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Abstract. This paper introduces protocols for authenticated
private information retrieval. These schemes enable a client to
fetch a record from a remote database server such that (a) the
server does not learn which record the client reads, and (b) the
client either obtains the “authentic” record or detects server
misbehavior and safely aborts. Both properties are crucial
for many applications. Standard private-information-retrieval
schemes either do not ensure this form of output authenticity,
or they require multiple database replicas with an honest ma-
jority. In contrast, we offer multi-server schemes that protect
security as long as at least one server is honest. Moreover,
if the client can obtain a short digest of the database out of
band, then our schemes require only a single server. Perform-
ing an authenticated private PGP-public-key lookup on an
OpenPGP key server’s database of 3.5 million keys (3 GiB),
using two non-colluding servers, takes under 1.2 core-seconds
of computation, essentially matching the time taken by unau-
thenticated private information retrieval. Our authenticated
single-server schemes are 30-100× more costly than state-
of-the-art unauthenticated single-server schemes, though they
achieve incomparably stronger integrity properties.

1 Introduction

Private information retrieval (PIR) [29] enables a client to
fetch a record from a database while hiding from the database
server(s) which specific record(s) the client retrieves. PIR
has numerous privacy-protection uses, such as in metadata-
private messaging [5, 6], certificate transparency [62, 80],
video streaming [50], password-breach alerting [4, 59, 83],
retrieval of security updates [22], public-key directories [63],
and private SQL-like queries on public data [72, 88].

Most PIR protocols, however, do not ensure data authentic-
ity in the presence of malicious servers. In many multi-server
PIR schemes [17, 29], a single adversarial server can flip any
subset of bits in the client’s recovered output. In all single-
server PIR schemes we know of (c.f., [1, 4, 5, 18, 20, 31, 36,
45, 51, 56, 61, 65, 70, 74, 76] for a non-exhaustive list), a
malicious server can choose the exact output that the client
will receive by substituting all the database records with a
chosen record before processing the client’s request. In appli-
cations where data integrity matters, such as a PGP public-key
directory, unauthenticated PIR is inadequate.

This paper introduces authenticated private information
retrieval, which augments the standard privacy properties of

The full version of this paper is available at https://eprint.iacr.org/2023/297.

classic PIR with strong authenticity guarantees. In the multi-
server setting, we propose authenticated-PIR schemes for:

• Point queries, in which a client wants to fetch a particular
database record. For example, “What is the public key for
user@usenix.org?”

• Predicate queries, where a client wants to apply an aggre-
gation operator – such as COUNT, SUM, or AVG – to all records
matching a predicate. For example, “How many keys are
registered for email addresses ending in @usenix.org?”

Our corresponding authenticated-PIR schemes guarantee
integrity in the anytrust model [90]: as long as at least one of
the PIR servers is honest. In contrast, prior work that deals
with malicious or faulty PIR servers in the multi-server set-
ting either requires a majority or supermajority of servers
to be honest [11, 12, 38, 48] or requires expensive public-
key cryptography operations [94]. Our schemes use only fast
symmetric-key cryptography in the multi-server setting.

In the single-server setting, we offer authenticated-PIR
schemes for point queries which provide authentication as
long as the client can obtain a short digest of the database via
out-of-band means (Fig. 1). Prior work for the single-server
setting [56, 89, 95] ensures only that the server truthfully
answers the query with respect to some database—not nec-
essarily the database the client queried. Table 2 summarizes
prior work and Section 8 gives the complete discussion.

New definitions. Our first contribution is a new definition of
integrity for private information retrieval. In our multi-server
PIR schemes, a client communicates with several database
servers, and client privacy holds as long as at least one server
is honest. In this multi-server setting, we say that a PIR
scheme satisfies integrity if, whenever the client accepts the
servers’ answers, the client’s output is consistent with an hon-
est server’s view of the database.

Defining integrity in the single-server setting is more tricky:
If the single database server is malicious, who is to say what
the “right” database is? Our approach assumes that the client
can obtain a short digest of the database via some out-of-band
means. A single-server PIR protocol satisfies integrity if the
client accepts the protocol’s output only if the output is consis-
tent with the database that the digest represents. In some appli-
cations of PIR, the client could obtain this database digest via
a gossip mechanism, as in CONIKS [64], or from a collective
authority [81], or from a signature-producing blockchain [71].
In other applications of PIR such as video streaming [50], a
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Figure 1: In multi-server authenticated PIR, k ≥ 2 servers hold an exact replica of the database and the client’s output is consistent with the
honest server’s view of the database. If at least one server is honest, the client detects any malicious behaviour from the other servers that reply
with respect to an altered database, and rejects the answers. In the single-server setting, a potentially-malicious PIR server holds the database
outsourced by the data owner. The client’s output is consistent with a database digest that the client obtained from the honest data owner.

database owner—distinct from the PIR servers—might pro-
duce, sign, and distribute this digest.

A subtle and important point is that our security definitions
require protection against selective-failure attacks by mali-
cious servers [52, 54, 56]. In this class of attacks, a malicious
server answers the client’s query with respect to a database
that differs from the true database in a few rows. By observing
whether the client accepts or rejects the resulting answer, the
server can learn information about which rows the client had
queried. To defend against these attacks, our security defini-
tions require that any misbehavior on the part of a malicious
server causes a client to reject the servers’ response.

New constructions. We construct new authenticated-PIR
schemes in the multi- and single-server settings.

Multiple servers, point queries. Our first multi-server PIR
scheme allows the client to make only point queries—to fetch
single records from the database. The scheme is simple to
implement and has minimal performance overhead. In this
scheme, the servers compute a Merkle tree over the database
rows and send the client the Merkle root. The client aborts
if the servers send different roots. The client then uses unau-
thenticated PIR to fetch its desired row and a Merkle inclu-
sion proof with respect to the root. The scheme provides
authentication when composed with certain—though not all—
standard PIR schemes. (Kushilevitz and Ostrovsky suggested
using Merkle trees in this setting [56], though we are the
first to formalize the approach and identify the class of PIR
schemes for which it is secure.) On a database containing N
records of ℓ bits, and on security parameter λ, our two-server
authenticated-PIR scheme for point queries has communica-
tion cost O(λ logN + ℓ), which matches the cost of the best
unauthenticated schemes. Experimentally, this form of au-
thentication imposes less than 2.7× computational and 1.8×
bandwidth overhead, compared with unauthenticated PIR.

Multiple servers, predicate queries. Our multi-server scheme
for predicate queries starts with an existing unauthenticated
scheme based on function secret sharing [16, 17, 88]. We
cannot use Merkle trees for authentication: the space of pos-
sible queries is exponentially large, so the servers cannot
precompute and authenticate each potential answer as before.
The client instead uses an information-theoretic message-
authentication code—common in malicious secure multi-
party protocols [32, 34]—to detect whether a server has tam-
pered with its answer. Asymptotically, the communication and
computation of our authenticated-PIR scheme for predicate
queries matches the costs of the corresponding unauthenti-
cated scheme. Empirically, the authenticated scheme incurs a
median overhead of less than 1.02× for both user time and
bandwidth. Our multi-server scheme for predicate queries is
concretely more computationally expensive (at least 350×)
than our scheme for point queries because the cost of evaluat-
ing the function secret shares is non-trivial. Thus, this scheme
does not scale as well to a large number of servers compared
to our specialized multi-server scheme for point queries.

