32nd USENIX Security Symposium 4307

in order to have a model that is able to learn those patterns.
For that reason, we use recurrent layers, in particular, Gated
Recurrent Unit (GRU) layers. We used GRUs units rather
than alternatives such as LSTMs [30] due to their capability
of faster convergence, requiring less memory (i.e., less train-
able parameters) and better dealing with long-term memory
problems (e.g., vanishing/exploding gradient).

The size of the final model depends on the number of de-
vices in the system. In our setups, the number of devices
varies from 18 to 40, so the model size varies from 1.2 to 2.7
million trainable parameters.

The designed learning process for such models uses a de-
caying learning rate (from 103 down to 10~%) once the num-
ber of epochs reaches some specific epochs. Furthermore, we
make use of early stopping with patience monitoring valida-
tion loss in order to prevent overfitting behaviors.

Anomaly Score Classification. The threshold that is used
as classification boundary to discriminate benign events from
attacks makes use for two parameters, the aging factor o and
the security level .

a is used for performing a trade-off between allowing the
threshold to dynamically react to changes in the behavior
and preventing high changes in the threshold, which could
cause incorrect classifications (cf. App. E). We therefore
set a0 =0.8.

The security level ensures an additional margin to prevent
unusual behavior of the user from causing false alerts. Too
high values prevent ARGUS from detecting attacks, while
too low values cause false alerts. We empirically set B =
0.2 (cf. App. E).

5 Evaluation and Discussion

In this section, we discuss how different attacks are applied
to the network and how our approach is able to detect such at-
tacks. For the evaluation, we evaluate 5 real-world IoT setups.
The first subsection shows the modeling of the benign data
and the distribution of the testing and training data. The next
subsection discusses the real network and how the attacks are
performed and detected. For the evaluation, we use the well
established performance metrics F1-Score, Precision, Recall
and False-Positive-Rate (cf. App. G). In App. | we describe
the computational setup, in App. B we evaluate the runtime
performance of ARGUS.

5.1 Dataset

For our experiments, we equipped 5 different smart-home
settings with a variety of IoT devices and sensors that were
used by residents on a daily basis. From each setup, we used
the first 7 days for training the model and the remaining data
for testing. The data for training were split into 90% of actual
training data and 10% validation data.

Table 2: Performance of ARGUS on Real-World Setups, all
values in percentage.

Dataset ‘ FPR Pr Re F1-Score
Home 1| 0.03 99.22 100.00 99.64
Home 2 | 0.00 100.00 100.00 100.00
Home 3 | 0.00 100.00 100.00 100.00
Home 4 | 0.00 100.00 100.00 100.00
Home 5 | 0.00 100.00 100.00 100.00

5.1.1 Dataset Collection

For collecting the dataset, we captured the status updates of
IoT devices in 5 different smart-home environments (referred
to as Home 1 - Home 5). Each setup consisted of multiple
sensors (temperature, humidity, brightness and motion, door
and window sensors) and actors (light bulbs, thermostats). To
make the individual setups differ from each other and evaluate
the ability of ARGUS to generalize, each setup also had some
additional sensors and actors, making the dataset heteroge-
neous. For example, in the setup Home 1 also a CO; sensor
was installed, while in the setups Home 4 and Home 5 also a
number of smart thermostats were installed. In App. A, we
show the deployed sensors and actors for each setup. For the
data collection, the popular open-source smart-home control
system Home Assistant was used (cf. §4.4).

The devices were installed in different homes, covering a
one-person room in a shared apartment (Home 1), an one-
person apartment (Home 2), as well as shared homes with
4 inhabitants each (Home 3, Home 4, Home 5). The exper-
iments included ten different male and female participants
(teenagers, students, and adults up to approximately 49 years).
Initially, controlled experiments incorporating a number of
simulated attack scenarios were executed in the simpler attack
settings in Home 1 and Home 2, since these environments in-
cluded only one inhabitant and were therefore easy to control.
The more complex contextual settings incorporating several
persons in Home 3 and Home 4 were used for passive data
collection, without active attacks, mainly to test the sensitivity
of the approach for false alarms under a more challenging set-
ting. Finally, the most complex IoT set-up was implemented
in the multi-person setting Home 5, where also controlled
experiments with attacks were implemented to test the full
performance of ARGUS in complex real-world settings. Each
setup used the home automation platform for automatically
triggering actions, e.g., turn off the camera when the user
comes home, turn of the heating when the window is opened,
or reduce the heating temperature during the night.

5.1.2 Ethical Considerations

The dataset collection raised ethical concerns, as the recorded
behavior of the users might contain sensitive data. We ad-
dressed these concerns by ensuring that all affected persons,
i.e., the users as well as all guests, were aware of the data

4308 32nd USENIX Security Symposium

USENIX Association

Table 3: Categorization of evaluated attacks into Event Spoof-
ing (ES), Event Interception (EI), Command Spoofing (CS),
and Command Interception (CI)

Attack ES EI CS CI
Door open while absent e o o
Lights on while absent . °
Movement while absent

Camera off while absent . .
Light flickering .
Heating on while open windows | e e .
Lights on during night .

Fake Fire closed windows

Fake Fire open windows

collection and gave their consent. Further, we limited the
approach to non-privacy-sensitive sensors and excluded the
other sensors like the geolocation or the SSID of the WiFi
network that the mobile phone is connected to. In addition,
all potentially sensitive data items were anonymized. Our
experimental set-up has been reviewed and approved by the
ethics board of our university.

5.2 Experimental Results

The performance of ARGUS for the individual setups is
shown in Tab. 2. The table shows the results in terms of FPR
and for the setups where attacks were performed (Home 1,
Home 2, Home 5), also the Precision (Pr), Recall (Re), and
F1-Score. As Tab. 2 shows, ARGUS recognizes almost all
benign events correctly (FPR < 0.3%) and thereby fulfills R3
(Minimizing false alarms). Tab. 2 also shows that ARGUS
detects almost all the attacks (Re > 99.64%). The detailed
results for the individual attacks are shown in Tab. 4 and
discussed in §5.2.1.

5.2.1 Attack Detection

To evaluate the performance of ARGUS, we performed vari-
ous attacks. The malicious behavior for these attacks can be
categorized as follows:

1) Event Interception (EI): A4 intercepts (i.e., suppresses) an
event, for instance, A4 intercepts the event "window open" to
not turn off the heating, creating a potential monetary damage
to the user.

2) Event Spoofing (ES): 4 spoofs (i.e., creates) a fake event.
For instance, 4 creates the fake event "user at home" when
the user is not at home to trigger the command "turn off
the camera", e.g., for breaking into the house without being
recorded.

3) Command Interception (CI): A intercepts (i.e., sup-
presses) a command. For instance, when the user is leaving
and triggering the "lock the door" command, 4 can mali-
ciously intercept the command leaving the door open.

