
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

FABRID: Flexible Attestation-Based Routing
for Inter-Domain Networks

Cyrill Krähenbühl, Marc Wyss, and David Basin, ETH Zürich; Vincent Lenders,
armasuisse; Adrian Perrig, ETH Zürich; Martin Strohmeier, armasuisse

https://www.usenix.org/conference/usenixsecurity23/presentation/krahenbuhl

FABRID: Flexible Attestation-Based Routing for Inter-Domain Networks

Cyrill Krähenbühl
ETH Zürich

Marc Wyss
ETH Zürich

David Basin
ETH Zürich

Vincent Lenders
armasuisse

Adrian Perrig
ETH Zürich

Martin Strohmeier
armasuisse

Abstract
In its current state, the Internet does not provide end users

with transparency and control regarding on-path forwarding
devices. In particular, the lack of network device information
reduces the trustworthiness of the forwarding path and pre-
vents end-user applications requiring specific router capabili-
ties from reaching their full potential. Moreover, the inability
to influence the traffic’s forwarding path results in applica-
tions communicating over undesired routes, while alternative
paths with more desirable properties remain unusable.

In this work, we present FABRID, a system that enables
applications to forward traffic flexibly, potentially on multiple
paths selected to comply with user-defined preferences, where
information about forwarding devices is exposed and transpar-
ently attested by autonomous systems (ASes). The granularity
of this information is chosen by each AS individually, pro-
tecting them from leaking sensitive network details, while the
secrecy and authenticity of preferences embedded within the
users’ packets are protected through efficient cryptographic
operations. We show the viability of FABRID by deploying
it on a global SCION network test bed, and we demonstrate
high throughput on commodity hardware.

1 Introduction

The current Internet can be viewed as a black box over which
endpoints send traffic without detailed knowledge about the
network paths taken. While this black box usage is sufficient
for many applications, it can lead to performance, compliance,
and security issues when the path does not comply with end-
users’ required network properties.

For example, some applications require that data does not
leave a given jurisdiction, which therefore requires that sensi-
tive traffic is only routed through routers operated in certain
countries or regions [11]. Another application is time syn-
chronization, which may require packets to be forwarded only
over routers with hardware-based time synchronization sup-
port (e.g., PTP [20]) [36]. Governments or critical infrastruc-
ture operators may further desire to avoid network equipment

from certain manufacturers or specific router versions that
pose potential security risks. They may thus wish to route
traffic over paths consisting of specific, trusted equipment.

Confidentiality of data in the Internet is achieved through
encryption. However, data (payload) encryption has limita-
tions. Metadata such as IP addresses can still be observed,
enabling censorship and reducing anonymity. The distribution
and protection of keys is challenging and weaknesses in ci-
phers and modes of encryption, advances in cryptanalysis, or
quantum computers may render encryption schemes insecure.
Moreover, legacy communication protocols might not support
encryption at all. Instead of exclusively relying on encryption,
confidentiality and integrity can be enhanced by forwarding
data over channels built from trusted network equipment (de-
vices and links), which is believed not to eavesdrop on the
communication.

This raises the question of how to implement inter-domain
Internet path selection for end users based on attested router
properties. There are currently two initiatives with similar
design goals, however neither of them can provide flexible,
policy-compliant, inter-domain Internet path selection based
on individual user needs. First, the IETF draft Trusted Path
Routing (TPR) [41] from the Remote ATtestation ProcedureS
(RATS) working group [22] has proposed to conduct remote
attestation measurements between neighboring routers to find
trusted links, and thus create a trusted routing plane within
a network based on intra-domain routing protocols such as
IS-IS or OSPF. Unfortunately, TPR does not offer endpoint
path control and focuses on intra-domain communication.

The second approach is the path-aware Internet architec-
ture SCION [8], which allows individual applications, on
endpoints, to influence the forwarding path of their traffic.
SCION is an Internet architecture that enables endpoint path
control and multi-path communication. SCION is now glob-
ally deployed, commercially available, and allows endpoints
to control forwarding at the autonomous system (AS) level.
Still, the level of transparency and control provided by SCION
does not suffice for an endpoint to learn relevant information
about network equipment in the internal networks of on-path

USENIX Association 32nd USENIX Security Symposium 5755

ASes, as it does not provide attested router properties for the
network elements along a selected path.

In this work, we present Flexible Attestation-Based Rout-
ing (FABRID), a novel system that supports the fine-grained
selection of the properties of all network elements along an
inter-domain path. ASes advertise network devices with spe-
cific properties and optionally increase their trustworthiness
by publishing remote attestation results to prove the existence
of the advertised devices.

FABRID extends SCION, inheriting its properties such as
path control at the granularity of border routers, robustness
against single link failures, and a scalable global route dis-
tribution mechanism. We leverage the backward-compatible
extensibility of SCION’s control and data planes to enable
partial deployment of FABRID within the SCION network.
Even when some ASes on the forwarding path do not sup-
port it, FABRID still provides some benefits. Experience with
IPv6 [18], egress filtering, and BGPsec [32] shows that allow-
ing incremental deployment is a necessity for new Internet
technologies since convincing ISPs to adopt them is a chal-
lenging and time-consuming process.

The main contributions of this work are the following:

• We design an extensible policy language to describe
arbitrary router attributes, which supports customizable
policies for users and ASes. Leaking sensitive intra-AS
data is prevented by restricting AS policies accordingly.

• We enhance SCION’s path control to enable path selec-
tion based on user-defined policies and use SCION’s
public-key infrastructure to authenticate information
about on-path network devices by the respective ASes.

• We apply efficient measures for authenticity and secrecy
of users’ packet-carried policy decisions.

• We implement and evaluate a high-speed variant of FAB-
RID, and demonstrate the system’s feasibility by deploy-
ing it on a global test bed.

2 Background on SCION

We build FABRID on top of SCION [8], a network archi-
tecture that provides strong availability, control, scalability,
and transparency guarantees. In SCION, autonomous systems
(ASes), which constitute the Internet’s building blocks, run
a dedicated SCION control service responsible for the dis-
covery, dissemination, and validation of routing information.
SCION border routers provide one or multiple external in-
terfaces to other ASes, connecting the network link between
them, and an internal interface for connectivity to border
routers in the same AS, the control service, and other local
endpoints. All other routers inside an AS are referred to as
internal routers.

In SCION, ASes are logically grouped into isolation do-
mains (ISDs). Some ASes inside an ISD are core ASes, which

Figure 1: SCION topology example. Assuming the existence
of three path segments C-G-E-F, C-S, and S-V-W, these three
path segments can be combined into an end-to-end path from
a host in AS F to a destination host in AS W.

manage the ISD’s trust roots and provide connections to core
ASes in the same or other ISDs. Routing in SCION is a per-
ISD process for discovering intra-ISD paths. To interconnect
ASes in different ISDs, a separate routing process discovers
paths between all core ASes. Intra- and inter-ISD routing
procedures are implemented through a beaconing process,
which is initialized by core ASes disseminating path-segment
construction beacons (PCBs). An AS receiving a PCB ex-
tends it with local information such as its AS and interface
identifiers. An AS signs the PCB and then forwards in to se-
lected neighbors. The AS’s public key is certified by SCION’s
control-plane public-key infrastructure (CP-PKI). SCION en-
ables a diversity of end-to-end paths thanks to the various
ways in which up to three path segments can be combined:
an up-segment from its AS to a core AS of the same ISD, a
core-segment between two core-ASes, and a down-segment
between a core- and the destination AS. Shortcuts between up-
and down-segments eliminate potential routing inefficiencies.

An endpoint learns segments to the desired destination
from the control service of its AS, where the service typically
returns a few dozen possible segments. This makes SCION
a path-aware networking architecture, as endpoints can in-
fluence the forwarding path that their traffic takes through
the network on an AS-level. This is in contrast to traditional
inter-domain networking, where the network delivers data on
paths outside of the endpoints’ control.

When sending a packet, the path (a list of ingress/egress
interface-pairs) is encoded as packet-carried forwarding state
(PCFS) in the packet header, instructing on-path border
routers how to forward the packet. PCFS enforces the end-
points’ path selection, enables multipath communication, and
protects packets from unanticipated re-routing and hijacking
attacks. An example SCION topology is shown in Figure 1.

5756 32nd USENIX Security Symposium USENIX Association

3 Trust Model and System Objectives

In this work, we consider endpoints that require communi-
cation with other endpoints over paths consisting of devices
with specific desired attributes. We intentionally keep the def-
inition of an endpoint abstract—it can refer to a machine, an
application, or even a specific flow.

3.1 System Objectives
FABRID’s overall objective is to enable endpoints to send
traffic over devices or links with desired attributes. We want
to support a large variety of use cases, from utilizing specific
functionality provided only by certain routers to ensuring that
traffic is sent only over trusted hardware. The generalized
ideal property of FABRID is the following:

Ideal Objective. Traffic is only received by devices or
links with attributes acceptable to the endpoints.

In practice, achieving this property is challenging for mul-
tiple reasons. Network operators would need to give external
entities, e.g., endpoints, insight into communication devices
and channels on all layers, i.e., on the network-, link-, and
physical layer, which might not readily be available. Even
given this insight, adjusting the routing of the typically static
link-, and physical layer can be difficult. At the same time,
routing at the network layer offers more flexibility and is
very common, e.g., in traffic engineering, especially given the
prevalence of software-defined networking (SDN). Addition-
ally, control over the link-, and physical layer path has limited
benefits as the link-, and physical layer path often depends on
the network path. Finally, for the trusted hardware use case,
all of these devices would require hardware support, e.g., a
trusted platform module (TPM). We therefore relax this ideal
property as follows:

Realistic Objective. Traffic is only received by network
layer devices (routers) with attributes acceptable to the
endpoints.

This is still a very strong property, as the physical- and link
layers are not easily accessible to an adversary. Link layer
devices cannot be addressed directly by arbitrary devices on
the Internet, and eavesdropping on links is difficult due to
physical security measures such as protected premises at ISPs
and Internet Exchange Points (IXPs).

To achieve this objective we formulate the following end-
point requirements:

E1 Path Transparency: Endpoints can request information
on the attributes of on-path devices. Accurate informa-
tion allows them to select paths to achieve specific ob-
jectives.

E2 Attested Claims: Claims about router attributes should
be attested by the AS (and optionally by the routers

themselves) to the endpoints and be non-repudiable.