Single server, point queries. Finally, we give two single-
server authenticated-PIR protocols: one from the learning-
with-errors assumption, and one from the decisional-Diffie-
Hellman assumption. Like many recent single-server PIR pro-
tocols [1, 4, 5, 51], our schemes extend the classic Kushilevitz-
Ostrovsky scheme based on additively homomorphic encryp-
tion [56, 73]. Our schemes incorporate additional random-
ness that the client uses to authenticate the server’s response.
The client verifies the server’s reply using a short database
digest that the client obtains via out-of-band means. Our
schemes operate with single-bit records. We propose exten-
sions for handling larger records, but they require increased
client computation: more efficient single-server, multi-bit au-
thenticated PIR remains a promising area for future work.
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Multi-server schemes
Robust PIR [11, 12] 1 ✗ ✗ ✓ ✓

Byzantine PIR [11, 12, 38, 48, 55] >2k/3 ✓ ✓ ✓ ✓

Fault-tolerant PIR [92] >k/2 ✓ ✓ ✓ ✓

Verifiable PIR [94] 1 ✓ ✓ ✗ ✗

Authenticated PIR (§4, §5) 1 ✓ ✓ ✓ ✗

Single-server schemes
KO97 [56] 0 ✓ ✗ ✗ ✗

Verifiable PIR [89, 95] 0 ✓ ✗ ✗ ✗

Authenticated PIR (§5) 0 ✓ ✓ ✗ ✗

Table 2: Summary of PIR schemes that tolerate dishonest servers.
The multi-server schemes assume k servers in total. Malicious indi-
cates schemes that resist malicious adversaries, as opposed to merely
faulty servers. Selective-failure secure indicates schemes designed
to resist selective-failure attacks [54]. No public-key cryptography
indicates schemes that require only fast symmetric primitives; single-
server schemes always require public-key operations [33]. Recovery
indicates whether, in case of a server’s misbehaviour, the client is
able to recover the correct output or just aborts.

Over a database of size N and with security parameter λ, our
single-server authenticated-PIR schemes have communica-
tion cost

√
N ·poly(λ). In contrast, unauthenticated schemes

have communication cost as low as logN ·poly(λ). Our fastest
single-server scheme is 30-100× more computationally ex-
pensive than the fastest unauthenticated scheme.

An example application. To evaluate authenticated PIR in the
context of a practical application, we design and build Keyd,
a privacy-preserving PGP public-key directory deployed in
the two-server setting. A Keyd client can query the servers
for the PGP public key corresponding to a particular email ad-
dress without leaking the queried email address to the servers.
Moreover, a Keyd client can also query the servers for private
analysis of the PGP public keys dataset by issuing conjunctive
COUNT, SUM and AVG queries without leaking the parameter of
the keys over which the predicate is computed. For exam-
ple, a client can issue a query of the form SELECT COUNT(*)

FROM keys WHERE keyAlgorithm = p, where p represents
the hidden parameter of the predicate, e.g., RSA or ElGa-
mal. Our new authenticated-PIR schemes provide the client
with a strong integrity guarantee about the output of the pro-
tocols. When run on a recent dump of the SKS PGP key
directory, including over 3.5 million keys, querying for a par-
ticular key takes the client 1.11 seconds, compared with 1.10
seconds with unauthenticated PIR. Issuing predicate queries
with Keyd on the same database imposes an overhead of
1.01× on user time and of 1.05× on bandwidth compared
with unauthenticated PIR.

2 Background and motivation

This section reviews classic PIR schemes, and why naïvely
introducing integrity protection into them is unsafe.

2.1 Private information retrieval (PIR)

A PIR protocol [29] takes place between a client and one or
more servers. Each server holds a copy of a database consist-
ing of a set of equal-length records. The client wants to query
the database without revealing the details of its query to the
servers. Modern PIR protocols support two types of queries:
(1) the client can fetch a single record from the database, with-
out revealing which record it retrieved, or more generally, (2)
the client can evaluate a function on all the database records,
without revealing which function it evaluated. Non-trivial PIR
schemes must also be communication efficient, requiring the
client and servers to exchange a number of bits sublinear in the
database size. Otherwise, the client could simply download
the entire database and perform the query locally.

There are two main types of PIR protocols: multi-server
and single-server. In multi-server PIR [29], the client com-
municates with k > 1 database replicas; correctness holds
if all k servers are honest and privacy holds if at least one
server is honest. Multi-server PIR schemes traditionally offer
information-theoretic privacy. In single-server PIR schemes
(k = 1) [56], correctness holds if the single server is honest
and privacy holds against a dishonest server. Single-server
PIR schemes require a computationally-bounded server and
public-key cryptographic operations [33].

In many applications, the database is a list of
(keyword,value) pairs; the PIR client holds a keyword
and wants the associated value. In this paper, we construct
authenticated PIR schemes for integer-indexed arrays, and we
use off-the-shelf methods [27, 47] to convert these schemes
into authenticated keyword-based PIR schemes.

2.2 Why integrity matters in PIR

Standard PIR schemes give the client no integrity guarantees.
If any one of the servers in a single- or multi-server scheme
deviates from the protocol, the malicious server can—in many
PIR protocols—completely control the output that the client
receives. In other words, classic PIR protocols do not ensure
correctness against even just one malicious server.

This lack of integrity protection is extremely problematic
in many applications of PIR:

• Public-key server: If a client uses PIR to query a PGP or
Signal key server for a contact’s public keys, a malicious
server could cause the client to fetch a false public key
for which the adversary controls the secret key.

• Domain name system: If a client uses PIR to query a
DNS resolver, a malicious PIR server could cause the
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client to recover the wrong IP address for a hostname
and thus poison the client’s DNS cache.

• Online certificate status protocol (OCSP): If a client
uses PIR to query the revocation status of a public key, a
malicious PIR server could trick the client into trusting a
certificate that was revoked by the CA after compromise.

• Content library: If a client uses PIR to fetch a movie [50]
or a software update, a malicious PIR server could cause
the client to recover a malware-infected file instead.

Non-private variants of these applications can already offer
integrity. For example, CONIKS [64] provides integrity of key
bindings for public-key directory servers and DNSSEC [7]
ensures integrity of DNS data. The challenge is thus to ensure
integrity in the private variants of these applications.

2.3 Selective failure and other attacks on PIR

We can always compose standard authentication mechanisms
with PIR. For example, a database owner – the party respon-
sible for its creation – can append to each database row a
digital signature on the record under the database owner’s key
or a Merkle inclusion proof with respect to a known root. The
database owner can then outsource the authenticated database
to an untrusted PIR server. After performing a query, the client
simply checks the authentication tag on the row it retrieved.

This attempt at authenticated PIR is insecure and vulner-
able to selective-failure attacks [54]. In such attacks, a ma-
licious PIR server selectively corrupts the database so that
only targeted queries fail the integrity check. Suppose a mali-
cious PIR server “guesses” that the client is likely to access a
particular record, and corrupts only that record. The client’s
integrity check then fails only if the attacker’s guess was cor-
rect. If the attacker can determine whether the client accepted
or rejected the PIR protocol’s output—e.g., via the client’s
subsequent behavior—the attacker can violate client privacy.

Naïve composition can yield other security and privacy haz-
ards. For example, if authentication tags attached to database
rows do not uniquely identify the database version and row
number, then a malicious PIR server might undetectably swap
or duplicate rows or replay old database versions.

Even in a multi-server setting where one malicious server
cannot unilaterally corrupt database rows independently, but
is limited to blindly flipping bits in its answer without know-
ing which row these bit-flips will affect, more subtle attacks
on naïve compositions may be readily feasible. If rows are
protected by malleable digital signatures [39], for example,
then a malicious server might flip signature bits in the result
so that the signature of a particular “guessed” database row
becomes a different still-valid signature the client will accept,
while the signatures on all other rows become invalid.

3 Defining authenticated PIR

We now define authenticated PIR in the multi- and single-
server settings. In both models, we wish to ensure that the
client either obtains “correct” (authentic) output, or else safely
rejects the answer without leaking any private information.
Privacy must hold even if the PIR servers learn whether the
client has accepted or rejected the answer. Therefore, our pro-
tocols protect against selective-failure attacks (Section 2.3).

Notation. We use N to denote the set of natural numbers. For
N ∈N, [N] = {1, . . . ,N}. We use negl(·) to denote a negligible
function and poly(·) to denote a fixed polynomial. Through-
out, we use F to denote a finite field. We will typically take F
to be the set of integers modulo a prime p with addition and
multiplication modulo p. For a finite set S, we write x←R S
to indicate that x is sampled independently and uniformly at
random from S. The symbol ⊥ is an output that indicates
rejections. For a group G, we use 1G to denote the identity
element. For finite sets S and T , we use Funs[S,T ] to denote
the set of all functions from S to T . By “efficient algorithm”
we refer to a probabilistic polynomial time algorithm. In some
settings, we will also consider hardness against non-uniform
adversaries (i.e., polynomial-time algorithms that can addi-
tionally take polynomial-size advice as input, see the full
version [30] for more details).