4) Command Spoofing (CS): A4 spoofs (i.e., creates) a fake
command. For instance, A4 can trigger fake commands, e.g., to

Table 4: Performance of ARGUS on Real-World Attacks, all
values in percentage.

Attack Dataset Pr Re FI-Score
Home 1 100.0 100.0 100.0
Home 4 100.0 100.0 100.0
Home 1 100.0 100.0 100.0
Home 2 100.0 100.0 100.0
Home 4 100.0 100.0 100.0
Home 2 100.0 100.0 100.0
Home 4 100.0 100.0 100.0
Home 1 100.0 100.0 100.0
Home 2 100.0 100.0 100.0
Home 3 100.0 100.0 100.0
Home 4 100.0 100.0 100.0
Home 5 100.0 100.0 100.0
Home 1 100.0 100.0 100.0
Home 2 100.0 100.0 100.0

Door Open During Absence

Lights On During Absence

Movement During Absence

Light Flickering

Heating while Windows

Open Home5 100.0 100.0 100.0
Home 1 100.0 100.0 100.0
Home?2 100.0 100.0 100.0
Lights On During Night Home 3 100.0 100.0 100.0

Home 4 100.0 100.0 100.0
Home 5 100.0 100.0 100.0
Home 1 100.0 100.0 100.0
Home 2 100.0 100.0 100.0
Home 4 100.0 100.0 100.0
Home 1 100.0 100.0 100.0
Home 2 100.0 100.0 100.0
Home 4 100.0 100.0 100.0

Fake Fire Open Windows

Fake Fire Closed Windows

turn on the light while the user is sleeping or absent, creating
a potential damage (device damage and/or electricity costs)
to the user.

As Tab. 3 shows, some attacks such as "Door open while
absent" may actually fall into multiple categories: i) EI: when
the user is leaving it is automatically propagated the event
"user not at home". 4 can intercept the event avoiding
that the apartment door is locked. ii) CS: when the user is not
at home, A4 can spoof the command "open the door", hav-
ing physical access to the home. iii) CI: when the user leaves,
A can intercept the command "lock the door", preventing
it to be locked.

5.2.2 Internal Components

Context Modeling. The Context Modeling component pre-
dicts the reconstruction loss that is used by the Anomaly
Score Classification component to discriminate benign events
and attacks. Fig. 4 shows the predicted anomaly scores for
benign events and the performed attacks in the setups Home 1,
Home 2, and Home 5. As the figure shows, the Context Mod-
eling component separates the attacks well from the benign
events, allowing the threshold to effectively distinguish be-
tween both event types. In App. F we evaluate alternative
design choices for the Context Modeling component.

As Subfig. 4c shows, 7 days of training data are suffi-
cient for ARGUS to model the expected context, such that
only very few FPs are predicted (FPR < 0.03%) even for
long periods (80 days) without any adaption or retraining.

USENIX Association

32nd USENIX Security Symposium 4309

5
.

Benign points
--- ARGUS
® Flickering Lights
Heating Op. Wind.
© Lights During Night

10 11 12 13
ays

Benign points

-~ ARGUS

® Op. Door Absent
Lights During Night

® Flickering Lights

© Lights On Absent

Reconstruction Error (MSE)

5

Reconstruction Error (MSE)
5
0 en—

7 1421283542495663707784

(a) Home 5 (b) Home 4

2

Error (MSE)

Benign points
-- ARGUS

Fire Wind. CI.

Fire Wind. Op.
Heating Op. Wind.
Lights During Night
Door Op. Absent
Flickering Lights
Lights Absent

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105112119126133140147154161168175

(c) Home 1

Figure 4: Anomaly Scores for different real-world homes for
benign behavior and attacks.

This demonstrates the effectiveness of the Context Modeling
component for modeling the user’s behavior.

To evaluate the amount of training data that ARGUS needs to
effectively model the user’s behavior, we performed multiple
experiments with different duration for capturing the train-
ing data in the setup Home 1. As Fig. 5 shows, 7 days of
training data are sufficient for ARGUS to achieve a F1-Score
of 99.64% on 80 days of test data. This demonstrates that
ARGUS is able to learn users’ behavior without requiring a
long training data collection phase.

Anomaly Score Classification. The Anomaly Score Clas-
sification component uses the dynamically determined thresh-
old (cf. §4.3) for recognizing attack events based on their
anomaly scores.

Tab. 5 compares the proposed threshold tuning approach
with different alternative options. The threshold "Mean of
max" realizes a static threshold, calculated as the average of
the per-day maximal anomaly scores for the training data.
However, it causes FPs, such that the precision is only approx.
37.5% and the threshold cannot adapt dynamically. Also, us-
ing the mean plus standard derivation of the previous day
causes many FPs (FPR = 5.9%) and as well as using the
maximal anomaly score of the previous day as threshold or
(Pr=87.8%). We also evaluated different choices for the aging
factor o.. For a0 = 0.0, resulting in using only the threshold
candidate Cy, although no FPs were caused here, the thresh-
old reacted too much on changing behavior, such that it was
not able to detect all attacks (Re = 99%). On the other side,
a too high value for o, resulting in a static threshold also
failed to detect all attacks since the anomaly scores were
higher than normal on the first day (Pr = 94.7%). In com-
parison, ARGUS, setting o = 0.2, performed best, achiev-
ing Re = 100.0%, FPR = 0.0% and F1-Score = 100.0%. In
App. D we evaluate the difference between the threshold and

1.00 i
0.98
0.96

o 0.94

5

80.92

n
0.90
0.88

-+ Home 4

0.86 Home 1
-- 7 Days

0.84

1 2 3 4 5 6 7 8 9 10 11 12
Days of Training

Figure 5: Evaluation of ARGUS depending on the duration
of training data for the setup Home 1 and Home 4

threshold candidate in detail, in App. E we evaluate different
choices for the o and security level .

6 Security Considerations

The main goal of ARGUS is to detect contextual attacks and
prevent adversary A4 from abusing the deployed IoT devices.
As we demonstrated in §5, ARGUS effectively detects ab-
normal behavior. However, if adversary A4 is aware of the
presence of ARGUS, it may attempt to manipulate the system
in a way that it can avoid detection while still being able to
successfully execute the attacks.

6.1 Avoidance by Context Manipulation

Since ARGUS detects malicious actions based on the context
of the action taking place, 4 may attempt to spoof the con-
textual status updates of specific devices in a way that would
make the actions falsely seem to happen in a legitimate con-
text (e.g., A spoofs the window sensor state as being "closed’
whereas in reality the window is open and subsequently turns
on the heating to waste energy). However, this would make
the attack significantly more challenging for the adversary,
since it would not be sufficient to compromise the control
plane of the targeted IoT devices but it would be necessary
to compromise and run code on specific devices in order to
impersonate them or spoof context updates. As discussed in
§3.2, we consider such attacks to be outside of the scope of
ARGUS, since there already are numerous state-of-the-art
approaches for detection of direct attacks against IoT devices
that are orthogonal to ARGUS and can complement its detec-
tion capabilities with regard to such attacks.