E3 Secrecy and Authenticity: For packets that are meant
to follow a path with certain attributes, only legitimate
on-path entities should be able to decrypt those attributes
embedded in the packet header. Those entities should
also verify the authenticity of the attributes and discard
packets not passing this verification.

E4 Path Stability: A selected path consisting of routers
with desired attributes should be stable over time, other-
wise traffic might be routed over devices violating the
endhost’s preference.

E5 Path Validation: Even if path stability is ensured by
some routing protocol, misconfigured or compromised
devices may still violate their forwarding directives. It
should therefore be possible for endpoints to verify that
their selected path is actually obeyed by on-path routers.

E6 Fine-Grained Properties: Specifying desired router at-
tributes should be as flexible as possible, irrespective of
endpoints being end hosts, applications, or flows.

Note that some of these requirements are not possible to
achieve in the current Internet based on the Border Gate-
way Protocol (BGP). The most fundamental limitation here is
BGP’s lack of path stability, whereby routes can unpredictably
change at the level of ASes due to rerouting events or hijack-
ing attacks. ASes have fundamentally different requirements:

A1 Trade Secrets: An AS should not need to reveal sensi-
tive information about its internal network, but rather be
able to decide itself which router attributes to publish.

A2 DDoS Protection: Some ASes distribute ingress traf-
fic for the same egress router among multiple paths to
achieve better redundancy and higher throughput. Such
ASes should have the option to announce router at-
tributes without having to specify a concrete path, as
otherwise an adversary can target this path using DDoS.

A3 Efficient Distribution: Propagating router attributes to
endpoints should be efficient, i.e., incur only low com-
putation and communication overhead.

A4 Efficient Forwarding: Sending traffic along routers
with specific attributes should not significantly impact
performance. In particular, this implies efficient packet
generation and reception at the endpoints and high-speed
forwarding at routers that scales to today’s Internet link
capacities. Also, the amount of additional packet meta
data should be minimal.

To address the tension between the transparency requirements
of endpoints (E1) and what router information an AS is will-
ing to provide (A1), we introduce the concept of policies,
which allows ASes to precisely specify the granularity of
attributes to be published.

USENIX Association 32nd USENIX Security Symposium 5757

3.2 Policies

In this section, we introduce the concept of policies. Policies
allow ASes to specify the granularity of the router information
they publish (A1), and enable endpoints to validate whether
this router information complies with their needs (E1).

Specifically, a router attribute is a trait of an intra-AS or
border router, such as its manufacturer or hard- and software.
A router policy is a predicate on a router defined in terms of
its attributes. For example “a router is manufactured by A or
B.” A router policy may be lifted to a path policy by requiring
that it holds for every router on a path. An example of a path
policy, with which the previous router policy is compliant, is
“all on-path routers are manufactured by A.” In Section 5, we
design a language for defining these policies.

An endpoint describes required router attributes using a
router policy, which we will refer to as the endpoint’s pref-
erence policy. A preference policy can be used in different
ways. For example, it could be defined per-device, per-user,
per-application, or even on a per-packet basis (E6). Applica-
tions might even be distributed with a predefined policy.

3.3 Trust Model

Which entities endpoints trust is subjective, and we therefore
define our trust model from the point of view of individual
endpoints. In our model, the granularity of trust is at the level
of ASes, i.e., an endpoint may trust some ASes more than
others.

We assume that trusted ASes are not malicious: they fol-
low all protocol steps correctly and they implement measures
to protect their infrastructure from attacks. However, even
highly trusted ASes can make mistakes, and parts of their in-
frastructure may be misconfigured. We refer to such ASes as
honest-but-clumsy. In practice, endpoints often have existing
trust relationships with some of the ASes, based on business
relationships or common legislation. Concrete examples in-
clude government offices communicating via multiple ISPs
located in their country, companies affected by regulations
mandating traffic not to leave specified countries [11], or ISPs
offering policy-based path selection for an additional fee. In
order for a source endpoint to communicate with a destination
endpoint in a remote AS using FABRID, there must exist at
least one valid and usable path of trusted ASes.

We also assume that ASes are directly peering such that
inter-AS communication does not traverse additional routers
and that relevant certificates are secure, i.e., no intermediate
entity, such as a certificate authority, in a certificate chain
is compromised. Furthermore, communicating endpoints are
assumed to trust each other in order to agree on the same
on-path router attributes. Our model restricts the capabili-
ties of adversaries on an endpoint-selected path to reading,
modifying, injecting, and dropping packets.

Note that we do not make any assumptions about untrusted

ASes, which can exhibit arbitrary and even actively malicious
behaviour. If FABRID relied on BGP, where traffic can be
redirected by malicious off-path adversaries by attacks such
as hijacking [7] or blackholing [29], endpoints would addi-
tionally need to trust a potentially large set of off-path ASes to
not perform such attacks. This observation motivates building
FABRID upon SCION, which mitigates re-routing attacks by
authenticating routing information using its CP-PKI and by
enforcing correct forwarding by means of PCFS.

4 FABRID System Description

FABRID, based on SCION, enables ASes to announce paths
along with intra-AS path policies and allows endpoints to
select routes based on their own policy preferences. FABRID
satisfies the requirements of endpoints and ASes specified
in Section 3.1. In particular, an attacker can neither change
the forwarding paths and policies chosen by the endpoints
nor spoof the path policies announced by the ASes. FABRID
introduces minimal processing and state overhead on routers
and endpoints and is incrementally deployable.

4.1 Overview
FABRID consists of two main processes. In the control plane,
path policies are distributed to endpoints, which compare
them for compliance with their local preference policies. In
the data plane, endpoints encode the selected policies into
their data packets, such that on-path ASes know how to for-
ward them through their internal network. A system overview
is provided in Figure 2.

Every participating AS decides which path policies it wants
to disseminate. When originating or forwarding a SCION path
construction beacon (PCB), the AS extends the PCB with path
policies and AS-local identifiers, called policy indices, of in-
ternal paths that comply with these path policies. In Figure 2,
AS C adds policies PX and PY, AS G adds policy PZ, and AS E
adds all three policies. Endpoints fetch path segments (con-
structed from the PCBs) from the local control service and
filter out paths with untrusted ASes or with path policies that
do not comply with their preference policy. If there is no path
left, an endpoint can either decide not to send any traffic, or to
still use one of the filtered sub-optimal paths. The endpoint EF
in Figure 2 trusts all on-path ASes and decides to send traffic
on the selected path despite one AS (AS G) not supporting the
desired policy PX. This could be a sensible decision if PX cor-
responds to a “best-effort” policy, for example, PTP support,
but might not be acceptable for security-related attributes.
After selecting a set of path segments, the contained policy
indices are encoded by the endpoint in a SCION packet and
used by ingress border routers to forward the packet across an
internal path complying with the corresponding policy. For
the first AS (AS F in our example), the endpoint can only
learn the supported policies, but it can not actively select a

5758 32nd USENIX Security Symposium USENIX Association

Figure 2: System overview. During beaconing, every AS adds its supported policies to the PCB (green). Endpoint EF fetches the
corresponding path including the added policies from its control service, which resolves and caches unknown policies (orange).
For packets destined to EC, EF encodes its policy choice PX in the respective headers, except for AS G, which does not support
this policy, and AS F, which supports the policy by default (red). Although not all ASes support PX, EF still decides to send its
traffic over the path. Optionally, dedicated third parties verify the AS-attested policies through remote attestation.

policy, as there is anyway only one intra-AS path to the egress
border router. Therefore, the endpoint does not need to add a
policy index to the SCION header for its own AS.

A policy index does not necessarily correspond to a single
intra-AS path. The policy index encoded in the packet is
evaluated when the packet arrives at the border router. This
allows the border router to choose any intra-AS path that is
compliant with the requested path policy. Hence, intra-AS
routes can be changed on-the-fly by network operators, load
balancing among multiple intra-AS paths is possible, and
fewer details about the intra-AS topology must be revealed.

To prevent malicious entities from negatively impacting
the path selection and the endpoint privacy, our solution em-
ploys several security mechanisms of SCION. In particular,
FABRID encodes path policies in SCION PCBs and makes
use of SCION’s CP-PKI for verifying signatures from the
respective ASes, thereby preventing the spoofing and tamper-
ing of policies. Moreover, using EPIC, a data plane extension
for SCION, the endpoint can verify that its packet indeed
traversed each on-path AS (see Appendix B for details about
EPIC). Finally, FABRID authenticates and encrypts the pol-
icy index in the packet header, providing privacy regarding
an endpoint’s policy preferences.

4.2 Policy Announcement
A straightforward approach for disseminating path policies
would be for ASes to encode their policy descriptions directly
in the PCBs (achieving requirements E1 and A1). However,
this is not space efficient since it can substantially increase the
size of the PCBs for complex path policies, and therefore vio-
late requirement A3. Moreover, many ASes may have similar
path policies, leading to redundancy. We therefore distinguish

between globally and locally announced path policies.

Global Announcement Global policies are stored in a
global append-only registry managed by a trusted entity such
as ICANN [19]. This registry can be described as a map from
a policy identifier (PID) to the concrete policy description:

G : PG→ SG .

Here, PG is the set of global policy identifiers and SG denotes
the set of global path policy descriptions. The PIDs can be
short in practice—we consider a 32-bit number a reasonable
representation. The purpose of the global registry is to support
globally accessible path policies used by a large fraction of
ASes. Entities can then simply refer to the PID instead of a po-
tentially large policy description. Entries in the registry must
never be changed or removed to ensure a globally consistent
view despite entities caching the registry information.

Local Announcement An AS is not restricted to only use
globally defined policies, and an AS X can define its own
append-only mapping of policy identifiers:

LX : PX
L → SX

L .

Here, PX
L is the set of PIDs defined by AS X, and SX

L denotes
its set of path policy descriptions. The mapping LX is stored
at the control service of AS X. The service is extended to
also serve path policy requests based on this information.
Irrespective of whether an entity requests the policy mapping
from a specific AS or from the global registry, the response
must always be authenticated using a signature. The control
service caches entries from the global registry and other ASes
for its local endpoints to reduce the communication overhead.