3.1 Multi-server definition
We now define k-server authenticated PIR schemes, for k ≥ 2.
See Appendix A for the full formalism.

Our definition generalizes private information retrieval to
weighted functions of the database rows: the client has a secret
function f in mind, which must come from a particular class
of functions F . The servers hold a database (x1, . . . ,xN) and
public “weights” (w1, . . . ,wN), one per database row. The
client’s goal is to get the weighted sum of its private function
f applied to each of the rows: ∑i∈[N] wi f (i,xi). When the
function class F is expressive enough, this general syntax
subsumes not only the usual definition of multi-server PIR,
but also more expressive PIR schemes for predicate queries.

Definition 1 (k-server authenticated PIR for predicate
queries). A k-server authenticated PIR scheme for function
class F ⊆ Funs[[N]×{0,1}ℓ,F], database size N ∈ N, and
weights w ∈ FN , consists of three efficient algorithms:

• Query(1λ, f )→ (st,q1, . . . ,qk). Given a security param-
eter λ, expressed in unary, and a function f ∈ F , return
secret client state st and queries q1, . . . ,qk, one per server.

• Answer(X,w,q) → a. Apply query q to database X =
(x1, . . . ,xN) ∈ ({0,1}ℓ)N together with weights w =
(w1, . . . ,wN) ∈ FN and return answer a.

• Reconstruct(st,a1, . . . ,ak)→
{

∑i∈[N] wi f (i,xi),⊥
}

. Take
as input client state st and answers a1, . . . ,ak and return
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the weighted output of the function f applied to the rows
of database X, or an error ⊥.

A k-server authenticated-PIR protocol must satisfy the fol-
lowing properties. We state the properties here informally and
give formal cryptographic definitions in Appendix A.

Correctness. Informally, an authenticated-PIR scheme is cor-
rect if, when an honest client interacts with honest servers,
the client always recovers the weighted output of its chosen
function applied to the database, i.e., ∑i∈[N] wi f (i,xi).

Integrity. An authenticated-PIR scheme preserves integrity
with error ε if, when an honest client interacts with a set of k
servers, where at most k−1 can be malicious and might arbi-
trarily deviate from the protocol, the client either: outputs the
sum of products of its desired function and weights applied
to the database, or outputs the error symbol ⊥, except with
probability ε. If the scheme has negligible integrity error, we
just say that it “preserves integrity.” Classic PIR schemes do
not ensure this integrity property.

Privacy (against malicious servers). An authenticated-PIR
scheme satisfies privacy if any coalition of up to k−1 ma-
licious servers “learns nothing”—in a strong cryptographic
sense—about which function in the function class F the
client wants to evaluate on the database, even if the servers
learn whether the client’s output was the error symbol ⊥
during reconstruction. Standard PIR schemes do not neces-
sarily satisfy our strong notion of privacy, since such schemes
may be vulnerable to selective-failure attacks (Section 2.3);
authenticated-PIR schemes that provide privacy are not.

We say that an authenticated-PIR scheme is secure if it
satisfies both integrity and privacy. We define integrity and
privacy separately because, as Section 3.3 shows, we can re-
duce the integrity error of a PIR scheme that provides privacy.

Example 2 (PIR for point queries—Standard PIR). In
authenticated-PIR schemes for point queries, as in a standard
PIR scheme, a client privately fetches a single database row.
We can recover this functionality from Definition 1, where
we take the row length ℓ= 1 for simplicity. The class of func-
tions F is the class of point functions F = { f (1), . . . , f (N)} ⊆
Funs[[N]×{0,1},F], where f (i)(i, ·) = 1 and f (i)(i′, ·) = 0
for all i′ ̸= i. The weights are the database entries themselves,
i.e., wi = xi ∈ {0,1} ⊆ F, for i ∈ [N].

Example 3 (COUNT query). A COUNT predicate query
counts the database entries satisfying a predicate. A client
can count the occurrences of a string σ ∈ {0,1}ℓ in a
database x1, . . . ,xN ∈ {0,1}ℓ using the class of functions
F ⊆ Funs[[N]×{0,1}ℓ,F], where f (·,xi) = 1 if xi = σ and
f (·,xi) = 0 otherwise, with constant weights wi = 1F, i ∈ [N].

Remark 4 (Security against k− 1 malicious servers). The
form of authenticated PIR we define above requires security
to hold even against coalitions of up to k−1 malicious servers.
This defines the minimal requirement for multi-server PIR

schemes, which do not support complete collusion, and is
a model frequently used in anonymous communication sys-
tems [6, 57, 90]. In particular, the colluding servers can share
their queries with each other and agree on the answers. The
protocols that we construct satisfy this strong notion of se-
curity. A weaker definition requires security to hold against
only adversaries that control a lower threshold t < k− 1 of
the servers. Prior work [11, 12, 48] takes t < k/2 or t < k/3.
We discuss these and other related approaches in Section 8.

3.2 Single-server definition
This section defines single-server authenticated PIR. One
challenge to providing integrity in the single-server setting is
that the client has no source of information about the database
content other than the server itself. (In the multi-server setting,
the honest server acts as a source of “ground truth.”) A mali-
cious server can answer the client’s query with respect to a
database of the server’s choosing, and completely control the
client’s output. We address this problem by introducing a pub-
lic database digest that cryptographically binds the server to
a given database and serves as the ground truth in the scheme.
In applications, the client must obtain this digest via out-of-
band means, e.g., via gossip, as in CONIKS [64], or from the
database owner if the latter is distinct from the PIR server.

We now give the formal definition of a single-server
authenticated-PIR scheme, which differs from the multi-
server definition in its use of a digest and in the absence of
complex queries. We assume for simplicity that each database
record consists of a single bit. The definition generalizes nat-
urally to databases with longer rows.

Definition 5 (Single-server authenticated PIR for point
queries). A single-server authenticated PIR scheme, for a
database of size N ∈ N, consists of the following algorithms:

• Digest(1λ,x)→ d. Take a security parameter λ (in unary)
and a database x ∈ {0,1}N and return a digest d.

• Query(d, i)→ (st,q). Take as input a digest d and an index
i ∈ [N] and return a client state st and a query q.

• Answer(d,x,q) → a. Apply query q to database x ∈
{0,1}N with digest d and return answer a.

• Reconstruct(st,a)→{0,1,⊥}. Take as input state st and
answer a and return a database bit or an error ⊥.

A single-server authenticated-PIR scheme must satisfy
analogous properties to those in the multi-server setting: cor-
rectness, integrity and privacy. If a scheme satisfies both in-
tegrity and privacy, we say that the scheme is secure. We
present the formal definitions in the full version [30].

Malformed digest. Our schemes guarantee integrity for
single-server authenticated PIR only when the client uses an
honestly-generated digest. In all applications of single-server
PIR that we envision, this security guarantee is sufficient—
the client’s goal is to check that a (possibly malicious) PIR
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server’s answer is consistent with the (correct) digest that the
client has obtained out-of-band from the data owner. Stronger
notions of security are possible, however. We could require
that even if the digest is generated adversarially, the client
is guaranteed to recover output that is consistent with some
n-bit database. This stronger notion is related to that of simu-
latable adaptive oblivious transfer [21] and extends to other
cryptographic primitives [44, 53].

3.3 Integrity amplification
The lattice-based single-server authenticated-PIR schemes
that we construct in Section 5 have noticeable integrity error
ε = 1/poly(λ) for some parameter settings. We show, in the
full version [30], that if the authenticated-PIR schemes pro-
vide privacy, then it is possible to reduce the integrity error
to a negligible quantity, in both the multi- and single-server
settings. In particular, we prove:

Theorem 6 (Integrity amplification, informal). If Π is an
authenticated-PIR scheme with privacy and with integrity
error ε then, for every t ∈ N, there is an authenticated-PIR
scheme Π′ with privacy and with integrity error εt+1, where
Π′ invokes Π at most 2t +1 times.