6.2 Manipulating Model Training Data

If adversary 4 is present in the targeted network already
during the initial training phase of the system, it can trivially
execute any attacks and remain undetected. In accordance
with similar work, we therefore make the assumption that the
system is not compromised during the initial training of the
system (cf. § 3.2). However, we also evaluated a setting in
which the adversary manages to start a data poisoning attack
when the initial training has not been entirely completed,

4310 32nd USENIX Security Symposium

USENIX Association

Table 5: Evaluation of Different Choices for the Classification
Threshold for the setup Home 5, all values in percentage.

Threshold FPR Pr Re FI-Score
Mean of max 0.1 37.5 100.0 54.5
Mean+Std of prev. day 5.9 0.7 100.0 1.4
Max of prev. days 0.1 87.8 100.0 93.5
ARGUS (0. =0.0) 00 99.0 99.0 99.9
ARGUS (o= 1.0) 0.002 947 999 97.3
ARGUS 0.0 100.0 100.0 100.0

or, the attack is executed during a re-training phase of the
detection model. We evaluated the impact of small amounts
of attack data in the training datasets to examine the ability of
ARGUS to detect attacks (cf. App. H), showing that ARGUS
is resilient against the evaluated attack.

7 Discussion

We presented ARGUS that detects contextual attacks. We
demonstrated in §5 that it effectively detects attacks without
raising a significant number of false positives (FPR < 0.03%)
even in complex scenarios, such as homes with multiple in-
habitants. In §2.4 we discussed different requirements that
an effective intrusion detection system needs to fulfill. We
showed in §4 that ARGUS fulfills our requirements with re-
gard to fast detection (R1), cause identification (R2), and au-
tonomous operation (R4). Our evaluation in §5.2 also showed
that ARGUS generates a very low number of false alarms,
thereby satisfying requirement R3.

7.1 Limitations of ARGUS

The focus of ARGUS is to recognize behavior that deviates
from the normal behavior of the legitimate user. In §5 we
demonstrated that ARGUS can also handle very complex sce-
narios like a home with multiple inhabitants. However, if the
change in the normal behavior is too large to be handled by
ARGUS, e.g., when additional persons move into the apart-
ment, a retraining of the model must be initiated. This could
be done automatically if the user labels raised alerts as false
positives (e.g., using their smartphone). If the False-Positive-
Rate is too high, a retraining can be initiated automatically.
Another option would be to continuously adapt the model
slightly, according to the monitored behavior. We leave deter-
mining suitable strategies for this to future work.

Another limitation is that, since ARGUS’s definition of
anomalous behavior depends on the behavior of the user dur-
ing training time, actions that the user performed frequently
during the training time might not be detected. This might
be a problem if the user wants to use ARGUS, to unlearn
bad habits, e.g., learning to turn of the heating when the win-
dow is opened. As this action is performed by the user, using
ARGUS to change the user’s behavior is out-of-scope of this
paper. To handle those scenarios, ARGUS could be extended
by a policy-based detection component. As discussed in §1,
this policy-based detection is not suitable to detect attacks in

general but would be able to detect a single, specific, previ-
ously defined situation (like an active thermostat while the
windows are open).

Further, ARGUS focuses on observing the state of the sys-
tem to recognize illegitimate states. Therefore, it can be seen
as complementary to policy-based approaches, that, e.g., su-
pervise the execution of critical automation rules in few, well-
defined situations. An example here would be an automation
rule that locks the door exactly 10 minutes after the user left
the house. Since this behavior does not depend on other cir-
cumstances but only on the time since the user left the home, it
can be easily supervised by a manually crafted policy or state-
of-the-art policy-based approaches. In comparison, ARGUS
focuses on complex situations. For example, turning on the
light depends on many different contextual factors, e.g., the
presence of the user, whether he is sleeping, etc.

Moreover, since ARGUS uses the observed behavior for
modeling the expected behavior, ARGUS is limited to detect-
ing abnormal situations but cannot supervise the behavior of
IoT devices to handle these abnormal situations. An example
would be an automation rule that automatically notifies the
user, when a flood sensor notifies water (cf. work of Celik
et al. [16]). Since the flooding situation is unlikely to occur
in the training data, ARGUS cannot detect if the attacker sup-
presses the sending-notification action, as suppressing actions
is outside of our adversary model (cf. §3.2). However, since
as the flooding situation is already anomalous itself, ARGUS
will notify the user about the flooding, such that the user can
take effective counter measures himself.

7.2 False-Alerts

ARGUS only creates very few False-Positives (FPs) as it is
0.03% for Home 1, and 0% for all of the other homes (Home 2,
Home 3, Home 4, Home 5). Thus, even for a high number
of daily events (e.g., 3000), this would result only in a single
FP per day. Considering the high number of notifications that
users receive on their smartphones each day, e.g., socials and
webservices as Google, one false alert per day is negligible.

8 Related Work

There is a large body of literature on IoT security with many
diverse approaches, although not all are relevant for our paper.
We categorized them as follows: i) Network Traffic Inspec-
tion, ii) Command Authentication, iii) Data Provenance, iv)
Local Intrusion Detection, v) Sensor Validation, vi) Policies
& Transition Graphs, vii) Contextual Anomaly Detection.
Approaches that inspect the network traffic [24,36,37] are
not effective for detecting contextual attacks that compromise
the control plane. Since here, the attacker activate the func-
tions of the IoT devices over the regular control infrastructure,
the network packets that are used for transmitting commands
are indistinguishable from the traffic of benign commands.

USENIX Association

32nd USENIX Security Symposium 4311

Table 6: Comparison of Approaches for Contextual Anomaly Detection. The symbol indicates the presence (v") or absence (X)
of the respective ability, while the color indicates whether the presence/absence is desired (green) or undesired (red).

Restricted Bound to Considers Handles Infers Handles Handles Handles Handles

Approach to known Policies Normal unknown Hidden Event Event Command Command

Attacks User Behavior Devices Correllations Spoofing Interception Spoofing Interception
Amraoui et al. [10] X X X X
HomeGuardian [21] v
HAWatcher [26] v
6thSense [41] X
Aegis [42] X
Tang et al. [43] v
ARGUS

By analyzing the context of the invocation, i.e., states of other
devices, ARGUS can detect contextual attacks.

Command Authentication approaches [16,32,44] focus on
apps that are responsible for automating various tasks. Mali-
cious apps could try to activate functions on devices which
they are not supposed to control, e.g., an app that is responsi-
ble for measuring the humidity could try to unlock the door.
To prevent such attacks, these approaches authenticate the
source of a triggered command and check if the respective
apps is actually allowed to control the targeted device. How-
ever, compared to ARGUS they cannot detect attacks, where
the attacker uses the regular control infrastructure, e.g., use
the cloud service of the smart-lock to unlock the door.