USENIX Association 32nd USENIX Security Symposium 5759

4.3 Policy Dissemination via PCBs
ASes disseminate their supported path policies to the end-
points by piggybacking this information on SCION PCBs.
This added information describes which path policies are sup-
ported on specific ingress-egress interface-pairs. Naturally,
the interface pair the PCB is traversing is the most relevant;
however, SCION also supports shortcut and peering links [8],
and therefore path policies for multiple interface-pairs can be
specified. Different path policies can be described depending
on directionality, that is, an interface-pair (i, e) need not nec-
essarily support the same policies as the interface-pair (e, i).
Furthermore, we allow an AS to announce path policies not
only for interface-pairs, but also between an interface and an
IP address range inside the AS. This enables endpoints to also
learn the policies supported by the first and last on-path AS.

Because endpoints have access to the global map (G), as
well as to the local policy map of an AS X (LX), it suffices for
the AS to only add the relevant PIDs to the PCB, instead of
the full path policy descriptions. For every (global and local)
PID it supports, an AS further defines a short 16 bit, non-
zero policy index (ψ). The short length of the policy index is
motivated by its subsequent use in the data plane, where it will
be included in the data packets sent by endpoints. The validity
period of a policy index is the same as the validity period of
the PCB to which it is added. A PCB can be converted to a
path segment and thus be used to send traffic usually for a
duration of a few hours, after which an endpoint must get path
segments from a more up-to-date PCB. An AS can update a
policy index such that it points to a different PID, but with the
restriction that no two PCBs with overlapping validity periods
include different policy index mappings. Naturally, an AS
must ensure that it only announces policies that it can support
during the whole validity period of a PCB (E4). However, it
is free to decide how to route traffic along internal paths that
satisfy the announced policies. Some of the most prevalent
routing protocols suitable for this purpose are MPLS [34] and
segment routing [12]. Based on the preceding description, we
formalize the information added to a PCB by AS X in the
form of two maps IX and DX as follows:

IX : IFIPX→ P (ψX),

DX : ψ
X→ PX

L ∪PG,

where IFIPX =((IFX∪IPX)×(IFX∪IPX))\(IPX×IPX), IFX

is the set of interfaces, IPX the set of IP address ranges, and
ψX the 8 bit space of valid policy indices of AS X. P (ψX)
denotes the power set of ψX.

To prevent manipulation by unauthorized entities, this path
policy information, i.e., IX and DX, is signed by AS X (E2).
Figure 3 shows the format of a PCB and how it is extended
with signed policy information. Although policy information,
in the form of the two maps IX and DX, is added in the un-
signed part of the PCB, this information cannot be modified,
since a cryptographic hash of the map content is included in

PCB = 〈INF||ASE0||...||ASEX ||...||ASEn〉

〈ASE(signed)||∑ ||ASE(unsigned)〉

〈Local||...||MTU||Ext〉 〈ExtUnsigned〉

〈DigestExt〉 〈DetachableExtData〉

〈...||hash
(
IX||DX

)
〉 〈...||

(
IX||DX

)
〉

Figure 3: PCB format containing path policy information.
FABRID extends the DigestExt and DetachableExtData fields
of a SCION PCB by hash(IX||DX) and IX||DX, respectively.

the signed part of the PCB. Even though the two maps IX

and DX can be encoded efficiently in terms of space, they
can significantly increase the size of a PCB in case (i) there
are many on-path ASes adding information to the PCB, (ii)
many different policies are announced, or (iii) some ASes
have many pairs of interfaces or IP subnets with support for
policies. Including only the hash of the maps in the signed
part of the PCB allows removing the actual maps from the
unsigned part of the PCB if needed (A3). In this case, the
endpoints need to actively fetch the maps from their local AS,
which fetches them from the corresponding ASes and caches
them to reduce network overhead. They can efficiently verify
the authenticity of IX and DX by computing their hash and
comparing it against the hash included in the PCB for AS X.

4.4 Endpoint Policy Selection
An endpoint assembles the desired end-to-end path from up-,
core-, and down-segments constructed from the PCBs fetched
from the local control service of its AS (see Section 2).

As every PCB also contains the path policies that the cor-
responding ASes support, the endpoint can verify whether
the corresponding segment satisfies its requirements (E1). If
some of the ASes that are part of the segment are not trusted,
or announce path policies that are not in accordance with the
endpoints’ needs, the endpoint either decides to accept such
untrusted ASes or non-optimal path policies and to still use
the segment, or to take advantage of SCION’s path-awareness
and try to find another segment that actually satisfies its pref-
erence policy. An endpoint receives from the control service,
by default, many possible segments to reach the requested
destination AS, and therefore it has several possible paths and
policies that it can readily choose from.

To achieve policy selection at the packet level (E6), the
endpoint communicates which policy should be satisfied to
each on-path AS, except its local AS, in the form of policy
indices (a policy index of zero signifies no specific desired
policy). An endpoint can only select a single policy index per
on-path AS; an AS can announce local path policies that are

5760 32nd USENIX Security Symposium USENIX Association

conjunctions of other path policies. Upon reception of a data
packet, an ingress border router parses the policy index and
maps it to an internal path satisfying the corresponding path
policy. This mapping, which can be implemented efficiently
using a hash table (A4), adds overhead to the processing time
of every packet, which is however negligible even for ASes
supporting hundreds of policies (Section 6). In particular, its
scalability does not depend on the number of endpoints (hosts,
applications, or flows) actively sending traffic.

The codomain of the mapping and any further actions ex-
ecuted on a packet depend on the intra-AS routing protocol
in use. In MPLS, for example, a policy index is mapped to a
set of labels, each corresponding to a single label switched
path (LSP). The border router places the selected label in
the packet header, which is later again removed at the egress
border router. To avoid packet reordering when multiple intra-
AS routes are available, the border router can use hashing to
always map packets of the same flow to the same intra-AS
route. The intra-domain routing protocol and the soft- and
hardware of internal routers need not be modified.

If the packet contains a policy index that is not supported,
the border router sends back an authenticated control message
to the endpoint. Because a border router only receives policy-
enabled packets that are source-authenticated (Section 4.5),
control messages can not be abused by an attacker to launch
reflection DoS attacks against other endpoints.

Upon request, the control service also provides policy in-
formation for the intra-AS path between two endpoints of
the same AS. Because intra-AS communication does not use
the SCION protocol, an endpoint cannot select the preferred
policy; however, it learns from the control service which path
policies are guaranteed to be satisfied when sending traffic
within the AS to the other endpoint, including their validity
period. By using short periods, the AS can propagate rout-
ing configuration updates quickly to the endpoints. The path
policies supported on the route between the endpoint and the
egress border router are part of the PCB.

An endpoint’s preference policy can be set in various ways,
depending on the concrete use case. There can be a single
policy for the entire device, or an application-specific pol-
icy, e.g., for an application sending sensitive corporate data.
Per-application policies are set before the connection estab-
lishment is initiated, similar to TAPS [44], which provides
fine-grained control over transport protocol parameters to ap-
plications. Finally, different policies can be set for individual
packet flows or even on a per-packet basis, but requires modi-
fying the endpoint’s network stack.

4.5 Securing Policy Indices

The policy indices in data packets must be authenticated, oth-
erwise malicious entities could modify them and thus violate
the endpoint’s preference policy. Furthermore, indices in the
packets should be hidden, such that an index is only accessible

by the endpoint and the on-path AS that announced it.
To achieve authenticity and secrecy of the policy indices,

we leverage the fast key derivation provided by DRKey [24,
35] and a modified version of EPIC [27]. In EPIC, a source
host includes short per-packet hop validation fields (HVFs)
in the packet header, which are subsequently verified by the
on-path border routers to assess the authenticity of the packet
source. Through its path validation feature, EPIC furthermore
allows the source and destination endpoints to verify for each
packet that it has indeed traversed the ASes of the correct, i.e.,
the previously selected, path. Therefore, EPIC augments FAB-
RID to satisfy requirement E5. Background on DRKey and
EPIC can be found in Appendices A and B and our modifica-
tion to EPIC that also supports authenticity and confidentiality
of the policy indices is described in Appendix C. Through
these modifications, FABRID also satisfies requirement E3.

With this solution, unauthorized entities can neither infer
nor modify the policies chosen by endpoints. Moreover, it is
not possible to detect whether an endpoint chooses a policy
at all, as an encrypted zero and non-zero index are indistin-
guishable. Irrespective of its value, a policy index is always
16 bits—also in its encrypted form, which is achieved by one-
time pad encryption. Due to the per-packet cryptographic
operations, the encrypted policy indices and hop validation
fields change for each packet sent, and hence packets with the
same policy index also cannot be distinguished.

4.6 Router Attestation

Remote attestation on routers that are equipped with a trusted
platform module (TPM) can ensure that the device is run-
ning the intended software and is not compromised—and is
thus considered “trustworthy” [22]. If every single device
on the forwarding path is verified to be trustworthy, then the
complete forwarding path is considered trustworthy.

Router attestation can improve FABRID by strengthening
the path policy claims of an AS (E2). This is the case when
the attestation result provides enough information to conclude
that the routers are compliant with an endpoint’s preference
policy. This information can be used to augment the trust
placed in an AS, as an orthogonal measure to the signed path
policies in the PCBs. While such router attestation within
an AS cannot generate a proof that traffic is actually routed
over these devices, it can be used to determine the veracity of
path policies claimed in PCBs by proving that a path-policy-
compliant intra-AS path exists. If an AS is trustworthy, it will
comply and send traffic over these policy-compliant routers.

An AS can release the attestation results to a (trusted)
third party that then verifies the existence of a path-policy-
compliant intra-AS path on behalf of the users. Thereby, the
endpoint does not receive the actual attestation result. The
third party instead returns a signed statement stating that all
path policies were validated based on the AS’ attestation re-
sults. Alternatively, attestation results could be published on

USENIX Association 32nd USENIX Security Symposium 5761

Table 1: The different sorts and their respective carrier sets.

Sort Carrier Set Type

Manufacturer (M) M private enterprise
number (int) [21]

Software
Component (C) C unique ID

Tag (T) T string

Tag Issuer (I) I URI (string)

Name (N) N string

Version (V) V version
scheme (string)

Router (R) R unique ID

Path (P) P unique ID

a public append-only log. However, publicly sharing attesta-
tion results can be problematic as this might reveal sensitive
information about the AS-internal network and is thus only
done if approved by the respective AS (A1).