The integrity-amplification construction first encodes the
database using an error-correcting code that can correct t
errors. For instance, using the simple repetition code, we ex-
pand each database bit into 2t +1 codeword bits. (When the
database records are long, we can use better error-correcting
codes.) Then, the client uses the base authenticated PIR
scheme Π 2t + 1 times to fetch each of the 2t + 1 bits of
the codeword corresponding to its desired database record.

If any of these 2t +1 runs output ⊥, the client outputs ⊥.
If none of the 2t +1 runs output ⊥, then either: (a) the client
recovers at least t +1 correct bits of the codeword, in which
case the client correctly recovers its desired output bit, or
(b) the client recovers an incorrect bit on more than t of the
protocol runs, which happens with probability at most εt+1,
by the ε-integrity of the underlying PIR scheme.

4 Multi-server authenticated PIR

We give two constructions of multi-server authenticated PIR.

4.1 Point queries via Merkle trees
We first present a multi-server authenticated-PIR scheme for
point queries. This scheme enables a client with a secret index
i ∈ [N] to retrieve the ith record from a database of N records.

A natural way to construct an authenticated-PIR scheme
is to combine a standard (unauthenticated) multi-server PIR
scheme with a standard integrity-protection mechanism, such
as Merkle trees [66]. While this composition is in general

insecure under our definition, we show that it can be secure
with a careful choice of the underlying primitives.

We sketch the construction here and formally present it with
related definitions in the full version [30]. This construction
uses a standard multi-server PIR scheme in which (a) the
client sends a single message to each server and receives a
single message in return and (b) client reconstructs its output
by summing up (or XORing) the answers from the servers.
Many standard PIR schemes have this form [17, 29, 31, 47].

In these schemes, if any of the servers deviate from the pre-
scribed protocol, the worst they can do is to cause the client
to recover the correct output shifted by a constant of the ad-
versarial servers’ choosing. Therefore, instead of recovering
the message m ∈ {0,1}ℓ, the client recovers m⊕∆, for some
non-zero value ∆ ∈ {0,1}ℓ.

Our approach then is to have the servers compute a
Merkle tree over the N database entries along with their
indices: {(1,x1), . . . ,(N,xN)}. Call the root of the tree R.
Then for each entry, each server constructs a Merkle proof
πi of inclusion in the tree rooted at R and attaches this
proof to each database record. The asymptotic complexity
of this preprocessing phase is O(N); we discuss concrete
costs in Section 7 and in the full version [30]. Finally, the
client and servers run the PIR protocol over the database
{(1,x1,π1), . . . ,(N,xN ,πN)}. Each of the servers also sends
the Merkle root R to the client.

The client first checks that it received the same Merkle root
R from all of the servers. Since at least one of the servers is
honest, this ensures the client receives the honestly-generated
root. If all the roots match, the client reconstructs the record
and verifies the Merkle inclusion proof with respect to R.
If a server misbehaves, the client will recover (i′,x′i,π′i) =
(i,xi,πi)⊕∆ for some non-zero offset ∆. Whenever ∆ ̸= 0,
security of the Merkle proof ensures that π′i will be an invalid
proof of (i,xi) with respect to R.

4.2 Predicate queries via function sharing

Recent work on function secret sharing [16, 17] in the multi-
server PIR setting enables a client to compute a non-trivial
function f over the database contents, without revealing this
function f to the servers. For example, a client can count the
number of database records that match a certain predicate,
without revealing this predicate to the servers.

We design an authenticated-PIR protocol for predicate
queries by extending classic PIR schemes based on func-
tion secret sharing [16, 17]. At a high level, the client makes
two correlated PIR queries. The reconstructed answer to the
first query should contain the value v that the client wants.
The reconstructed answer to the second query should contain
v′ = αv, where α is a random scalar known only to the client.
To authenticate the servers’ answers, the client checks that
αv = v′ and rejects if not. As we will show, if any server mis-
behaves, the client will be checking that α(v+∆) = v′+∆′,
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for some non-zero ∆ and ∆′. Sampling α from a sufficiently
large space of values ensures that the client catches a cheating
server almost certainly.

This idea of using secret-shared random values for data
authentication follows a long line of work on information-
theoretic message authentication codes and malicious-secure
multiparty computation [15, 32, 34, 37].

We now describe our construction in detail.

Preliminaries: Function secret sharing. We recall the defi-
nition of function secret sharing [16, 17]: A k-party function
secret-sharing scheme is defined with respect to a function
class F . Each function f ∈ F maps elements in some input
space to a finite group or field F. Then a function secret-
sharing scheme consists of two efficient algorithms:

• Gen(1λ, f )→ ( f1, . . . , fk). Given a function f ∈ F , output
k function-secret-shares f1, . . . , fk.

• Eval( fi,x)→ fi(x) ∈ F. Given a secret-share fi and a func-
tion input x, output the evaluation of fi on x.

A function secret-sharing scheme must satisfy the following
informal properties, defined formally in the full version [30]:

• Correctness. Given shares ( f1, . . . , fk) of a function f ∈F ,
for all x in the domain of f , it holds that ∑i∈[k]Eval( fi,x) =
f (x) ∈ F.

• Security. Given shares ( f1, . . . , fk) of a function f ∈ F , a
computationally-bounded adversary that learns k−1 of the
shares learns nothing about the shared function f , beyond
the fact that f ∈ F .

For the construction, we need the following definition:

Definition 7 (Function class closed under scalar multiplica-
tion). Let F be a class of functions whose codomain is a
finite field F. Then we say that the function class F is closed
under scalar multiplication if, for all functions f ∈ F and for
all scalars α ∈ F, it holds that the function α · f ∈ F.

Construction. Our scheme, presented in Construction 1, is
defined with respect to a finite field F, a record length ℓ ∈ N,
a database size N ∈ N, a function class F ⊆ Funs[[N]×
{0,1}ℓ,F] closed under scalar multiplication, and weights
w ∈ FN . The k ≥ 2 servers each hold a copy of a database
of N ℓ-bit records. We write the n database records as
x1, . . . ,xN ∈ {0,1}ℓ. Given a predicate function f ∈ F , the
client samples a random non-zero field element α ∈ F and
secret-shares f together with a new function g defined as
g(i,xi) = α · f (i,xi) ∈ F into k shares, i.e., f j and g j for j ∈
[k]. (Alternatively, if the underlying function-secret-sharing
scheme supports it, the client can also secret share the single
function ( f (i,xi),g(i,xi)) whose image is in F2.)

Upon receiving the shares, each server j ∈ [k]
sets each element of its answer tuple to the sum of
the function shares’ evaluations on all the database

Construction 1 (k-server authenticated PIR for predi-
cate queries tolerating k− 1 malicious servers). The
construction is parametrized by a number of servers
k ∈ N, a number of database rows N ∈ N, a row length
ℓ ∈ N, a finite field F, a security parameter λ, a func-
tion class F ⊆ Funs[[N]×{0,1}ℓ,F] that is closed un-
der scalar multiplication, and a function-secret-sharing
scheme (FSS.Gen,FSS.Eval) for the function class F ,
parametrized by λ. We represent the database as N binary
strings, each of length ℓ: x1, . . . ,xN ∈ {0,1}ℓ.
Query

(
1λ, f

)
→ (st,q1, . . . ,qk)

1. Sample a random field element α←R F\{0}.
2. Set the state st← α.
3. Let g← α · f . Such a g must exist since the function

class F is closed under scalar multiplication, as in
Definition 7.

4. Compute q1, . . . ,qk← FSS.Gen(1λ, f ) together with
q′1, . . . ,q

′
k← FSS.Gen(1λ,g).

5. Output
(
st,(q1,q′1), . . . ,(qk,q′k)

)
.

Answer
(
x1, . . . ,xN ∈ {0,1}ℓ,w ∈ FN ,q

)
→ a ∈ F2

1. Parse q as (q f ,qg).
2. Compute answer as a f ←∑ j∈[N] w j ·FSS.Eval(q f ,x j)

and ag← ∑ j∈[N] w j ·FSS.Eval(qg,x j).