Local intrusion detection approaches need to be installed
on each IoT device locally [12,27,40]. However, these ap-
proaches assume that the device manufacturer allows and
supports installing software on the devices and that low-
performance devices can execute additional software, while,
ARGUS does not require any modification of the devices.

Data Provenance Approaches analyze the source of a com-
mand. One example for approaches falling into this category
is ProvThings, being developed to explain attacks in the retro-
spective. By analyzing the flow of actions that were automati-
cally triggered, the attack helps especially to explain complex
attacks, where the attacker did not trigger the targeted action
directly but exploited and concatenated multiple automation
rules [45]. However, since this scheme focuses on explaining
a performed attack rather than detecting the attack while it is
being performed, ProvThings is complementary to ARGUS.

Hence, in the rest of this section, we focus on those propos-
als (iv-vii) that consider the whole confext of the underlying
IoT system in various ways such as validating the individ-
ual sensor values [9, 35,49, 50], using policies or modeling
the system states as nodes of a graph and analyzing the state
transitions [15, 20, 25, 33,47, 48], or focusing on detecting
contextual anomalies [10,26,41-43].

8.1 Sensor Value Validation

Adkisson et al. use auto-encoders to detect anomalous val-
ues of sensors that measure the environment for plants [9].

Kotevska et al. compare the values of co-located sensors [35].
Yasaei et al. compare the values of different sensors where
the measured values directly effect each other, e.g., the water
temperature and the Nitrate concentration, to detect malfunc-
tions of individual sensors [49]. Yin et al. analyze time series
of the individual sensor values [50].

However, all these approaches consider only simple sce-
narios without human-caused randomness or are limited to
detecting sensor malfunctions without being able to detect
anomalous system states that occur in the real world. For
example, if the door of an apartment is opened while the
inhabitant is absent, then these approaches will not create
an alert, as the co-located or correlated sensors consistently
show that the door is opened. In comparison, ARGUS can
detect that the door is opened in the wrong context (while the
inhabitant is not at home) and inform the user.

8.2 Policies & Transition Graphs

Other approaches verify the system state against pre-defined
policies [33,47,48]. However, these rules can easily be an-
alyzed by the adversary and also create additional overhead
for the user to define these policies. For example, for Home-
Endorser [33] and Expat [47] the policies have to be defined
manually, making the system unpractical. Yamauchi et al.
monitor the users’ behavior during the setup time and cre-
ate an alert if the performed action was not invoked during
the setup phase, in a situation where all sensors measured
the exact values as they do at the moment [48]. Feng et al.
automatically craft invariants from logfiles of industrial IoT
systems [25], which are significantly less complex then smart-
homes and can only learn linear relations between different
devices, increasing the risk of wrong predictions. In compar-
ison to these approaches, ARGUS is trained automatically
from the data that is captured during the setup phase. The
deep learning-based behavior modeling of ARGUS enables
it to learn hidden/non-linear relationships between system
states, e.g., it does not require all sensors to measure the same
states as in the setup phase but learns which sensors can actu-
ally differ (e.g., temperature sensors) and which sensor values
must be exactly the same (e.g., the presence of the inhabitant).

4312 32nd USENIX Security Symposium

USENIX Association

Homonit [51] and Soteria [15] both extract a Deterministic
Finite Automaton (DFA) from the source code of mobile apps,
where each node represents a system state. They create an
alert if an invalid transition from one state to another state is
taken. However, since these approaches use only the source
code as data source, they consider only a theoretical legitimate
behavior and not the actual user’s behavior for recognizing
contextual attacks. For example, the app might allow to turn
on the light while the user is sleeping. However, if the user
does not do this, then ARGUS can still detect this attack.
DICE uses a Markov Chain to model the transitions of a
system [20]. However, it models each system state as all
sensor values that occurred in a time frame of 1 minute, such
that it cannot distinguish, e.g., between turning on the light or
the light-flickering attack that was discussed in §5.2.1.

8.3 Contextual Anomaly Detection

Table 6 shows on overview of state-of-the-art approaches for
Contextual Anomaly Detection. It systematize them based on
different criteria, 1) if the system can only recognize attacks
that were known at setup time, 2), whether the system uses
policies for recognition and is restricted to detect behavior that
is allowed/forbidden by these policies, 3) whether the actual
user behavior is considered or only expected behavior that is,
e.g., extracted from app descriptions, 4) whether custom IoT
devices, where no semantic information are available can be
handled, 5) if also hidden relationships can be learned or if
the system is restricted to recognizing state changes that have
been exactly occurred in the training data, 6) if the system
can handle attacks that spoof events (e.g., fake temperature
sensor values), 7) if event interceptions are recognized (e.g.,
intercepting the user-coming-home event before the door is
opened), 8) if spoofed commands can be recognized (e.g., if
the light is turned on during the night), and 9) if command
interceptions are recognized (e.g., the command to turn of the
heating before opening the window).

HAWatcher uses semantic information, extracted from the
app descriptions and source code, to match devices with the
correlated attribute. For example, it determines that a sound
sensor and a media player both are connected via the sound
property. HAWatcher then generates correlation rules that
need to be fulfilled [26]. This structure enables HAWatcher
to enforce strict policies (cf. §7.1). However, requiring the
presence of semantic information limits the applicability as
such information are not always available. For instance, the
temperature, humidity, and CO; sensor in our experimental
setup were built by the respective inhabitants. Therefore, for
these devices neither apps nor semantic information exists. In
comparison, ARGUS uses only the actually occurred sensor
values for learning the expected behavior, such that it is also
effective without any semantic information.

Amraoui et al. train a One-class SVM for analyzing the
triggered commands but do not consider the values of the sen-

sors [10]. Thus, it cannot detect, e.g., the Movement During
Absence attack.

Tang et al. provide an approach that trains binary classifiers
on legitimate data as well as attack data to detect sensor
failures [43]. Dai et al. use a Neural Network that is trained on
attacks and benign behavior to distinguish between them [21].
However, by requiring attack training data these approaches
are restricted to detecting known attacks, while ARGUS can
detect arbitrary attacks.

6thSense [41] and Aegis [42] both consider the changes
of the system states (e.g., sensor updates) as Markov Chains
and require the probability for invalid state transitions, i.e.,
attacks, to be 0. However, the system then can only consider
transitions that have occurred during the training phase and
fails to learn hidden correlations/uncorrelations between sen-
sor values, i.e., that some devices always change together or
are unrelated, e.g., if they are located in different rooms. In
comparison, the Behavior Modeling of ARGUS can learn
relations, e.g., the independence of two sensors.