5 Policy Specification

In FABRID, desirable router attributes are specified by router
policies, which are predicates on a router’s configuration.
When this predicate is satisfied for a router’s configuration,
the policy is said to comply with the configuration. By specify-
ing policies as formulas in a sorted first-order-logic (FOL) ref-
erencing relevant router attributes, users can define arbitrarily
complex policies. The system remains extensible, since this
language can be enriched with new router attributes, should
they become relevant in the future.

5.1 Syntax and Semantics
Policies are encoded in a sorted FOL with equality as formulas
with free variables. In addition to the general FOL syntax,
given in Appendix D.1, we define the sorts M,C,T, I,N,V,R,
and P (see Table 1), the function symbols tag (of type C→ T),
issuer (of type T → I), name (of type C→ N), version (of
type C→V), manufacturer (of type R→M), the predicates
onPath (of type P×R) and software (of type R×C), and
the comparison predicates <, ≤, ≥, and > (of type V ×V).

A path consists of a set of routers (ignoring their order) and
each router is described by its router setup. A router setup
specifies the router’s manufacturer and the router’s software
stack, which consists of software components. A software
component is specified by a name, a version, and a globally
unique tag, issued by a tag issuer. Appendix D.2 contains a
more detailed description of the semantics and interpretation.

5.2 Policy Definition
Both user preference policies (E1) and path policies (A1) are
defined as router policies. However, they are used for different
purposes, since a user preference policy defines all acceptable
router setup(s) of a user, whereas a path policy defines all
possible router setups on a path.

We define a router policy as an open formula of the form
Pol(r), with one free variable r of sort R. A router policy
accepts a router setup iff the formula Pol(r) is satisfied (|=)
in an interpretation I with respect to an assignment α, which
assigns a router to the free variable r, where α : {r}→ R .

I ,α |= Pol(r)

A path policy (PathPolp) advertised for a path p must accept
the setups of all on-path routers (R):

∀r′ ∈ R : onPath(p,r′)→ PathPolp(r′)

An example of a path policy covering routers with a specific
version v of a software s issued by issuer i and a manufacturer
m, using manu() as a shorthand for manufacturer(), is

PathPolp(r) := manu(r) = m∧∃c ∈ C : software(r,c)
∧ name(c) = s∧issuer(tag(c)) = i∧version(c) = v

A user preference policy Pre f Polu(r) describes acceptable
on-path router setups of user u. The user automatically decides
to accept or reject a path p based on its preference policy and
the path policy PathPolp(r). If PathPolp(r) is contained in
Pre f Polu(r), then u accepts p, otherwise u rejects p.

An example of a user preference policy that requires routers
from either manufacturer m1 or m2, where a critical software
(scrit) was recently updated (at least version vmin), is

Pre f Polu(r) := (manu(r) = m1∨manu(r) = m2)

∧∀c ∈ C : (software(r,c)∧name(c) = scrit

∧issuer(tag(c)) = i)→ version(c)≥ vmin

Determining whether a path policy is contained in a user’s
preference policy is equivalent to determining query contain-
ment. Note, however, that query containment can not always
be evaluated efficiently. In general, query containment in FOL
is known to be undecidable [30]. Even in a restricted subset
of FOL, namely FOL formulas consisting of a disjunction of
conjunctive queries, query containment is NP hard [6]. We ex-
pect that most path policies are relatively simple, and that user
preference policies are not overly complex either. Addition-
ally, the outcome of complex query containment evaluations
can be cached locally with minimal overhead as long as the
policies are in use. As discussed in Section 4.3, path policies
are not shared directly in PCBs, but instead fetched on demand
by the endpoint from the global policy repository or the local
repository of the respective AS, while preference policies are
defined locally and never shared with other entities.

5762 32nd USENIX Security Symposium USENIX Association

6 Implementation and Evaluation

In this section, we demonstrate that FABRID works efficiently
in practice. Parties interested in this research can review our
implementation and modify it according to their needs with
minimal effort. Because our per-packet authentication and en-
cryption operations pose an additional overhead to the sender
and the on-path border routers, we also implement and eval-
uate a high-speed version of those components. For a path
consisting of four ASes and packets with payloads of 1000 B,
the sender and the router achieve 3.29 Gbps and 14.62 Gbps
per processing core, respectively. The performance increases
linearly with the number of cores. We also experimentally
demonstrate the feasibility of TPM-based remote router attes-
tation for use in FABRID.

6.1 Deployment in SCIONLab

We implement FABRID in SCIONLab [26, 37], a global net-
work testbed that enables research and experimentation with
SCION. Users can join SCIONLab through one or more
SCION ASes. While some ASes are connected through ded-
icated links, the majority of inter-AS links are IP overlays.
For our purposes, we set up two ASes and connect them to
SCIONLab at two different access points, each in a differ-
ent country. The first AS P is modified such that the control
service extends beacons with its set of policy indices. We
also adapt its border routers, such that they simulate intra-AS
routes with different latencies. Our second AS S contains
a SCION-enabled endpoint, which we modify such that it
prompts the user to not only select a path, but also one policy
per policy-aware on-path AS. The endpoint then creates data
packets carrying the chosen policies. We implement this by
means of a hop-by-hop extension [3], which is ignored by all
on-path ASes that do not support FABRID, but parsed and
handled by AS S. Thus no changes are necessary in SCION
ASes that are outside of our control. For the evaluation, we
measure the round-trip time of control message packets for
different policies selected by the user. We took precautions
to not harm any real network infrastructure: Our experiments
were directed at specific benchmarks and small in scale. With
one packet per second, our evaluation adds negligible over-
head, and thus does not negatively impact other parties. We
obtained permission from the SCIONLab operators to con-
duct our measurements. As an alternative to this setup, we
also provide a system for simulation-based evaluation allow-
ing the execution of arbitrary Internet topologies on a single
machine.1 This supports the fast verification of our results,
and low-effort modifications to test new ideas.

1https://github.com/mawyss/scion/tree/policy_routing

1 10 20 30 40 50 60
0

50

100

150

200

250

300

Measurement sequence [s]

R
T

T
[m

s]

ψ = 0
ψ = 1

Figure 4: Round-trip time (RTT) measurements for different
selected policies over a period of 60 s conducted at an end-
point in source AS S for a 5-hop path going through on-path
AS P. A policy index (ψ) of zero and one corresponds to the
standard and low-latency intra-AS route, respectively.

6.2 High-Speed Implementation

To secure the policy indices in the packet header, we leverage
DRKey [24, 35], a protocol to efficiently derive symmetric
keys, and EPIC [27], a system for fast per-packet source au-
thentication and path validation in SCION, modified to ensure
the authenticity and confidentiality of the policy indices. To
demonstrate that our modifications to EPIC still allow for
high-speed packet processing, we implement and evaluate
the components affected by our changes, namely the source
endpoint and the border routers (the EPIC protocol running
on the destination endpoint is not modified). Such an evalua-
tion is important because we encrypt, authenticate, and verify
the policy-indices on a per-packet basis, which must be fast
enough for practical deployments. Our modifications are de-
scribed in Appendix C. We implement the source endpoint
mechanism to create per-packet validation fields and the cor-
responding verification procedure at the border router using
Intel DPDK [10], instantiate MAC computations with AES-
CBC-MAC, and rely on Intel AES-NI [15] to speed up AES
block cipher computations. Our testbed consists of a commod-
ity machine (Intel Xeon, 2.1 GHz), which executes our im-
plementation that is to be evaluated, and a Spirent SPT-N4U,
which serves both as bandwidth generator (when evaluating
the border router) and bandwidth monitor (when evaluating
the source endpoint). Both machines are connected by four
40 Gbps bidirectional Ethernet links. We evaluate both im-
plementations (endpoint, border router) individually as they
never run at the same time on the commodity machine.

6.3 Evaluation

We now present our results of the RTT measurements in
SCIONLab and the high-speed evaluation of the policy-
enabled sender and router. Additionally, we evaluate the
control-plane overhead and TPM-based remote attestation.

USENIX Association 32nd USENIX Security Symposium 5763

https://github.com/mawyss/scion/tree/policy_routing

100 500 1,000 1,500
0

1

2

3

4

5

Payload [B]

T
hr

ou
gh

pu
t[

G
bp

s]

h = 2 h = 4
h = 8 h = 16

Figure 5: Source endpoint packet generation performance for
different number of AS-level hops (h) and payloads, using
one CPU core. Dashed lines correspond to the original EPIC
without support for policies.

1 2 4 8 16 32
0

20
40
60
80

100
120
140
160

Number of CPU cores

T
hr

ou
gh

pu
t[

G
bp

s]

p = 100
p = 500
p = 1000
p = 1500

Figure 6: Border router packet forwarding performance for
various payload sizes and different number of CPU cores.
Dashed lines have the same meaning as in Figure 5.

RTT Measurements In our SCIONLab setup, AS P an-
nounces two policy indices, where index zero denotes a stan-
dard intra-AS path, and index one a low-latency path. We
choose this type of policy because, in contrast to router at-
tributes such as manufacturer or software version, latency
is a characteristic directly measurable by the communicat-
ing endpoints. The results of our experiments performed by
an endpoint in AS S are shown in Figure 4. While packets
traversing the standard intra-AS route of on-path AS P travel
for 114 ms on average and suffer from high jitter, packets car-
rying a policy index equal to one take on average 70 ms per
round-trip and never exceed 110 ms.

Endpoint Evaluation Figure 5 shows the evaluation results
for a single CPU core of the source endpoint. When send-
ing packets with a payload of 1000 B on a path consisting of
four AS-level hops (the average path length in today’s Inter-
net [17, 28, 43]), the endpoint can generate traffic at a rate
of 3.29 Gbps. As expected, the throughput increases with the
size of the packet payload and decreases with the number
of on-path ASes, where the latter is caused by the per-AS

encryption and authentication operations. Although one core
of the source endpoint already provides particularly high per-
formance, the results can be scaled linearly with respect to the
number of CPU cores dedicated to the generation of policy-
enabled traffic. For payloads of 1000 B, FABRID is 7-20 %
slower compared to the original version of EPIC, depending
on the number of ASes on the path. Because the endpoint
can still generate traffic at gigabit rates even on a single core,
this overhead does not impact its practicality.

Router Evaluation The results of the border router eval-
uation are given in Figure 6. The router’s forwarding per-
formance depends on the size of the packet payload and the
number of CPU cores used, but is independent of the number
of on-path ASes, because the router only validates the packet
header fields dedicated to its own AS. For instance, using 16
cores and processing packets with a payload of 1000 B, the
router can handle the full capacities of all its links, achieving
efficient forwarding (A4) with a throughput of 160 Gbps.