3. Return a← (a f ,ag) ∈ F2.

Reconstruct
(
st,a1, . . . ,ak ∈ F2

)
→ F∪{⊥}

1. Parse the state st as α ∈ F.
2. Compute a← a1 + · · ·+ak ∈ F2.
3. Parse a as (m,τ) ∈ F2.
4. Compute τ′← m ·α ∈ F.
5. If τ = τ′, output m ∈ F. Otherwise, output ⊥.

records multiplied by the corresponding weights: i.e.,
a j←

(
∑i∈[N] wi · f (i,xi),∑i∈[N] wi ·g(i,xi)

)
∈ F2. The

servers directly evaluate the function shares on the database
records. The client adds the answer vectors and reconstructs
an intermediate value a← ∑ j∈[k] a j ∈ F2.

If all the servers are honest, the client-
reconstructed value a equals a = (a1,a2) =(
∑i∈[N] wi · f (i,xi),α ·∑i∈[N] wi · f (i,xi)

)
. The client then

verifies that α · a1 = a2. As α is randomly generated and
secret-shared among the servers, only the client knows its
value. If α · a1 ̸= a2, then the client rejects. Otherwise, the
client accepts and outputs a1.

Proof sketch. To explain how this approach protects in-
tegrity, we argue by contradiction. Say that server j ∈ [k]

USENIX Association 32nd USENIX Security Symposium    3841



should have returned an answer a j ∈ F2 to the client. Sup-
pose server j is malicious and returns an answer â j =
a j + ∆ ∈ F2 for some non-zero value ∆ = (∆m,∆τ) ∈
F2. The client will reconstruct the answer as a + ∆ =(
∑i∈[N] wi · f (i,xi)+∆m,α ·∑i∈[N] wi · f (i,xi)+∆τ

)
∈ F2. As

server j has no information about α—due to the privacy guar-
antees of the function-secret-sharing scheme—the malicious
server’s choice of ∆ is (computationally) independent of α.
For the verification to pass, it must be that α ·∆m =∆τ. If ∆ ̸= 0
and α is sampled independent of ∆, this happens with proba-
bility at most 1/(|F|−1) over the randomness of α. Next, the
privacy of the client’s queries is ensured by the underlying
function secret-sharing scheme. In the full version [30], we
formally prove that this construction is secure.

Theorem 8. Suppose there exists a k-party function-secret-
sharing scheme for a function class F ⊆ Funs[[N] ×
{0,1}ℓ,F] that is closed under scalar multiplication (Defini-
tion 7), for database size N ∈N, which, on security parameter
λ ∈ N, outputs secret shares of length L(λ). Then, there is a
k-server authenticated-PIR scheme for function class F with
query complexity 2L(λ)k bits and answer complexity 2kλ bits.

By applying the two-party function-secret-sharing scheme
of Boyle, Gilboa, and Ishai [17], we get:

Corollary 9. Given a length-doubling pseudorandom genera-
tor with seed length λ, there is a two-server authenticated PIR
scheme for point functions and interval functions with com-
munication complexity O(λ logN), on security parameter λ

and database size N.

Handling functions with larger output. In some PIR ap-
plications, a client might want to evaluate a function whose
output is larger than a single field element, e.g., geographi-
cal coordinates for route planners [88]. We hence extend our
scheme to support multi-element authenticated output.

Here, we authenticate each output element of a function
f with a separate function g j, for j ∈ [b], where b is the
output length of f using an algebraic manipulation detec-
tion code [32]. In the query algorithm, the client gener-
ates a secret random scalar α as before but then computes
(g1(i,xi),g2(i,xi), . . . ,gb(i,xi)) = (α,α2, . . . ,αb) ⊙ f (i,xi),
where ⊙ represents the element-wise product, and sends
secret-shared f and g1, . . . ,gb to the servers. The servers then
compute their answer as a← (a f ,ag1 , . . . ,agb) ∈ F2b.

This already enables the client to validate integrity of
the full output after the reconstruction by comparing it with
ag1 , . . . ,agb . We further reduce the protocol’s communication
cost by setting the servers’ answer to (a f ,ag = ∑i∈[b] agi) ∈
Fb+1. The client re-computes this linear combination from
the answer and compares it with the received value.

We show the full construction in the full version [30].

5 Single-server authenticated PIR

We now present a single-server authenticated-PIR scheme.
As depicted in Fig. 1, in this setting a data owner outsources

the data to a single PIR server (e.g., an Amazon EC2 instance)
and produces a database digest. This public digest serves as a
commitment to the database contents. The client can fetch the
digest from a distributed authority, or using a CONIKS-like
gossip protocol [64], or out-of-band from the data owner.

It is possible in principle to construct single-server
authenticated-PIR schemes by augmenting a standard single-
server PIR scheme [5, 36, 51, 65, 70] with a succinct proof
of correct server execution [75], but this would be orders of
magnitude more costly in computation than our schemes are.

Preliminary: Rebalancing to get
√

N communication.
Our single-server authenticated-PIR schemes natively have
a digest of size poly(λ) bits, upload N · poly(λ) bits, and
download poly(λ) bits. To reduce total communication to√

N ·poly(λ) bits, we use a standard rebalancing trick [29].
The server first splits the database into

√
N chunks, each

of size
√

N. The digest then consists of the hash (with any
collision-resistant hash function, e.g., SHA-256) of the

√
N

database digests. To query the database for the ith row of
the jth chunk, the client issues a single query for row i. The
server responds with the

√
N chunk digests, and the answer

computed against each chunk. The client checks that (1) the
hash of the

√
N chunk digests match the database digest and

(2) all
√

N chunk queries accept. If these checks pass, the
client outputs the value of the jth response as its answer.

5.1 From learning with errors

Our first single-server authenticated-PIR scheme builds on
lattices and relies on the learning-with-errors assumption
(LWE) [79] The LWE assumption with parameters n,q,m,s∈
N, states that the two distributions (A,sTA+ eT) and (A,uT)
are computationally indistinguishable, where A ←R Zn×m

q ,
s←R Zn

q, e← Dm
Z,s ∈ Zm

q , and u←R Zn
q, and where DZ,s is the

discrete-Gaussian distribution with width parameter s (see the
full version [30]for formal statements).

Construction 2 describes our scheme, which is a twist
on Regev’s LWE-based encryption scheme [79] and is an
authenticated analogue of the SimplePIR LWE-based PIR
scheme [51]. (We compare against SimplePIR in Section 7.)
Regev’s scheme encrypts a vector v ∈ {0,1}N ⊆ ZN

q by the
pair (A,sTA+ eT+ t ·vT), where A ∈ Zn×N

q is the LWE ma-
trix, s←R Zn

q is the LWE secret, e← DN
Z,s is the error vector,

and t ∈ Zq is some scaling factor (commonly set to q/2).
Regev’s scheme is linearly homomorphic: for any vector
x ∈ {0,1}N ⊆ ZN

q , the ciphertext (Ax,(sTA+ eT+ t ·vT) ·x)
decrypts to vTx (provided the accumulated error eTx is small
compared to t).

In our scheme, the first portion of this ciphertext (A ·x, on
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database x ∈ {0,1}N ⊆ ZN
q ) becomes the digest. Finding two

distinct databases that map to the same digest is as hard as
solving the short integer solutions problem [2].

To query for database record i ∈ [N], the client prepares the
Regev encryption qT of the ith basis vector ηi ∈ ZN

q (i.e., ηi is
the vector that is 0 everywhere and 1 at index i). The scaling
factor t ∈Zq is sampled randomly (from an appropriate range),
which is critical for the security analysis. To answer the query,
the server homomorphically computes the encryption of the
inner product of the client’s query with the database: qTx ∈
Zq. The client checks that the decrypted value is either 0
(indicating a database bit of zero) or close to t (indicating a
database bit of one). Otherwise, the client outputs ⊥.