9 Conclusion

The number of devices being part of the Internet of Things
is increasing rapidly, while at the same time these devices
control more and more functions being part in our daily life.
These factors make IoT devices an attractive goal for attacks
that abuse these devices to cause financial damage or harm
the users. We proposed ARGUS, the first dynamic system
that can detect contextual attacks on connected device set-
tings. It consists of a data collection component, monitoring
devices even in a very heterogeneous landscape with devices
from various manufacturers using different communication
technologies and protocols. The designed Deep Neural Net-
work in combination with the proposed dynamic threshold
tuning scheme allows to distinguish between the expected
user behavior and contextual attacks.

We extensively evaluated ARGUS for 5 different settings
and showed that it effectively detects contextual attacks on IoT
devices while raising only few false positives (FPR < 0.03%),
even in complex settings.

Acknowledgments

This work was funded in part by Intel as part of the Private Al
center, HMWK within ATHENE project, and the European
Union’s Horizon 2020 research and innovation program under
grant agreement No. 952697 (ASSURED).

References

[1] Apple home. https://www.apple.com/ios/home/.
Accessed: 2022-01-25.

USENIX Association

32nd USENIX Security Symposium 4313

https://www.apple.com/ios/home/

(2]

(3]

(4]

(5]

(6]

(71
(8]

(9]

[10]

[11]

[12]

[13]

[14]

Google assistant. https://assistant.google.com/
smart-home/. Accessed: 2022-01-25.

Hackers in hot water. pwning smart hot tubs, yes really.
https://www.pentestpartners.com/security—
blog/hackers-in-hot-water-pwning-smart-
hot-tubs-yes-really/. Accessed 2022-01-29.

Home assistant. https://www.home-assistant.io/.
Accessed: 2022-01-25.

Home security camera isn’t secure. spotcam in the
spotlight. https://www.pentestpartners.com/
security-blog/home-security-camera-isnt-

secure-spotcam-in-the-spotlight/. Accessed
2022-01-29.
Smartthings. https://www.samsung.com/us/

smartthings/. Accessed: 2022-01-25.
Pytorch, 2022. https://pytorch.org.

Single-family smart homes global market report
2022. https://www.reportlinker.com/p06193673/
Single-Family-Smart-Homes-Global-Market-
Report.html?utm_source=GNW, 2022. Accessed:
2022-01-30.

Mary Adkisson, Jeffrey C Kimmell, Maanak Gupta, and
Mahmoud Abdelsalam. Autoencoder-based anomaly
detection in smart farming ecosystem. In IEEE Interna-
tional Conference on Big Data (Big Data). IEEE, 2021.

Noureddine Amraoui and Belhassen Zouari. An ml
behavior-based security control for smart home systems.
In International Conference on Risks and Security of
Internet and Systems. Springer, 2020.

Manos Antonakakis, Tim April, Michael Bailey, Matt
Bernhard, Elie Bursztein, Jaime Cochran, Zakir Du-
rumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua
Mason, Damian Menscher, Chad Seaman, Nick Sullivan,
Kurt Thomas, and Yi Zhou. Understanding the mirai
botnet. In USENIX Security, 2017.

Junaid Arshad, Muhammad Ajmal Azad, Muham-
mad Mahmoud Abdeltaif, and Khaled Salah. An in-
trusion detection framework for energy constrained iot

devices. Mechanical Systems and Signal Processing,
136:106436, 2020.

A. Barth, A. Datta, J.C. Mitchell, and H. Nissenbaum.
Privacy and contextual integrity: framework and appli-
cations. In S&P. IEEE, 2006.

Hervé Bourlard and Yves Kamp. Auto-association by
multilayer perceptrons and singular value decomposi-
tion. Biological cybernetics, 59(4), 1988.

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

Z Berkay Celik, Patrick McDaniel, and Gang Tan. Sote-
ria: Automated {IoT} safety and security analysis. In
USENIX Annual Technical Conference (USENIX ATC
18), 2018.

Z. Berkay Celik, Gang Tan, and Patrick McDaniel. IoT-
Guard: Dynamic Enforcement of Security and Safety
Policy in Commodity IoT. In NDSS, 2019.

Yungiang Chen, Xiang Sean Zhou, and Thomas S Huang.
One-class svm for oldlearning in image retrieval. In In-
ternational Conference on Image Processing, volume 1.
IEEE, 2001.

Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee, and
Chiew Tong Lau. Autoencoder-based network anomaly
detection. In 2018 Wireless Telecommunications Sym-
posium (WTS). IEEE, 2018.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using rnn encoder—decoder for statistical
machine translation. In Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), 2014.

Jiwon Choi, Hayoung Jeoung, Jihun Kim, Youngjoo Ko,
Wonup Jung, Hanjun Kim, and Jong Kim. Detecting and
identifying faulty iot devices in smart home with con-
text extraction. In Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN).
IEEE, 2018.

Xuan Dai, Jian Mao, Jiawei Li, Qixiao Lin, and Jianwei
Liu. Homeguardian: Detecting anomaly events in smart
home systems. Wireless Communications and Mobile
Computing, 2022, 2022.

Ryan Daws. Another IoT-based DDoS at-
tack leaves Finnish properties without heating.
https://iottechnews.com/news/2016/nov/
08/another-iot-based-ddos-attack-leaves—
finnish-properties-without-heating, 2016.
Accessed: 2022-01-24.

Wenbo Ding, Hongxin Hu, and Long Cheng. IOTSAFE:
Enforcing safety and security policy with real iot physi-
cal interaction discovery. In NDSS, 2021.

Yulin Fan, Yang Li, Mengqi Zhan, Huajun Cui, and Yan
Zhang. Iotdefender: A federated transfer learning intru-
sion detection framework for 5g iot. In IEEE Interna-
tional Conference on Big Data Science and Engineering
(BigDataSE). IEEE, 2020.

Cheng Feng, Venkata Reddy Palleti, Aditya Mathur, and
Deeph Chana. A systematic framework to generate
invariants for anomaly detection in industrial control
systems. In NDSS, 2019.

4314 32nd USENIX Security Symposium

USENIX Association

https://assistant.google.com/smart-home/
https://assistant.google.com/smart-home/
https://www.pentestpartners.com/security-blog/hackers-in-hot-water-pwning-smart-hot-tubs-yes-really/
https://www.pentestpartners.com/security-blog/hackers-in-hot-water-pwning-smart-hot-tubs-yes-really/
https://www.pentestpartners.com/security-blog/hackers-in-hot-water-pwning-smart-hot-tubs-yes-really/
https://www.home-assistant.io/
https://www.pentestpartners.com/security-blog/home-security-camera-isnt-secure-spotcam-in-the-spotlight/
https://www.pentestpartners.com/security-blog/home-security-camera-isnt-secure-spotcam-in-the-spotlight/
https://www.pentestpartners.com/security-blog/home-security-camera-isnt-secure-spotcam-in-the-spotlight/
https://www.samsung.com/us/smartthings/
https://www.samsung.com/us/smartthings/
https://pytorch.org
https://www.reportlinker.com/p06193673/Single-Family-Smart-Homes-Global-Market-Report.html?utm_source=GNW
https://www.reportlinker.com/p06193673/Single-Family-Smart-Homes-Global-Market-Report.html?utm_source=GNW
https://www.reportlinker.com/p06193673/Single-Family-Smart-Homes-Global-Market-Report.html?utm_source=GNW
https://iottechnews.com/news/2016/nov/08/another-iot-based-ddos-attack-leaves-finnish-properties-without-heating
https://iottechnews.com/news/2016/nov/08/another-iot-based-ddos-attack-leaves-finnish-properties-without-heating
https://iottechnews.com/news/2016/nov/08/another-iot-based-ddos-attack-leaves-finnish-properties-without-heating

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Chenglong Fu, Qiang Zeng, and Xiaojiang Du.
HAWatcher:Semantics-Aware anomaly detection for ap-
pified smart homes. In USENIX Security, 2021.