From fine-grained timing measurements we discovered that
the router’s per-packet processing overhead is only slightly
higher than the standard EPIC router operations. In particu-
lar, checking the authenticity of the encrypted policy index
takes additional 15 ns, decrypting the encrypted policy index
amounts to 52 ns, and looking up an intra-AS path correspond-
ing to the policy index increases the processing overhead by
35 ns when 1000 indices are supported in total. This corre-
sponds to a decrease in throughput of ~17 % compared to
the original version of EPIC. Due to EPIC’s efficient design,
this relative overhead is noticeable. However, in real-world
deployments, this is unproblematic because (i) the absolute
number of cores needed to compensate for this overhead is
still low and (ii) the linear scalability of the border router
still allows ASes to deploy FABRID in various environments
with different network capacities. The router throughput and
latency are independent of the number of communicating end-
points or their selected policies, since for every packet the
same operations are executed. The number of policy indices
stored at a router only affects intra-AS path lookup, which is
efficient due to its implementation based on a hash table.

PCB Size Overhead The communication overhead imposed
on the PCB by a single AS is shown in Figure 7, where policy
information is encoded using protocol buffers [14]. For a
core AS announcing 500 interface-pairs with five policies
each, with a total of 100 supported policies, the overhead is
7.5 kB for the map I plus 0.8 kB for the map D. If the policy
information is detached, there is a overhead of 18 B.

Remote Attestation Through measurements on a CISCO
NCS 540 device [9], i.e., a router with TPM support, we
show the feasibility of the remote attestation proposal from
Section 4.6. Figure 8 shows the request/response size and
processing time overhead to fetch Platform Configuration
Register (PCR) measurements from a single router. These
measurements are, among others, used to infer which soft-

5764 32nd USENIX Security Symposium USENIX Association

0 200 400 600 800 1,000
0

2

4

6

8

10

|S|

PC
B

Si
ze

O
ve

rh
ea

d
[k

B
]

I (IF-IF)
I (IF-IP)
D
Detached

Figure 7: Per-AS PCB size overhead in kilobytes introduced
for the maps I, D (see Section 4.3), and the detached extension.
The x-axis is the number of elements in set S, which is a subset
of either IF× IF, (IF× IP)∪ (IP× IF), or ψX. The number
of announced policy indices per IF-IF or IF-IP pair is five.

1 4 7 11
Number of measured PCRs

0

1000

2000

Si
ze

 [b
yt

es
]

Request Size
Response Size
Time

2.00

2.25

2.50

2.75

3.00
Pr

oc
es

si
ng

 T
im

e
[s

]

Figure 8: Request and response sizes and processing times
for fetching various numbers of PCR measurements.

ware is running on this router. The request and response sizes
scale linearly with the number of measured PCRs, but never
exceed 2.2 kB. Retrieving PCRs takes around 2.4 s and thus
policy-violating routers can quickly be detected. A verifier
can validate the trustworthiness of a network in a few seconds
by attesting multiple routers in parallel. To prevent abuse, an
AS enabling remote attestation must explicitly authorize veri-
fiers to use that feature. The AS might implement additional
security measures such as rate-limiting of requests.

7 Security and Scalability Analysis

We now analyze FABRID’s security and scalability.

7.1 Security
We first discuss how FABRID satisfies the security require-
ments of endpoints and ASes (E2, E3, E5, A1, A2), and then
show that the Realistic Objective from Section 3.1 is achieved
with respect to the trust model described in Section 3.3.

Attested Claims (E2) Claims about the mapping of inter-
face or IP pairs to policy indices (IX) and the mapping of
policy indices to policy identifiers (DX) are attested by the re-
spective AS through a signature contained in the PCB. When
requesting the mapping from local policy identifiers to FOL
policy descriptions of some AS X (LX), a signature over this
mapping is included in the response. Similarly, the mapping
from global policy identifiers to FOL policy descriptions (G)
is signed by the trusted third party. The use of signatures to
authenticate the policy information ensures the authenticity
and non-repudiation of policy information, which can be con-
firmed by every entity possessing the corresponding public
keys. Furthermore, LX and G are append-only, so any modi-
fications to existing entries can trivially be detected. Finally,
claims about device properties are verified by trusted third par-
ties through remote attestation (see Section 4.6). Those parties
vouch for the correctness of the information extracted from
the attestation results and published to ASes and endpoints.

Secrecy and Authenticity (E3) The source of the packet,
i.e., the three-tuple consisting of ISD, AS, and IP address, is
authenticated by EPIC based on symmetric keys derived by
DRKey. Our customized adaption of EPIC further ensures the
authenticity and confidentiality of the policy indices stored in
the header of data packets. This prevents on-path adversaries
from tampering with the selected policies. The default policy
index of zero, which indicates no preference regarding any
path policies, is indistinguishable from any other policy index
in their encrypted form. Moreover, a policy index is encrypted
on a per-packet basis, and therefore an adversary can not infer
whether any two packets carry the same policy indices.

Trade Secrets (A1) FABRID also preserves an AS provider’s
trade secrets, as the kind of network information published
can be chosen by the ASes individually and at fine gran-
ularity. Thus, any undesired leakage of sensitive topology
information can always be prevented. Even if, for example,
an AS announces a policy corresponding to recently patched
devices, an attacker cannot infer that traffic sent over paths
with different policies will be sent over devices with known
vulnerabilities. However, it is the provider’s responsibility to
prevent unintended leakage.

Path Validation (E5) Path validation provided by EPIC
allows an endpoint to verify for every packet sent, whether
it has actually traversed all desired on-path ASes. This pre-
vents the violation of the endpoint’s forwarding directives by
misconfigured entities that are part of our trust model, i.e.,
honest-but-clumsy ASes. EPIC achieves non-probabilistic
guarantees, while significantly outperforming other path vali-
dation protocols in terms of communication overhead [27].

DDoS Protection (A2) FABRID does not force ASes to
announce intra-AS paths directly, as this could be abused
for targeted DDoS attacks. Instead, ASes only publish path
policies, which can be mapped to multiple intra-AS paths,
allowing for better distribution of ingress traffic. Because the

USENIX Association 32nd USENIX Security Symposium 5765

source and policy index of every packet are authenticated, an
on-path AS can implement further measures to protect against
DDoS attacks such as rate-limiting based on the packet’s
source and even the selected policy index.

Summary (Realistic Objective) To show that FABRID
achieves the Realistic Objective from Section 3.1 given our
trust model, we assume that a path consisting of trusted ASes
exists between an endpoint and its communication peer. If
this is not the case, the endpoint does not send any traffic, and
the objective is trivially achieved.
Because the policy claims are all attested by the respective
ASes, the endpoint can be sure that those claims have not
been modified by unauthorized parties. However, according
to our trust model, trusted ASes are considered honest-but-
clumsy. An AS can be potentially misconfigured to (i) an-
nounce wrong policies in the PCBs, to (ii) forward packets
arriving on the ingress interface along an internal path vio-
lating the specified policies, or to (iii) forward packets on a
different inter-domain path than defined in the PCFS.
The first misconfiguration alone is unproblematic, since an
ingress border router will not forward traffic carrying un-
supported policies. To mitigate the combination of the first
two misconfigurations, the trusted third party verifiers detect
through remote attestation that the announced policies are
indeed implemented. Lastly, the endpoint can verify through
path validation that the selected forwarding path is indeed fol-
lowed by all on-path ASes. Therefore, we conclude that traffic
is only sent along routers satisfying the endpoint-selected poli-
cies, i.e., routers with acceptable attributes, hence FABRID
indeed achieves the Realistic Objective from 3.1.

7.2 Scalability
FABRID proposes modifications to a global, inter-domain
routing infrastructure and must thus work efficiently at scale
(A3 and A4). Internet-wide scalability of the underlying
SCION architecture and EPIC has been analyzed in previ-
ous work [25, 27]. We therefore discuss only the additional
processing, network, and state overhead of FABRID.

FABRID’s most critical component for scalability is the
data plane of endpoints and border routers. Section 6.3 shows
the low processing overhead compared to EPIC despite using
per-hop encrypted and authenticated policy indices in data-
plane packets. The packet header overhead for data-plane
packets is linear with the AS–path-length (16 bit per AS),
which has little effect on the goodput. Finally, border routers
need to store the policy index to intra-AS path mapping, which
easily fits into memory.

Regarding the control plane, the additional network over-
head is as low as one hash per on-path AS due to the use of
detachable extensions in PCBs. The inter-domain network
overhead for fetching detachable extension data and policy
descriptions is greatly reduced through caching at the local
control service, only requiring intra-AS communication from

endpoints. The remaining overhead, such as the control ser-
vice configuring intra-AS paths or distributing policies to
border routers, depends only on the size of the intra-AS topol-
ogy and thus scales independently of the global network.

8 Discussion

In this section, we discuss limitations and challenges related
to the detection of misbehavior and real-world deployment,
and potential extension beyond our core design.

Detecting Misbehavior We distinguish between two types
of router characteristics: (i) quantifiable characteristics that
can be measured by endpoints, like hard-/software feature sup-
port, and (ii) unquantifiable characteristics that are difficult or
impossible to measure, like security properties, location, or
jurisdiction. ASes might not conform to their announced path
policies, e.g., due to economic incentives. Detecting that an
AS does not conform to its announced unquantifiable router
attributes is very challenging and thus restricts endpoints to
rely on, i.e., assume, the correctness of policies announced
by trusted ASes as described in Section 3.3. In reality this
assumption does not always hold. For example, some users
might not trust their ISPs, in which case FABRID’s objectives
are inherently impossible to achieve. Still, there are many sce-
narios where the endpoint trusts on-path ASes regarding their
unquantifiable router characteristics. A government agency,
for example, is likely to trust providers in the same country,
but will not necessarily trust foreign router manufacturers.

For preference policies concerning quantifiable attributes,
the trust model can often be relaxed. In this case, an end-
point can detect misbehavior and switch to a different policy-
compliant path. An endpoint might even be able to pinpoint
the misbehaving AS by probing multiple policy-compliant
paths using a network tomography approach [23].