Finally, by rebalancing Construction 2, we have:

Theorem 10. Under the LWE assumption, Construction 2
is a secure single-server authenticated-PIR scheme when
instantiated with database size N, lattice parameters (n,q,s),
random matrix A←R Zn×N

q , and bound B = O(
√

λNs). The
digest size consists of n

√
N elements of Zq and the per-query

communication cost is 2
√

N elements of Zq. The scheme has
integrity error ε < 2B/(q−4B).

The most important difference between SimplePIR [51]
and Construction 2 is in the choice of LWE parameters. Since
the integrity error is roughly

√
N/q, on database size N and

modulus q, we must take the modulus q to be at least 128 bits
to achieve negligible integrity error. (Alternatively, we can
use a smaller modulus and run the protocol many times to
amplify integrity as per Section 3.3.) In contrast, SimplePIR
uses a 32-bit modulus with no repetition.

5.2 From decisional Diffie-Hellman
This second construction uses the decisional Diffie-Hellman
assumption (DDH). DDH holds in a group G of prime order p
generated by g ∈G, if for x,y,z←R Zp, the two distributions
(g,gx,gy,gxy) and (g,gx,gy,gz) are computationally indistin-
guishable (see the full version [30] for a formal definition).

Construction 3 details our scheme, which uses a group
G of large prime order p. The database is a vector of N
bits x = (x1, . . . ,xN) ∈ {0,1}N . The public parameters of the
scheme include group elements h1, . . . ,hN ∈G. The digest is
the product d←∏

N
j=1 h

x j
j ∈G. Finding two distinct databases

that map to the same digest is as hard as solving the discrete-
log problem in G [77].

The protocol operates as follows. The client samples two
random values r, t ←R Zp. The client then prepares a vector
of N group elements. Say the client wants to fetch the ith

database bit. For j ∈ [N], the jth component of this vector is
q j← hr+t

j if j = i and is q j← hr
j otherwise. Under DDH, the

server cannot differentiate between qi and q j for j ̸= i.
The client queries the server with the resulting blinded vec-

tor (q1, . . . ,qN). The server exponentiates each vector element

Construction 2 (Single-server authenticated PIR from
LWE). The construction is parametrized by a database
length N ∈N, a lattice dimension n∈N, a modulus q∈N,
a Gaussian width parameter s ∈N, a bound B ∈N, and a
matrix A ∈ Zn×N

q . The database is a vector x ∈ {0,1}N .

Digest(x ∈ {0,1}N)→ d ∈ Zn
q

1. Output d← Ax ∈ Zn
q.

Query
(
d ∈ ZN

q , i ∈ [N]
)
→ (st,q)

1. Sample s←R Zn
q, e←DN

Z,s ∈Zm
q , and t←R

[
2B,q−2B

]
.

(Here DZ,s denotes the discrete Gaussian distribution
over Z with parameter s.)

2. Compute qT← sTA+eT+t ·ηT
i ∈Zm

q , where ηi ∈ZN
q

denotes the ith standard basis vector (i.e., the vector
that is 0 everywhere except 1 in index i).

3. Set st← (d,s, t) and output (st,q).

Answer
(
d ∈ Zn

q,x ∈ {0,1}N ⊆ ZN
q ,q ∈ ZN

q
)
→ a ∈ Zq

1. Output a← qTx ∈ Zq

Reconstruct(st,a)→{0,1,⊥}
1. Parse the state st as (d,s, t).
2. If there exists k ∈ {0,1} such that |a− sTd− kt|< B,

then output k. Otherwise, output ⊥.

to the corresponding database bit and computes the product
a = ∏ j∈[N] q

x j
j . If the server honestly executes the protocol,

the client receives back the product of the blinded digest dr

and (a) either the group identity (when the retrieved bit is
zero) or (b) the blinding factor ht associated with the element
of interest (when the retrieved bit is one). If the server returns
any answer apart from the one prescribed by the protocol, the
client detects this and rejects with overwhelming probability.

We then have, by rebalancing Construction 3:

Theorem 11. If the DDH assumption holds in group G, then
Construction 3 is a secure single-server authenticated-PIR
scheme when instantiated with database size N and group
G. The digest size consists in

√
N elements of G and the per-

query communication cost is 2
√

N elements of G. The scheme
has negligible integrity error.

The scheme could be extended to retrieve multi-bit database
entries in two readily-apparent ways. The first and simplest
approach is to run Construction 3 in parallel for each bit of
the entry. The second approach requires the client to solve
tractable discrete logarithms, as we describe in the full ver-
sion [30].

Incremental digest maintenance. We envision that the data
owner would generate the database digest and publish it on
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Construction 3 (Single-server authenticated PIR from
DDH). The construction is parametrized by a database
length N ∈ N, a group G of prime order p, and group
elements h1, . . . ,hN ∈ G. The database is a vector x ∈
{0,1}ℓ ⊆ ZN

p .

Digest(x ∈ {0,1}N)→ d ∈G

1. Output d←∏ j∈[N] h
x j
j ∈G.

Query (d ∈G, i ∈ [N])→ (st,q)

1. Sample two random values r, t←R Zp.
2. For j ∈ [N]\{i}, compute q j← hr

j ∈G.

3. Compute qi← hr+t
i ∈G.

4. Set st← (i,d,r, t).
5. Set q← (q1, . . . ,qN) ∈GN .
6. Output (st,q).

Answer
(
d ∈G,x ∈ {0,1}N ⊆ ZN

p ,q
)
→ a ∈G

1. Parse the query q as (q1, . . . ,qN) ∈GN .
2. Output a←∏ j∈[N] q

x j
j ∈G.

Reconstruct(st,a)→{0,1,⊥}
1. Parse the state st as (i,d,r, t).
2. Set m← d−r ·a ∈G.
3. If m = 1G, output “0.” If m = ht

i , output “1.”
Otherwise, output ⊥.

a client-accessible website or a tamper-resistant log. If a
database record changes, the data owner can update the digest
in either construction incrementally. For example, in the lat-
tice based construction given an old digest d = Ax and a new
database x′, the new digest is d′= d+A(x′−x). Given the old
digest, the server can compute the new digest in time propor-
tional to the cost of computing A(x′−x). This matrix-vector
product, in turn, takes time linear in the number of updates
to the database, i.e., the Hamming weight of the difference
x′−x. If the database itself is public, any third party can ver-
ify that the new digest correctly incorporates these updates.
The DDH-based construction supports a similar style of in-
cremental updates. A frequently changing database, however,
requires a client to obtain a fresh and correct digest before
making each PIR query. One possible solution to this is to use
a public log and a timestamping service [81, 84].

6 Implementation

We implemented all of our authenticated-PIR schemes in
roughly 4k lines of Go and 45 lines of C. Our function-secret-
sharing implementations are based on the Function Secret
Sharing (FSS) Library [87]. Our Merkle-tree implementation

is based on the go-merkletree library [82]. We implemented
group operations in our single-server scheme from the DDH
assumption with the CIRCL library [43]. The single-server
scheme built on the LWE assumption uses a plaintext modulus
of 2128 and relies on the uint128 library [24].

We also implemented multi-server unauthenticated-PIR
schemes as baselines for comparison. The multi-server
unauthenticated-PIR scheme, also used in the authenticated-
PIR scheme for point queries, is over the binary field and
uses fastxor [23]. We use the original implementation of
SimplePIR [51] as our single-server PIR baseline.

Our implementation is available under open-source license
at https://github.com/dedis/apir-code.

6.1 Privacy-preserving key directory
To evaluate the practicality of authenticated PIR, we built
Keyd, a PGP public-key directory service that offers (1) clas-
sic key look-ups and (2) computation of statistics over keys.
A key-directory service maps human-memorable identifiers,
such as email addresses, to cryptographic identities (public
keys). Examples of such directories are the MIT PGP Public
Key Server [68], along with the public-key directories that
secure-messaging solutions, such as Signal, implicitly offer.

We implement Keyd in the two-server model, where the
security properties hold as long as at least one server is honest.
The Keyd key service provides the following properties:

• Privacy: The client reveals no information to the servers
about the content of its query.

• Integrity: The client is guaranteed to recover the correct
result for the issued query, i.e., the output of the protocol
is consistent with the honest server’s view.