Tomer Golomb, Yisroel Mirsky, and Yuval Elovici.
Ciota: Collaborative iot anomaly detection via
blockchain. In DISS@NDSS, 2018.

T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mo-
hapatra. IoTGaze: Iot security enforcement via wireless
context analysis. In /IEEE INFOCOM - IEEE Confer-
ence on Computer Communications, 2020.

Stephen Herwig, Katura Harvey, George Hughey,
Richard Roberts, and Dave Levin. Measurement and
analysis of Hajime, a peer-to-peer IoT botnet. In NDSS,
2019.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735-1780,
1997.

Aaron Courville Ian Goodfellow, Yoshua Bengio. Deep
Learning. MIT Press, 2016.

Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir
Rahmati, Earlence Fernandes, Z. Morley Mao, and Atul
Prakash. ContexloT: Towards providing contextual in-
tegrity to appified IoT platforms. In NDSS, 2017.

Kaushal Kafle, Kirti Jagtap, Mansoor Ahmed-Rengers,
Trent Jaeger, and Adwait Nadkarni. Towards Practical
Integrity in the Smart Home with HomeEndorser. arXiv
preprint arXiv:2109.05139, 2021.

Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S
Jensen. Outlier detection for time series with recurrent
autoencoder ensembles. In IJCAI, 2019.

Olivera Kotevska, Kalyan Perumalla, and Juan Lopez.
Kensor: Coordinated intelligence from co-located sen-
sors. In IEEE International Conference on Big Data
(Big Data). IEEE, 2019.

Thien Duc Nguyen, Samuel Marchal, Markus Mietti-
nen, Hossein Fereidooni, N Asokan, and Ahmad-Reza
Sadeghi. DIoT: A federated self-learning anomaly de-
tection system for iot. In /ICDCS. IEEE, 2019.

TJ OConnor, Reham Mohamed, Markus Miettinen,
William Enck, Bradley Reaves, and Ahmad-Reza
Sadeghi. HomeSnitch: Behavior transparency and con-
trol for smart home iot devices. In WISEC. Association
for Computing Machinery, 2019.

Maire O’Neill et al. Insecurity by design: Today’s iot de-
vice security problem. Engineering, 2(1):48-49, 2016.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine Learning in Python . Journal
of Machine Learning Research, 2011.

Shahid Raza, Linus Wallgren, and Thiemo Voigt.
SVELTE: Real-time intrusion detection in the Internet
of Things. Ad hoc networks, 11(8), 2013.

Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Ulua-
gac. {6thSense}: A context-aware sensor-based attack
detector for smart devices. In USENIX Security, 2017.

Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu,
and A Selcuk Uluagac. Aegis: A context-aware security
framework for smart home systems. In Annual Com-
puter Security Applications Conference (ACSAC), 2019.

Sihai Tang, Zhaochen Gu, Qing Yang, and Song Fu.
Smart home iot anomaly detection based on ensemble
model learning from heterogeneous data. In IEEE In-
ternational Conference on Big Data (Big Data). IEEE,
2019.

Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang,
Blase Ur, Xianzheng Guo, and Patrick Tague. Smar-
tAuth: User-centered authorization for the internet of
things. In USENIX Security, 2017.

Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl
Gunter. Fear and logging in the internet of things. In
NDSS, 2018.

Jason Wise. Smart home statistics 2022: How many
smart homes are there? https://earthweb.com/
smart-home-statistics/, 2022. Accessed: 2022-01-
30.

Moosa Yahyazadeh, Proyash Podder, Endadul Hoque,
and Omar Chowdhury. Expat: Expectation-based policy
analysis and enforcement for appified smart-home plat-
forms. In ACM symposium on access control models
and technologies, 2019.

Masaaki Yamauchi, Yuichi Ohsita, Masayuki Murata,
Kensuke Ueda, and Yoshiaki Kato. Anomaly detection
in smart home operation from user behaviors and home
conditions. IEEE Transactions on Consumer Electron-
ics, 66(2):183-192, 2020.

Rozhin Yasaei, Felix Hernandez, and Mohammad Ab-
dullah Al Faruque. Iot-cad: context-aware adaptive
anomaly detection in iot systems through sensor associ-
ation. In JEEE/ACM ICCAD. IEEE, 2020.

USENIX Association

32nd USENIX Security Symposium 4315

https://earthweb.com/smart-home-statistics/
https://earthweb.com/smart-home-statistics/

[50] Chunyong Yin, Sun Zhang, Jin Wang, and Neal N Xiong.
Anomaly detection based on convolutional recurrent au-
toencoder for iot time series. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, 52(1):112—-122,
2020.

[51] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang,
Yingian Zhang, and Haojin Zhu. Homonit: Monitoring
smart home apps from encrypted traffic. In CCS, 2018.

[52] Chong Zhou and Randy C Paffenroth. Anomaly detec-
tion with robust deep autoencoders. In ACM SIGKDD,
2017.

A Devices

Table 7 shows for each setup in the collected dataset, a detailed
list of the deployed IoT devices and measured values. In our
experiments, we leveraged all values that were provided by
the used home automation platform, covering the different
categories of contextual features (cf. §2.2): i) Sensors/devices
that measure ambient or temporal features (e.g., temperature,
humidity, and luminosity), ii) user features (e.g., user presence
and sleep confidence), and event features (e.g., states of the
light bulbs, doors or windows).

B Runtime Performance

The real-time approach evaluates events without delay as soon
as they are captured. Compared to the time the user needs to
react manually, even an unlikely delay of multiple seconds
would be negligible.

We performed additional experiments to evaluate ARGUS on
a low-performance device (Raspberry Pi) without observing
any delay. Further, we also restrict the main memory that
ARGUS was allowed to use and observed that 330MB are
sufficient for the implementation. It should be noted that the
prototype of ARGUS was not optimized for runtime perfor-
mance, such that by using, e.g., more efficient languages the
runtime performance could be increased even further.