Deployment A large number of network protocols have
never seen major real-world deployment despite their use-
fulness. RFC 8170 [39] contains several design recommen-
dations for the deployment and transition of new network
protocols: clear incentives for early adopters, an incremen-
tal deployment model, estimation of the total cost includ-
ing a way to bill benefactors, and extensibility. FABRID
must also overcome these deployment challenges to achieve
widespread global adaption. Both the incremental deployment
(Section 4.3) and extensibility (Section 5) of FABRID have
been discussed already. ASes should be able to bill the end-
points profiting from policy-enabled paths, for example based
on an on-demand or flat-rate model. One possible solution is
for an AS to bill its neighboring AS based on the quantity and
quality of policy-compliant paths consumed by the aggregate
of all flows. An endpoint is then billed by its own provider or
the provider offers this service for free to attract customers. A

5766 32nd USENIX Security Symposium USENIX Association

more elaborate approach is to let endpoints directly purchase
the use of path policies from the desired ASes, which is more
complex and requires prior communication with all on-path
ASes, however. Interestingly, in addition to the mitigations
discussed in Section 7, billing further helps preventing DDoS
attacks as it imposes monetary costs on the attacker.

Since FABRID extends SCION, which is seeing real-world
deployment [4, 25, 38], and it does not require additional ca-
pabilities compared to SCION (e.g., SCION border routers
already use AES for per-packet operations), existing SCION
components do not need to be replaced. Additionally, the
protocols we rely on are already either partially (EPIC [2])
or fully (DRKey [1]) implemented in SCION. However, an
AS deploying FABRID must first become SCION-enabled,
which requires changes to its inter-domain routing and its
border routers. Additionally, endpoint devices may lack capa-
bilities, such as native AES support. Finally, in addition to
the overhead discussed in Section 6.3, large ASes with com-
plex internal networks and many internal and border routers
may incur additional management overhead for keeping a
precise inventory, deciding on which topology information to
reveal, and incorporating their traffic engineering policies.

Bidirectional Policy Selection In FABRID, an endpoint
chooses the policy on the forward path, while the destination
endpoint chooses the policy on the backward path. In some
cases, an endpoint may wish to select both a forward and a
backward policy-compliant path.

This can for example be achieved through a negotiation
protocol, or, if the destination endpoint has no policy prefer-
ences (e.g., a publicly available service), by letting the source
endpoint dictate the policies to be used by the destination
endpoint. Because the policy indices are encrypted, the end-
points must trust each other as they can not verify the policies
chosen by their peer in the headers of the received packets.

One possible mechanism to ensure policy compliance in
both directions is for the source endpoint to piggyback the pol-
icy indices for the return path in its packets, where the indices
are authenticated and encrypted using a shared symmetric
key between the end hosts provided by DRKey. With an addi-
tional flag, the source endpoint can signal the destination not
to send any return packets in case it does not want to use those
indices. This approach requires identical forward and return
paths, but guarantees that traffic on the return path (i) tra-
verses source-trusted ASes only and (ii) is compliant with the
source’s policies. Working out this mechanism in full detail
and evaluating other alternatives for achieving bidirectional
policy compliance remain as future work.

9 Related Work

Platypus [33] is a source-routing protocol allowing endpoints
to compose paths from multiple Internet routes through inter-

mediate waypoints. Platypus enables fine-grained control over
the forwarding path even for intra-AS routes. This approach is
undesirable for ASes that do not want to disclose their internal
topology. Moreover, Platypus requires an endpoint to readily
know the desired waypoints.

Alcatraz [5] prevents malicious exfiltration, alteration, and
forwarding of data on network devices by leveraging trusted
execution environments provided by Intel SGX. Alcatraz as-
sumes an environment controlled by a single operator. The
throughput achieved on routers was below 1.5 Gbps per core,
preventing use of Alcatraz in corporate networks and data
centers. Alcatraz could potentially be used as an intra-AS
data plane for FABRID according to predefined rules based
on the path policies of the AS.

Trusted Path Routing (TPR) [41] allows to enforce that sen-
sitive traffic traversing a network is forwarded only through
trustworthy devices. What comprises sensitive traffic is speci-
fied through IP address ranges, which are associated with a
trusted topology. To decide which devices to include in this
topology, adjacent devices equipped with a Trusted Platform
Module (TPM) mutually verify their trustworthiness through
remote attestation [40]. TPR could complement FABRID,
i.e., to provide intra-AS forwarding over a trusted topology
consisting of policy-compliant attested routers.

Besides EPIC, there are several other systems for source
authentication and path validation. OPT [24] and ICING [31]
have a lower goodput ratio (ratio between goodput and
throughput) compared to EPIC, which is due to longer packet
header fields. Furthermore, ICING causes significantly higher
processing overhead at routers than EPIC. PPV [45] does
not provide path validation to the source but enables the des-
tination to probabilistically validate parts of the path. Sim-
ilarly, with Hummingbird [16], routers only sample pack-
ets probabilistically but based on symmetric keys shared be-
tween neighboring routers. MASK [13] only authenticates
the packet’s source to a single on-path router.

10 Conclusion

Properties desired from on-path forwarding devices are in-
herently subjective: Some applications require specific router
capabilities, while others want to forward traffic only along
trusted manufacturer devices, as they might not consider en-
cryption alone sufficient for confidentiality. This motivates the
need for (i) transparent, attested, and non-repudiable claims
about on-path device properties, (ii) path selection by individ-
ual users, end hosts, applications, or even flows, as well as
(iii) protection against hijacking attacks.

The main security takeaways of this work are that the
above properties can be achieved by using an expressive pol-
icy language on router properties, without compromising AS
and endpoint privacy, performance, and scalabilty. Namely,
we design and implement a system for inter-domain router-
based path selection, including a flexible policy language

USENIX Association 32nd USENIX Security Symposium 5767

allowing individual router policies per endpoint, that achieves
these properties by leveraging the security and extensibility
of SCION, remote router attestation, and efficient path vali-
dation. FABRID creates exciting opportunities for ISPs (e.g.,
creation of new business models and services) as well as for
end users (e.g., path selection based on fine-grained policies).

Acknowledgments

We would like to thank Ralph Mohnhaupt, Bernard Botteron,
Chennakesava Reddy Gaddam, Eric Voit, Rakesh Kandula,
Vitus Andreoli, Annu Singh, and Georg Aebi from CISCO for
providing us with TPR-capable routers and for their support
regarding the setup of the measurement testbed. We further
thank Juan Angel García-Pardo for integrating the routers into
our network. We are grateful to the anonymous reviewers for
their helpful feedback on the manuscript, and our shepherd
for guidance during the preparation of the final version of the
paper. We gratefully acknowledge support from ETH Zurich,
the Zurich Information Security and Privacy Center (ZISC),
armasuisse Science and Technology, and the Werner Siemens-
Stiftung (WSS) Centre for Cyber Trust at ETH Zurich.

References

[1] Anapaya Systems. Dynamically Recreatable
Key (DRKey) Infrastructure Documentation.
https://scion.docs.anapaya.net/en/latest/
cryptography/drkey.html, 2022.

[2] Anapaya Systems. EPIC Design Documentation.
https://scion.docs.anapaya.net/en/latest/
EPIC.html, 2022.

[3] Anapaya Systems. SCION extension header spec-
ification. https://scion.docs.anapaya.net/
en/latest/protocols/extension-header.html,
2022.

[4] Anapaya Systems. SCION-Internet: The New Way To
Connect. https://perma.cc/J3T7-KYL9, 2022.

[5] Daniele E. Asoni, Takayuki Sasaki, and Adrian Perrig.
Alcatraz: Data exfiltration-resilient corporate network
architecture. In Proceedings of the IEEE International
Conference on Collaboration and Internet Computing
(CIC), October 2018.

[6] Ashok K. Chandra and Philip M. Merlin. Optimal im-
plementation of conjunctive queries in relational data
bases. In Proceedings of the Annual ACM Symposium
on Theory of Computing (STOC), 1977.

[7] Shinyoung Cho, Romain Fontugne, Kenjiro Cho, Al-
berto Dainotti, and Phillipa Gill. BGP hijacking classifi-

cation. In Proceedings of the Network Traffic Measure-
ment and Analysis Conference (TMA), 2019.

[8] Laurent Chuat, Markus Legner, David Basin, David
Hausheer, Samuel Hitz, Peter Müller, and Adrian Perrig.
The Complete Guide to SCION. Springer International
Publishing, 2022.

[9] CISCO. System security configuration guide for cisco
NCS 540 series routers. https://www.cisco.com/c/
en/us/td/docs/iosxr/ncs5xx/system-security/
76x/b-system-security-cg-76x-ncs540/
implementation-of-trustworthy-systems.html,
2022.

[10] DPDK Project. Data Plane Development Kit. https:
//dpdk.org, 2022.

[11] European Parliament and Council of the European
Union. Regulation (EU) 2016/679 of the european par-
liament and of the council – recital 83. Official Journal
of the European Union, 59(119), April 2016.

[12] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene,
S. Litkowski, and R. Shakir. Segment Routing Architec-
ture. RFC 8402, IETF, July 2018.

[13] Songtao Fu, Ke Xu, Qi Li, Xiaoliang Wang, Su Yao,
Yangfei Guo, and Xinle Du. MASK: Practical source
and path verification based on Multi-AS-Key. In Pro-
ceedings of the IEEE/ACM International Symposium on
Quality of Service (IWQoS), 2021.

[14] Google. Protocol Buffers. https://developers.
google.com/protocol-buffers/, 2022.

[15] Shay Gueron. Intel Advanced Encryption Standard
(AES) new instructions set. Technical report, Intel Cor-
poration, 2010.

[16] Anxiao He, Xiang Li, Jiandong Fu, Haoyu Hu, Kai Bu,
Chenlu Miao, and Kui Ren. Hummingbird: Dynamic
path validation with hidden equal-probability sampling.
IEEE Transactions on Information Forensics and Secu-
rity, 2023.

[17] Bradley Huffaker, Marina Fomenkov, Daniel Plummer,
David Moore, and K Claffy. Distance metrics in the
internet, August 2002.

[18] Geoff Huston. IPv6 / IPv4 comparative statistics.
https://bgp.potaroo.net/v6/v6rpt.html, 2022.

[19] ICANN. ICANN: Internet corporation for assigned
names and numbers. https://www.icann.org/,
2022.