Prior key-server designs ensure only one of these two prop-
erties. It is possible to add privacy to a key server using
conventional PIR and issue private complex queries using
Splinter [88], or to add integrity as in CONIKS [64]. Prior to
authenticated PIR, we are unaware of any approach that simul-
taneously solves both problems in the presence of malicious
servers, without resorting to trusted hardware [63].

Keyd lays out public keys in the database using a hash table
that maps public keys into fixed-size buckets. To retrieve a
PGP public key, a client hashes the requested email to deter-
mine the corresponding bucket number, queries the servers
for the contents of the bucket, reconstructs and validates the
answers, and finally selects and outputs the key of interest.

To evaluate a predicate query, the client sends the query to
the servers, which apply it to the appropriate PGP key meta-
data. For example, to evaluate a COUNT query on the email
addresses, the client sends SELECT COUNT(*) FROM email

WHERE email = p, where p represents the query parameter
hidden through secret sharing. The AVG query is implemented
using a SUM and COUNT query. We use TLS to protect the
communication between client and servers.

Our Keyd serves a snapshot of SKS PGP key directory [85]
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from 24 January 2021. We removed all public keys larger than
8 KiB, a limit that we found excluded only keys with large
attachments, such as JPEG images. We also removed all keys
that had been revoked, keys in an invalid format, and keys
with no email address in their metadata. We kept only the
primary key of each public key. If multiple keys were linked
to the same email address, we kept only the most recent key.
If a key included multiple emails, we indexed this key using
the primary email. As a result, our Keyd serves a total of
3,557,164 unique PGP keys (≈3 GiB in total), which is more
than half of the keys in the original dump.

7 Experimental evaluation

We experimentally evaluate all of our authenticated-PIR
schemes and the Keyd public-key directory service.

Parameters. We instantiate our multi-server authenticated-
PIR scheme for predicate queries using F4

p with p = 232−1,
yielding a security parameter of approximately 124 bits. This
approach is faster than using a full 128-bit field element, be-
cause of better-optimized libraries and CPU instructions for
operating on 32-bit values. The Merkle-based scheme for
point queries uses BLAKE3 as the hash function. The DDH-
based single-server scheme (§5.2) uses the P256 elliptic curve
as the group. We select the parameters for the LWE-based
schemes (§5.1) to ensure 128-bit of privacy according to cur-
rent estimate of concrete security against known attacks [3].
We present one scheme with integrity error 2−128, and another
one that uses integrity amplification (Section 3.3), with in-
tegrity error 2−64. The scheme with integrity error 2−128 uses
modulus q= 2128 and lattice dimension n= 4800; the scheme
with integrity error 2−64 works with q = 232 and n = 1100.
For both implementations, the error distribution is the dis-
crete Gaussian distribution with standard deviation σ = 6.4.
Integrity amplification uses the simple repetition code. We
further discuss parameter selection for the scheme based on
integrity amplification in the full version [30].

Experimental methodology. We perform all the experiments
on machines equipped with two Intel Xeon E5-2680 v3
(Haswell) CPUs, each with 12 cores, 24 threads, and oper-
ating at 2.5 GHz. Each machine has 256 GB of RAM, and
runs Ubuntu 20.04 and Go 1.17.5. Machines are connected
with 10 Gigabit Ethernet. In the experiments for the multi-
server schemes and Keyd (Sections 7.1, 7.2 and 7.4), the client
and the servers run on separate machines. For single-server
schemes we use a single machine that runs both client and
server, as the single-server schemes are inherently sequential.
We always report the time elapsed from query computation to
record reconstruction as user time and the cumulative band-
width from and to the server(s) as bandwidth. We execute
all experiments 30 times and report the median result across
executions. We run all the experiments using a single core for
each physical machine. For consistency across experiments,
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Figure 3: The cost of retrieving a 1 KiB record using classic ("Unau-
thenticated") and authenticated PIR for point queries (§4.1) from
two servers. The Merkle proof attached to each record imposes the
bandwidth and user time overheads.
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Figure 4: The cost of retrieving a 1 KiB record using unauthenti-
cated and authenticated PIR for point queries (§4.1) from a variable
number of servers holding a database of 1 GiB.

we always download the same public-key when evaluating
Keyd. We have published our experimental code and results
in our source-code repository (see Section 6).

7.1 Multi-server point queries
Fig. 3 presents user time and bandwidth overhead for our
authenticated-PIR scheme for point queries, in comparison
with classic unauthenticated PIR. Both the user time and the
bandwidth overheads increase as the database size increases:
each database record must additionally include a O(λ logN)-
sized Merkle proof. We measure a maximum overhead of
2.9× for user time and of 1.8× for bandwidth.

Fig. 4 shows the impact of the number of servers on user
time and bandwidth. Since all the servers answer in parallel,
the user time increase is almost negligible. For authenticated
PIR, the increase is due to Merkle proof verification. Band-
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Figure 5: The user time and bandwidth ratios between unauthenti-
cated and authenticated PIR (§4.2) for complex queries when query-
ing two serves for the query SELECT COUNT(*) FROM keys WHERE

email LIKE "%s" from a database composed of 100,000 random
records. The median authentication overhead is less than 1.1× for
both user time and bandwidth; the grey area shows the variance.

width increases linearly for both schemes, since each server
receives a query and sends an answer.

7.2 Multi-server complex queries

When comparing our multi-server authenticated-PIR scheme
for complex queries with classic PIR (Fig. 5), we find that both
the user time and bandwidth overheads of the authenticated
scheme are less than 1.1×. The former comes from the longer
output of the function-secret-sharing evaluation function—
one F231−1 element versus five elements—and from the veri-
fication of the servers’ answers, absent in the unauthenticated
scheme. For bandwidth, the only difference is the so-called
correction word in the function-secret-sharing key [16, 17],
which is composed of a single field element in classic PIR and
of five elements in authenticated PIR: one for the predicate
evaluation’s result and four for authentication. The servers’
answers have the same ratio: a single field element in the
unauthenticated scheme and five elements in the authenticated
scheme. The bandwidth overhead is thus of a constant factor.
Evaluation with k≥ 3 servers is infeasible as the length of the
keys is O(λ2k/22ℓ/2), where ℓ is the input size in bits [16].

7.3 Single-server point queries

To evaluate our single-server authenticated-PIR schemes, we
compare their performance against SimplePIR [51], the fastest
classic single-server PIR scheme for small records to-date. We
measure the costs of retrieving one data bit from the database.1

1Other recent PIR schemes (e.g., [65, 70]) are competitive only in the large-
record setting (where records are tens of kilobytes long).
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Figure 6: The cost of retrieving one data bit using our single-server
authenticated PIR schemes and state-of-the-art classic single-server
PIR scheme SimplePIR [51]. DDH indicates Construction 3 with
2−128-integrity; LWE indicates Construction 2 (q = 2128) with
2−128-integrity; LWE+ indicates a construction with 2−64-integrity
that uses integrity amplification (the base scheme is Construction 2
with q = 232, see Section 3.3 and the full version [30] for the speci-
fication). DDH takes over an hour to retrieve a data bit from a 1 GiB
database and we omit it from the figure.

We evaluate SimplePIR with its default configuration of 2048-
bit database records. The client downloads a corresponding
record and selects a desired bit from it. The offline bandwidth
indicates the digest for authenticated schemes, and the hint
for SimplePIR, as this scheme is a PIR-with-preprocessing
scheme [10]. We show the results in Fig. 6.

The authenticated-PIR schemes from the decisional Diffie-
Hellman assumption (DDH) and from the learning-with-
errors assumption (LWE) have integrity error 2−128. The
DDH construction has a smaller digest, hence lower offline
bandwidth, but has twice the online bandwidth of the LWE
construction: both have the same asymptotic complexity, but
LWE uses elements from Z2128 and DDH from the elliptic
curve P256, which encodes elements in 256 bits. The LWE
construction is also faster (3-79×): arithmetic computations
in Z2128 are faster than elliptic-curve operations in P256.