C Evaluation of Robustness of the Threshold

In the following, we investigate whether the injection of noise
in devices’ states would tamper ARGUS’s threshold, there-
fore, making it more likely to miss attacks.

Considering 6 different levels of noise randomly sampled
from a normal distribution, described by:

1 -3z (6)
V2T

fx) =

Table 7: Deployed devices in the collected real-world IoT
dataset. The deployment of a sensor/actor is indicated by e,
while the absence is indicated by o.

Device

Automation - All lights off
Automation - All lights on

Automation - Camera off when at home
Automation - Dinner lights
Automation - Dinner table light
Automation - Gaming mode
Automation - Heating boost off
Automation - Light off when no motion
Automation - Lights off in the evening
Automation - Lights off when too bright
Automation - Lights on in the morning
Automation - Lights on when motion detected
Automation - Piano Light

Automation - Sofa Lamp

Automation - Studio Light off
Automation - Studio Light on when motion
Automation: Camera on when user leave
Camera Status Sensor

Climate - Control access point 1

CO; Sensor Status

CO; Sensor

Control Access Room 1 Sensor

Door Sensor

Floor lamp

Heating - heater valve

Heating Temperature Sensor
Homematic - Radiator Thermostat Temperature Sensor
Humidity Sensor

IKEA Tradfri Roller Blind Sensor

IP Camera - Light Level

IP Camera - Motion

IP Camera - Motion Active

IP Camera - Pressure

IP Camera - Sound

Lamp consumption

Lamp consumption (daily)

Lamp consumption (total)

Lamp current

Lamp voltage

Light - Ceiling

Light - Desk Lamp

Light - Living Room

Philips Hue - Light Level Sensor 1
Philips Hue - Light Level Sensor 2
Philips Hue - Motion Sensor 2

Philips Hue - Temperature Sensor 1
Philips Hue - Temperature Sensor 2
Philips Hue - White Lamp 2

Philips Hue - White Lamp 3

Philips Hue - Motion Sensor 1

Piano lamp

Radiator Thermostat Sensor
Smartphone - Battery Life

Smartphone - Charging

Smartphone - Charging Sensor
Smartphone - Connected to WLAN
Smartphone - Detected Activity
Smartphone - Light Sensor
Smartphone - Locked

Smartphone - Phone Status
Smartphone - Sleep Confidence
Smartphone - Sleep Segment
Smartphone - Tracker

Studio lamp

Sun Sensor

Temperature Sensor (ESP)

User Presence

Weather - Home Location

‘Weather - Town

Window Sensor

® © e o 0o 00O 00O ®© 0 OO ®O ©00O0O0O0O0O0O0O0O0O0O0O e®®eO0O0O0O0O0O0O0O0O0O e e 0 e 0O eO0 e e0O0O0O0O0O0O0O0O0O0 00000 o0 o o olHomel
@ O e e @ 0O 00O ®© @O © 0 000 ®©0O0O0OOO®O0OO®O0 e e00O0O0O0O0O0O0O0O0O0 eOoO 0O e0O0O0O0 e0O0O0O0OoO e e e 000 o0 o o o oflHome?2
@ e 00O 0 00O0OOOOOOOOOO ® e©® e e e e© e e e e e 00O0O0O0O0O0OO0OOOO®O0O0O0 e®0O0O0O0 e0O0O0O0O0O0O0O0 00000 o0 o o olHome3
© © 60606060 006060000 ®O0O0O0®O0®®OOO®O0O0 0 e® 000000 O0O0O0O0O0 eEOoO o O e e 000 O0 eO0O0O0O0 e0 eo0 o0 o0 o0 e e o0 olHomeéd
O O ©®€ 0O © @ 00 OO @0 ® 0O ® O ®© e ® 0O OO ® 0 O ® O ®© © &6 © © 06 06 06 06 06 0 00600 e 06 0O0O0 0O e e e 00 O0Oee e e e 0 e o Homejs

4316 32nd USENIX Security Symposium

USENIX Association

_ \ -—-- C
10 1 " d
k=] - -2 \
z 2 6x10 Ty
< e
o @
IS ¢
= £ 5x10°2
20 40 60 80 8 9 10 11 12
Time Splits (Days) Time Splits (Days)
(a) Home 2 (b) Home 5

10-1 4

H
[J——e

Threshold

0 25 50 75 100 125 150 175
Time Splits (Days)

(c) Home 1

Figure 6: Thresholds values comparison between Threshold
Candidate (C;) and ARGUS Threshold (7;) for multiple real-
world homes.

c \ Alerts % Not affecting % Affecting no alerts %
1 0.002 99.674 0.323
2 0.031 99.485 0.489
3 0.200 98.883 0.916
4 0.987 96.104 2.909
5 4.637 86.597 8.766
6 15.511 68.696 15.793

Table 8: Noise injection in events chain analysis on Home 1
dataset. Each entry counts 652,720 x 18 events evaluated. The
values shown are the mean of all the devices attacked, for all
the days considered per each level of noise considered (i.e.,
18 x 6. In total are evaluated 70493 760 events).

where u is the mean and ¢ is the standard deviation, we attack
all the devices, one per run, attacking its states with an amount
of noise sampled from:”

flxlu=1,6=0i)Vi €{1.6})

considering all the days available for testing. For understand-
ing if the attack is successful, and with which rate, we measure
the number of alerts raised and how many times the benign
maximum and minimum are exceeded (i.e., if the threshold
computation would be affected by the injected noise).

As we can observe from Table &, in order to affect the
threshold, even with just a low probability, 4 has to inject a
high amount of noise (¢ € {4,5,6}). However, if the level of
noise gets severe the risk of raising an alert will raise up to
15.511%. Since A4 is assumed to be unable to compromise
the ARGUS system (cf. §3.2) it cannot check in advance if
a noised event will have no impact, raise an alert, or affect
the threshold without raising an alert. Therefore, in order
to damage the detection of ARGUS, it has to create a high
number of attack events. Further, since the impact of a single

2We consider the mean of 100 samples sampled from the distribution.

day on the threshold is limited due to the aging factor o, 4
has to create many fake events over many days to damage
ARGUS. However, this will also cause a high number of
alerts, such that the user will become suspicious and detect
the attack.

D Comparison of Threshold and Threshold
Candidate

To evaluate the impact of the momentum on the threshold
in more detail, we measured the threshold candidate C,; as
well as the resulting threshold 7. As Fig. 6 shows, C; fluctu-
ates significantly, depending on the measured context of each
day. However, if C; would be used as classification boundary,
these fluctuations might cause FNs or FPs on the follow-
ing day. For example, when the user behavior for one day
d differs from the usual behavior, C;, which is used on the
following day d+1 as classification boundary, is very high
(as in Subfig. 6¢). This would cause a risk that the anomaly
scores of attacks on day d+1 are lower than C;. On the other
side, if the behavior of the user on day d is very similar to
the expected behavior, C; might be too low, causing FPs. In
comparison, the momentum used by 7; smooths outliers and
prevents that exceptional high or low anomaly scores on the
previous day, e.g., caused by slightly differing user behavior,
affect the system’s performance.