5768 32nd USENIX Security Symposium USENIX Association

https://scion.docs.anapaya.net/en/latest/cryptography/drkey.html
https://scion.docs.anapaya.net/en/latest/cryptography/drkey.html
https://scion.docs.anapaya.net/en/latest/EPIC.html
https://scion.docs.anapaya.net/en/latest/EPIC.html
https://scion.docs.anapaya.net/en/latest/protocols/extension-header.html
https://scion.docs.anapaya.net/en/latest/protocols/extension-header.html
https://perma.cc/J3T7-KYL9
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5xx/system-security/76x/b-system-security-cg-76x-ncs540/implementation-of-trustworthy-systems.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5xx/system-security/76x/b-system-security-cg-76x-ncs540/implementation-of-trustworthy-systems.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5xx/system-security/76x/b-system-security-cg-76x-ncs540/implementation-of-trustworthy-systems.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5xx/system-security/76x/b-system-security-cg-76x-ncs540/implementation-of-trustworthy-systems.html
https://dpdk.org
https://dpdk.org
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://bgp.potaroo.net/v6/v6rpt.html
https://www.icann.org/

[20] Institute of Electrical and Electronics Engineers (IEEE).
IEEE standard for a precision clock synchronization pro-
tocol for networked measurement and control systems.
IEEE 1588-2019, 2019.

[21] Internet Assigned Numbers Authority (IANA).
IANA private enterprise numbers. https://www.
iana.org/assignments/enterprise-numbers/
enterprise-numbers, 2022.

[22] Internet Engineering Task Force (IETF). Remote AT-
testation ProcedureS (RATS). https://datatracker.
ietf.org/wg/rats/about/, 2022.

[23] Grigorios Kakkavas, Despoina Gkatzioura, Vasileios
Karyotis, and Symeon Papavassiliou. A review of ad-
vanced algebraic approaches enabling network tomogra-
phy for future network infrastructures. Future Internet,
12(2):20, January 2020.

[24] Tiffany Hyun-Jin Kim, Cristina Basescu, Limin Jia,
Soo Bum Lee, Yih-Chun Hu, and Adrian Perrig.
Lightweight source authentication and path validation.
In Proceedings of the ACM SIGCOMM Conference,
pages 271–282, 2014.

[25] Cyrill Krähenbühl, Seyedali Tabaeiaghdaei, Christelle
Gloor, Jonghoon Kwon, Adrian Perrig, David Hausheer,
and Dominik Roos. Deployment and scalability of an
inter-domain multi-path routing infrastructure. In Pro-
ceedings of the International Conference on emerging
Networking EXperiments and Technologies (CoNEXT),
2021.

[26] Jonghoon Kwon, Juan A. García-Pardo, Markus Leg-
ner, François Wirz, Matthias Frei, David Hausheer, and
Adrian Perrig. SCIONLAB: A next-generation inter-
net testbed. In Proceedings of the IEEE International
Conference on Network Protocols (ICNP), 2020.

[27] Markus Legner, Tobias Klenze, Marc Wyss, Christoph
Sprenger, and Adrian Perrig. EPIC: Every packet is
checked in the data plane of a path-aware Internet. In
Proceedings of the USENIX Security Symposium, 2020.

[28] Damien Magoni and Jean-Jacques Pansiot. Internet
topology modeler based on map sampling. In Proceed-
ings of the International Symposium on Computers and
Communications (ISCC), pages 1021–1027, February
2002.

[29] Loïc Miller and Cristel Pelsser. A taxonomy of attacks
using BGP blackholing. In Proceedings of the Euro-
pean Symposium on Research in Computer Security
(ESORICS), 2019.

[30] Andrzej Mostowski. Impossibility of an algorithm for
the decision problem in finite classes. Journal of Sym-
bolic Logic, 15(3):229–229, 1950.

[31] Jad Naous, Michael Walfish, Antonio Nicolosi, David
Mazières, Michael Miller, and Arun Seehra. Verify-
ing and enforcing network paths with ICING. In Pro-
ceedings of the International Conference on Emerging
Networking Experiments and Technologies (CoNEXT),
2011.

[32] National Institute of Standards and Technology (NIST).
NIST RPKI monitor. https://rpki-monitor.antd.
nist.gov/, 2022.

[33] Barath Raghavan and Alex C. Snoeren. A system for
authenticated policy-compliant routing. In Proceedings
of the ACM SIGCOMM Conference, 2004.

[34] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol
Label Switching Architecture. RFC 3031, IETF, January
2001.

[35] Benjamin Rothenberger, Dominik Roos, Markus Legner,
and Adrian Perrig. PISKES: Pragmatic Internet-scale
key-establishment system. In Proceedings of the ACM
Asia Conference on Computer and Communications Se-
curity (ASIACCS), 2020.

[36] Ruben Salazar, Tim Godfrey, Norm Finn, Clint Powell,
Ben Rolfe, and Malik Seewald. Utility applications of
time sensitive networking. White paper, Institute of
Electrical and Electronics Engineers (IEEE), September
2019.

[37] SCIONLab. The SCIONLab research network. https:
//www.scionlab.org/, 2022.

[38] Swisscom AG. Enhancing WAN connectivity and ser-
vices for Swiss organisations with the next-generation
internet. https://perma.cc/8FXC-4JPA, 2022.

[39] D. Thaler. Planning for Protocol Adoption and Subse-
quent Transitions. RFC 8170, IETF, May 2017.

[40] Eric Voit, Henk Birkholz, Thomas Hardjono,
Thomas Fossati, and Vincent Scarlata. Attesta-
tion results for secure interactions. Internet-Draft
draft-ietf-rats-ar4si-03, IETF Secretariat, Septem-
ber 2022. https://www.ietf.org/archive/id/
draft-ietf-rats-ar4si-03.txt.

[41] Eric Voit, Chennakesava Reddy Gaddam, Guy
Fedorkow, Henk Birkholz, and chenmeiling.
Trusted Path Routing. Internet-Draft draft-voit-
rats-trustworthy-path-routing-06, Internet Engi-
neering Task Force, September 2022. Work in
Progress, https://www.ietf.org/archive/id/
draft-voit-rats-trustworthy-path-routing-06.
txt.

USENIX Association 32nd USENIX Security Symposium 5769

https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://datatracker.ietf.org/wg/rats/about/
https://datatracker.ietf.org/wg/rats/about/
https://rpki-monitor.antd.nist.gov/
https://rpki-monitor.antd.nist.gov/
https://www.scionlab.org/
https://www.scionlab.org/
https://perma.cc/8FXC-4JPA
https://www.ietf.org/archive/id/draft-ietf-rats-ar4si-03.txt
https://www.ietf.org/archive/id/draft-ietf-rats-ar4si-03.txt
https://www.ietf.org/archive/id/draft-voit-rats-trustworthy-path-routing-06.txt
https://www.ietf.org/archive/id/draft-voit-rats-trustworthy-path-routing-06.txt
https://www.ietf.org/archive/id/draft-voit-rats-trustworthy-path-routing-06.txt

[42] David Waltermire, Brant A. Cheikes, Larry Feldman,
and Greg Witte. Guidelines for the creation of interop-
erable software identification (SWID) tags, 2016.

[43] Cun Wang, Zhengmin Li, Xiaohong Huang, and Pei
Zhang. Inferring the average AS path length of the
internet. In Proceedings of the IEEE International Con-
ference on Network Infrastructure and Digital Content
(IC-NIDC), pages 391–395, September 2016.

[44] M. Welzl and S. Gjessing. A Minimal Set of Transport
Services for End Systems. RFC 8923, IETF, October
2020.

[45] Bo Wu, Ke Xu, Qi Li, Zhuotao Liu, Yih-Chun Hu, Mar-
tin J. Reed, Meng Shen, and Fan Yang. Enabling ef-
ficient source and path verification via probabilistic
packet marking. In Proceedings of the IEEE/ACM In-
ternational Symposium on Quality of Service (IWQoS),
2018.

A DRKey

To encrypt and authenticate endpoint-selected policies, we
rely on the fast key derivation provided by DRKey, which in
turn enables us to leverage and extend the per-packet crypto-
graphic operations introduced in EPIC.

The DRKey [24, 35] system allows ASes and endpoints to
efficiently exchange symmetric keys. To make the symmetric
keys issued by AS A available to its infrastructure components,
such as border routers, DRKey does not store the keys at those
components, but instead enables the components to recompute
the keys efficiently on the fly. For this purpose, AS A keeps
a single secret (symmetric) key KA known by its relevant
components (the control service and all border routers). When
it receives a key request by AS B, it responds with an AS-
level symmetric key KA→B computed with a pseudorandom
function (PRF):

KA→B := PRFKA
(B). (1)

Upon receiving this AS-level key, AS B can use it to further
derive symmetric keys for its endpoints. It computes sym-
metric keys between endpoint HB (in AS B) and AS A, and
between endpoint HB and endpoint HA (in AS A) as follows:

KA→B:HB
:= PRFKA→B

(HB), (2)

KA:HA→B:HB
:= PRFKA→B

(HA,HB). (3)

Here, the comma separating the endpoint identifiers denotes
concatenation, and the colons in the key names make ex-
plicit to which AS an endpoint belongs to. For traffic going
through a border router of AS A and originating from end-
point HB, the router can recompute KA→B:HB

based solely on
its secret key KA, plus the AS-identifier B and the endpoint

source address HB, which are part of the SCION packet header.
For communication with destination endpoint HA, the source
endpoint HB has to explicitly request KA:HA→B:HB

from the
control service of AS B, as it does not have the necessary AS-
level key KA→B to derive it autonomously. Similarly, if the
endpoint HA wants to know KA:HA→B:HB

for packets received
from HB, it must request this key from its local control ser-
vice of AS A, as HA is neither in possession of KA nor KA→B.
Endpoint and AS identifiers are not secret, but to compute
KA:HA→B:HB

, the key KA→B is needed, which can either be
derived directly at border routers and the control service of
AS A from KA, or it needs to be fetched by AS B from the
control service of AS A.

B EPIC

Leveraging DRKey’s efficient key-derivation, EPIC [27] en-
ables per-packet source authentication and path validation
in SCION. Source authentication at border routers protects
both the network and the destination endpoint, as it allows
filtering unauthentic packets early and before they reach any
bottleneck links. Through path validation, an endpoint can
verify whether its traffic indeed followed the selected path on
the AS-level.

To authenticate a source endpoint HS in AS A0 to on-path
border routers, the source endpoint computes a per-packet
hop validation field (HVF) for each AS Ai (1≤ i≤ n) on the
selected path, which it includes in the SCION packet header:

Ki := KAi→A0:HS
(4)

Vi := MACKi
(tsPkt,A0,HS,σi) [0:`val] (5)

Here, the function MACK computes a message authentication
code with key K and tsPkt denotes a high-precision timestamp
added to the packet header that is unique for every packet sent
by source endpoint HS.2 The notation X[a:b] denotes the
substring from byte a (incl.) to byte b (excl.) of X, and the
HVF is thus defined as the first `val bytes of the MAC output.
To verify a packet’s source, a border router recomputes the
HVF of its AS and compares it to the one contained in the
packet header.

To provide path validation to the source endpoint, the bor-
der routers replace the HVFs in the packet with the next `val
bytes of the MAC output, i.e., [`val:2`val]. This serves as proof
that the packet indeed traversed the ASes on the selected path.
To communicate this information to the source endpoint, the
destination endpoint HD returns a packet containing the up-
dated HVFs and tsPkt of the original packet, authenticated
with its symmetric key KA`:HD→A0:HS

.

2The last input to the MAC, σi, is an authenticator included by EPIC to
achieve a property called path authorization, which protects the routing deci-
sion of ASes from malicious endpoints. The computation of σi is irrelevant
for our work.

5770 32nd USENIX Security Symposium USENIX Association

Through the deployment of a duplicate-suppression system,
EPIC furthermore allows ASes to filter replayed packets. Also,
an EPIC-enabled source endpoint authenticates the whole
packet including the payload for the destination endpoint, and
therefore also includes a corresponding destination validation
field in the packet header.

C Securing Path Policy Indices

To provide authenticity and confidentiality of the policies
selected by endpoints, we encrypt the corresponding indices
and add them to the input of the EPIC per-packet authenticator
computation from Equation (5):

ψ
E
i = ψi ⊕ (AESKi

(tsPkt) [0:`pol]) (6)

Vi = MACKi
(tsPkt,A0,HS,σi,ψ

E
i) [0:`val] (7)

Here, ψi denotes the plaintext and ψE
i the encrypted policy

index for on-path AS i, respectively. The length of the policy
index in bytes is given by `pol. Again, the notation X[a:b]
denotes the substring from byte a (incl.) to byte b (excl.)
of X, and the comma-separated inputs to the MAC function
are concatenated. This approach follows the Encrypt-then-
MAC idea, where we use the CTR mode for encryption and
where the timestamp tsPkt serves as nonce. The counter is
always zero, i.e., omitted, because the length of the input
(tsPkt) is shorter than the AES block size. Alternatively, the
computation of ψE

i in Equation (6) can be understood as one-
time pad encryption using the key AESKi

(tsPkt). The source
endpoint adds tsPkt, ψE

i and Vi for every on-path AS i to its
data packet.

The reason we do not directly apply the AES block cipher
to the packet timestamp and the policy index (i.e., without
using the bitwise XOR operation) is because this would result
in an encrypted policy index with a size of 16 B (AES block
size). With our approach, the encrypted policy index consists
of only `pol bytes, which allows for shorter packet headers.

Upon reception of a data packet, the ingress border router
of the i-th on-path AS checks that the timestamp is current,
derives Ki (Equations 2 and 4), and re-computes Vi (Equa-
tion 7) and compares it to the Vi contained in the packet.
If they do not match, the packet is dropped. Otherwise, the
router decrypts ψEnc

i using ⊕ to obtain the policy index ψi.
It then replaces the HVF with the the `val next bytes of the
MAC output and, based on a local lookup table, forwards
the packet such that it traverses the intra-AS network in a
policy-compliant manner. In case there is no entry in the table
for this policy index, the router sends back a control message
to the source endpoint and drops the packet. The destination
endpoint is not modified, it checks the destination validation
field and returns an authenticated confirmation containing the
updated HVFs and tsPkt of the original packet, such that the
source can verify the AS-level path the packet traversed.

Through those modifications, we extend EPIC to not only
achieve source authentication and path validation, but also
secrecy and authenticity of the policy indices. Because pol-
icy indices are encrypted on a per-packet basis, an attacker
cannot infer whether two encrypted indices describe the same
plaintext policy index by only looking at the packet headers.
Hence, such an attacker can not even deduce whether the
source endpoint has chosen any policies at all, as a policy
index of zero is indistinguishable from any other policy index
after encryption.

D Policy Specification Details

In this section, we provide additional details on the syntax of
the policy language and our policy encoding.

D.1 Policy Syntax
The syntax of our policy language is based on the following
general syntax for FOL with equality. In addition to the sorts,
function symbols, and predicates defined in Section 5.1, we
have

Sorts: A set of sorts {I1, I2, ..., In}

Vars: A set of sorted variables {v1,v2, ...}, where each
variable vk is of some sort I, written vI

k.

Function Symbols: A set of function symbols. The in-
put parameters and the output of a function (i.e., its sig-
nature) are of specific sorts: f : Ii1 × Ii2 × ...× Iin → Ir

Constants: A set of sorted constants (i.e., function sym-
bols with arity 0)

Predicates: A set of predicates. The input parameters
of an n-ary predicate are of the sorts Ii1 , Ii2 , ..., Iin , where
n≥ 1

Terms are defined inductively:

Vars ⊆ Terms

Constants ⊆ Terms

if t
It1
1 , t

It2
2 , ..., t

Itk
k ∈ Terms and f is a function

with signature It1 × It2 × ... × Itk → Ir, then
f (t1, t2, ..., tk)Ir ∈ Terms

Formulas are defined inductively:

if tI
1, t

I
2 ∈ Terms for some sort I, then t1 = t2 ∈

Formulas

if tI1
1 , tI2

2 , ..., tIk
k ∈ Terms and P is a predicate with

signature I1 × I2 × ...× Ik, then P(t1, t2, ..., tk) ∈
Formulas

if φ ∈ Formulas and θ ∈ Formulas, then

USENIX Association 32nd USENIX Security Symposium 5771

¬φ, φ∧θ, φ∨θ, φ→ θ ∈ Formulas

if φ ∈ Formulas and xI ∈Vars is a variable of sort I, then

∀xI : φ, ∃xI : φ ∈ Formulas

if tI
1, t

I
2 ∈Terms are terms of sort I (note that in our policy

language, inequality is only defined for sort V), then

t1 < t2, t1 ≤ t2, t1 > t2, t1 ≥ t2 ∈ Formulas

D.2 Semantics and Interpretation
An interpretation for our sorted FOL with equality is defined
by a set of carrier sets interpreting each sort, a set of relations
interpreting each predicate, and a set of functions (including
constants with arity 0) interpreting each function symbol. We
first define interpretation of the sorts in our language:

Manufacturer (Sort M): Entity creating and distributing
routers. Let M be the set of all manufacturers.

Software Component (Sort C): A software product, which
is identified by a unique tag, typically assigned by the owner
of the software product, and may support versioning. Let C
be the set of all software components.

Tag (Sort T): A software component is clearly identified by a
globally unique tag. Let T be the set of all possible tags. The
function tag: C → T returns the tag of a software component.

Tag Issuer (Sort I): The tag of a software component is
assigned by a tag issuer, which is identified by a URI. Let I
be the set of all possible issuers. The function issuer: T → I
returns the issuer of a tag.

Name (Sort N): The name of a software component, which
allows the identification of a software component with differ-
ent versions. Let N be the set of all possible names assigned
to a software component. The function name: C →N returns
the name of a software component.

Version (Sort V): A software component may be identified
by a specific version. Let V be a totally ordered set of all pos-
sible version numbers for different version schemes defined in
the NIST standard for Software Identification Tags [42, 5.1.2].
The function version: C → V returns the version of a soft-
ware component or the default version (“1.0.0”).

Router (Sort R): A device produced by a specific manufac-
turer and running a clearly defined software stack. Let R be
the set of all possible routers.

Path (Sort P): A sequence of routers but we simplify the
representation of a path as a set since order and repetition are
not relevant for path policies. The elements of a path are thus
defined by the relation onPath: P ×R . Let P be the set of
all possible paths.

Router Setup: A router setup consists of its manufacturer and
software stack, i.e., the set of software components providing
the router functionality. It is thus defined by the function and
relation, manufacturer: R →M and software: R ×C .

Based on the above, we define an interpretation as follows:

Sorts: The sorts and their respective carrier sets are defined
in Table 1. The concrete values used to encode these router
attributes are described in Appendix D.3.

Predicates: Predicate symbols are interpreted by relations.
The predicate for the total order on V overloads the com-
parison operator (relation) ≤ over V ×V . This total order is
defined by the version scheme (e.g., SemVar where versions
use a three-part version number such that 1.2.3≤ 1.3.2). The
remaining operators <,≥, and > can be defined in terms of
≤3. Finally, there are the relations onPath and software.

Functions: The function symbols manufacturer, tag,
issuer, name, and version are interpreted by their respec-
tive functions. Constants, i.e., function symbols with arity 0,
are interpreted by the carrier set of their respective sort as
described in Table 1.

D.3 Policy Encoding
Our policies are based on two building blocks: manufactur-
ers and software components with their respective attributes
(tags, issuers, names, and versions). To communicate policies
among different entities, we need a common set of values for
each building block. We encode the manufacturer using the
private enterprise numbers specified by IANA [21]. These
numbers are globally consistent unique identifiers for differ-
ent manufacturers. The software components including their
related attributes are encoded using SoftwareIdentity el-
ements from the NIST standard for Software Identification
Tags [42].

3 p < q := p≤ q∧ p 6= q, p≥ q := q≤ p, and p > q := q < p

5772 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background on SCION
	Trust Model and System Objectives
	System Objectives
	Policies
	Trust Model

	FABRID System Description
	Overview
	Policy Announcement
	Policy Dissemination via PCBs
	Endpoint Policy Selection
	Securing Policy Indices
	Router Attestation

	Policy Specification
	Syntax and Semantics
	Policy Definition

	Implementation and Evaluation
	Deployment in SCIONLab
	High-Speed Implementation
	Evaluation

	Security and Scalability Analysis
	Security
	Scalability

	Discussion
	Related Work
	Conclusion
	DRKey
	EPIC
	Securing Path Policy Indices
	Policy Specification Details
	Policy Syntax
	Semantics and Interpretation
	Policy Encoding