E Ablation Study on o and 3

Furthermore, we extensively evaluated the o and parameters
selection through 400 experiments. The results are summa-
rized in Figure 7, showing how the selection of o = 0.2 and
B = 0.2 corresponds to an optimal choice.

F Alternatives for AE

We performed multiple experiments to compare the used
DNN architecture (cf. §4.2.2 to other machine learning
(ML) and deep learning algorithms, the results are shown
in Tab. 9. As classical ML algorithm, we used a One-Class
Support Vector Machine (One-Class SVM) [17]. The sec-
ond approach uses also an Auto-Encoder (AE), which is
also used by ARGUS. However, the evaluated AE model
uses normal, linear layers, while ARGUS uses GRU lay-
ers to consider better the temporal order of the individual
events. All approaches were trained using the same datasets
and used to predict anomaly scores. However, to prevent
any bias in favor of ARGUS, we opted for each of the al-
ternatives a threshold that maximizes the F1-Score on the
test data, while for ARGUS we used the threshold that we
discussed in §4.3. However, even with this advantage, Re
is significantly lower for the One-Class SVM and the AE

USENIX Association

32nd USENIX Security Symposium 4317

-1.0
-1 1 1 1 0.990.970.960.940.930.930.91

-09 1 1 1 0.990.970.960.940.940.930.91
0.97 1 1 0.990.970.960.950.940.940.91 09

5096 1 1 1 0.980.960.960.950.950.92

g .

1:E10.940.98 1 1 0.990.970.960.960.950.93 0.8

0.9 0.940.99 1 0.990.980.970.970.960.94

I
[=]

78 0.910.970.990.990.980.970.970.970.95 0.7
R0.750.81 0.930.960.990.990.980.980.970.97
0.9 0.940.990.990.990.980.980.97

0.940.980.99 1 0.990.990.97

Alpha
1.0 09 08 07 06 05 04 03 02 01 0.0
=]
i
ey

51 0.9 0.940.980.990.99 1 1 1

0.0

0.1 02 03 04 05 06 07 08 09 10
Beta

Figure 7: o and P parameters selection of ARGUS for the
setup Home 4. For the sake of saving space, o and 3 are repre-
sented in the heatmap with a step of 0.1, the actual evaluation
counts a step size of 0.05.

Table 9: Evaluation of alternative choices for the Machine
Learning (ML) algorithm for modeling the expected behavior
of Home 5, all values in percentage.

ML Algorithm | FPR Pr Re F1-Score
One-Class SVM | 0.0 962 529 68.2
AE without GRU | 49 98.0 87.1 92.2
ARGUS 0.0 100.0 100.0 100.0

without the GRU layers, indicating that they miss many at-
tacks. On the other side, especially the AE without the GRU
layers also misclassifies many benign events (FPR = 4.9%)
and the OneClassSVM misses 25 benign events (FPR =
0.016%), such that their F1-Scores are only 92.2% and 68.2%.
In comparison, ARGUS detects all attacks in this setup
(FPR = 0.0%) and the F1-Score is 100.0%.

G Evaluation Metrics

To evaluate the performance of the trained model we
use common performance metrics such as False-Positive-
Rate (FPR), Precision (Pr), Recall (Re), and F1-Score.
For calculating these metrics, we count the number of
benign events that are correctly classified (TN) or mis-
classified (FN) as well as the number of attacks that
are correctly recognized (TP) or not recognized (FN).
We define the performance metrics as follows:
False-Positive-Rate (FPR) indicates the risk to misclassify
benign events. It is given by:

FP
FPR = ———
FP+TN ®)

100% A X
\ —e— F1-Score
—eo— Recall
0.0 0.5 1.0 1.5 2.0
Attack Data Rate (%)

Metric Value

0% -

Figure 8: Evaluation of ARGUS depending on the amount of
poisoned data in the training set of Home 5

Precision (Pr) indicates the probability that an event that is
recognized as anomaly is actually an attack. It is given by:
TP
- TP+FP

Recall (Re) indicates the effectiveness of an approach to
detect attacks. It is given by:

(€))

TP
Re= —— (10)
TP+ FN
F1-Score balances Pr and Re. It is calculated as:
Pr-R TP
F1-Score =2- rRe _ (11)

Pr+Re TP+ 1/2(FP-EN)

H Robustness of ARGUS against Data Poison-
ing

We assume that the IoT system is not compromised during
the data collection phase (cf. security assumptions in §3.2).
In the following experiment, we evaluate the robustness of
ARGUS if this assumption is violated, considering the data
poisoning through the injection of attacks during the training
process.
To do so, we conducted an experiment using the setup Home 5
and injected different numbers of events that are part of the
Light-Flickering attack into the benign training data and eval-
uated the resulting model. In particular, we considered this at-
tack as it was the attack with the lowest reconstruction scores
(i.e., the closest to benign data and so the worst case possible).
As Fig. 8 shows, ARGUS demonstrates robustness charac-
teristics against this kind of data poisoning while the overall
poisoned data is lower than 0.6% of the total number of events.
Therefore, 4 would need to manually perform this attack 42
times, until ARGUS cannot detect the Light Flickering any-
more.

I Computational Setup

For the evaluation, the events were collected offline. All event
traces were evaluated on a server running Debian 10, with 1
TB main memory, 64 physical cores, provided by an AMD
EPYC 7742 processor, and 4 NVIDIA Quadro RTX 8000.
For the machine learning experiments, we leverage the Scikit-
Learn library [39] and Pytorch [7] for implementing the neural
networks.

4318 32nd USENIX Security Symposium

USENIX Association

	Introduction
	Problem Setting
	Recent IoT Attacks
	System and Context Model
	Adversary Model
	Requirements and Challenges

	System Design
	High-Level Overview
	Security and Trust Assumptions

	ARGUS
	Device Monitoring
	Context Modeling
	Data Preprocessing
	Deep Learning Model

	Anomaly Score Classification
	Implementation

	Evaluation and Discussion
	Dataset
	Dataset Collection
	Ethical Considerations

	Experimental Results
	Attack Detection
	Internal Components

	Security Considerations
	Avoidance by Context Manipulation
	Manipulating Model Training Data

	Discussion
	Limitations of ARGUS
	False-Alerts

	Related Work
	Sensor Value Validation
	Policies & Transition Graphs
	Contextual Anomaly Detection

	Conclusion
	Devices
	Runtime Performance
	Evaluation of Robustness of the Threshold
	Comparison of Threshold and Threshold Candidate
	Ablation Study on and
	Alternatives for AE
	Evaluation Metrics
	Robustness of ARGUS against Data Poisoning
	Computational Setup