The scheme with integrity amplification (LWE+) has in-
tegrity error 2−64 and the same classic-PIR privacy as Sim-
plePIR, except that SimplePIR does not provide privacy under
selective-failure attacks. LWE+ is faster than LWE for the
1 KiB and 1 MiB databases, but slower (1.4×) for the 1 GiB
database: the repetition code requires repeating the protocol
15 times (t = 7). An error correcting code with higher rate,
or parallel execution of the repetition code, could improve
LWE+. SimplePIR is 30-100× faster than LWE+ due to its
preprocessing for reducing online computation and exploit-
ing a faster database representation through packing [51].
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Query description User time [s] Bandwidth [KiB]

Unauth. Auth. Unauth. Auth.

COUNT(*) WHERE

email LIKE ’%.edu’ 25.77 25.97 1.01× 1.8 1.9 1.06×
type = ’ElGamal’ 7.52 7.66 1.02× 0.9 1.0 1.11×
YEAR(created) = 2019

AND email LIKE ’%.edu’ 48.28 48.32 1.00× 3.0 3.1 1.03×
AVG(lifetime) WHERE

email LIKE ’%.edu’ 25.74 26.59 1.03× 1.8 1.9 1.05×

Table 7: Performance of different predicate queries on Keyd for
unauthenticated and authenticated PIR (the two-server schemes for
predicate queries). The median authentication overhead is 1.01× for
user time and 1.05× for bandwidth.

The asymptotic online and offline bandwidth overhead of
SimplePIR and authenticated-PIR schemes from the LWE
assumption are the same, but integrity amplification increases
online bandwidth by 2t+1× (Section 3.3), whereas the client
must download the digest only once. Concrete offline band-
width is lower in SimplePIR due to database packing.

The current schemes are computationally costly, but we
expect that future optimizations, such as multi-bit queries, as
outlined in the full version [30], could reduce this cost.

7.4 Application: privacy-preserving key server

In this section, we evaluate our multi-server authenticated-PIR
schemes in the context of the Keyd public-key server.

For classic key look-ups, which are point queries, we mea-
sure the wall-clock time needed to retrieve a PGP public-key
with authenticated PIR (Section 4.1), classic PIR without au-
thentication, and by direct download without privacy protec-
tion. To measure the latency of direct download, we download
a PGP public-key from the OpenPGP key server using wget.
Both PIR measurements include a manually-added RTT of
0.4 ms (the ping time to the nearest PGP key server). We per-
form all the measurements over the entire processed dataset
of PGP keys (see Section 6). We measure 1.11 seconds for
authenticated PIR, 1.10 seconds for unauthenticated PIR and
0.22 seconds for non-private direct look-up.

The authenticated scheme for point queries shows perfor-
mance comparable to classic PIR without authentication. The
Merkle-proof overhead in this case is smaller than in Fig. 3
due to a larger block size and hence less authentication data
per data bit in Keyd. The OpenPGP key server maintainers
informed us that their service typically handles around 3–10
public-key lookups per second, or less than 1 million requests
per day [19]. A careful multithreaded implementation of our
multi-server authenticated-PIR schemes for point queries can
handle this load with 12 cores, just one more than the number
of cores estimated for classic unauthenticated PIR (11 cores).

To analyze the performance of Keyd in computing private

statistics over keys, we measure user-perceived time and band-
width of different predicate queries. Table 7 shows the results.
For all the predicates, the overhead of authenticated PIR—in
both user-perceived time and bandwidth—is upper bounded
by a factor of 1.05×. This result matches the benchmark pre-
sented in Fig. 5 and is due to the latency being dominated by
the function-secret-sharing evaluation, which is essentially
equal for authenticated and unauthenticated PIR. For band-
width overhead, the same reasoning as in Section 7.2 applies.

8 Related work

Authenticated PIR builds on diverse work on private in-
formation retrieval. Starting with the original proposal [29],
improvements have reduced the communication cost of multi-
server PIR with information-theoretic [8, 9, 41, 91, 93]
or computational security [17, 28]. Kushilevitz and Ostro-
vsky [56] presented the first single-server PIR construction,
and subsequent work reduced communication costs [20, 40,
46, 61, 73]. Recent advances introduced PIR for more com-
plex (e.g., SQL-like) queries [72, 78, 88].

Kushilevitz and Ostrovsky [56] first noted that, in the single-
server setting, the server could violate a client’s privacy by
manipulating database records and observing whether the
client accepted the response as valid. Such attacks have come
to be known as selective-failure attacks [52, 54, 60]. To our
knowledge, we are the first to address selective-failure attacks
in the multi-server setting.

In schemes that resist faulty servers (summarized in Ta-
ble 2), a client can either reconstruct the correct database
entry, or can detect and abort, when servers misbehave. Mul-
tiparty computation literature refers to the former approach
as “full security” and the latter as “security with abort” [49].

Beimel and Stahl [11, 12] first consider malicious or crash-
ing servers in the multi-server setting. Their approach fo-
cuses on ensuring data reconstruction, not detection of server
misbehaviour, and it is further developed by concurrent and
follow-up work [38, 42, 48, 55, 92]. Unlike authenticated PIR,
these approaches require an honest majority in the presence of
malicious servers, with specific thresholds shown in Table 2.

Verifiable PIR in the multi-server setting [94] offers se-
curity properties similar to authenticated PIR, but requires
expensive public-key cryptography. In the single-server set-
ting [89, 95], verifiable PIR is not resistant to selective-failure
attacks and offers a weaker property: it ensures that the server
answer a query with respect to some database, but not nec-
essarily the one intended. Our approach ensures that queries
are answered with respect to a specific database, as deter-
mined by the honest server in the multi-server setting, or by
the database digest in the single-server case. In concurrent
work, Ben-David et al. [13] introduce another notion of veri-
fiable PIR in the single-server setting, whose goal is to verify
arbitrary properties on databases, but they do not consider
selective-failure attacks.
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Our multi-server scheme for point queries (Section 4.1)
extends a Merkle-tree approach by Kushilevitz and Ostro-
vsky [56]. Our multi-server scheme for predicate queries
builds on function secret-sharing [15, 16, 17, 37], information-
theoretic message authentication codes [32], and malicious-
secure multiparty computation protocols [14, 34].

Prior systems address integrity in private information re-
trieval [35, 69], but do not protect against selective manip-
ulation in the single-server setting, and require additional
assumptions in the multi-server setting.

Prior work has also considered privacy-preserving and
integrity-assuring key directories [25, 26, 64, 67, 86]. In
particular, CONIKS [64] and its improved version SEEM-
less [25], ensure consistency for the bindings thanks to ideas
adapted from transparency log systems [58, 80], but do not
address privacy of the client’s queries.

9 Conclusion

Authenticated PIR enhances the strong privacy properties
of classic PIR with strong data-authentication guarantees.
We have presented formal definitions both in the dishonest-
majority setting—where the security properties hold as long
as at least one of the server is honest—and in the single-server
setting. We suggest some avenues for further improvement:

• Can we construct single-server authenticated-PIR
schemes for a malicious digest (i.e., the client’s output
is consistent with some n-bit database)?

• Can we construct single-server authenticated-PIR
schemes whose performance matches that of the best
unauthenticated schemes?
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A Multi-server authenticated PIR definitions

In this section, we present the formal definitions for multi-
server authenticated PIR.

Definition 12 (Authenticated PIR correct-
ness). A k-server authenticated-PIR scheme
Π = (Query,Answer,Reconstruct) for function class
F ⊆ Funs[[N]×{0,1}ℓ,F] and database size N ∈ N satisfies
correctness if for every x1, . . . ,xN ∈ {0,1}ℓ, ℓ ∈ N, w ∈ FN ,
λ ∈ N, f ∈ F , the following holds:

Pr


y = ∑

i∈[n]
wi f (i,xi) :

(st,q1, . . . ,qk)←Query(1λ, f )

a j← Answer(X,w,q j) ∀ j ∈ [k]

y← Reconstruct(st,a1, . . . ,ak)

= 1,

where the probability is computed over all the random coins
used by the algorithms of the scheme.

Definition 13 (Authenticated PIR integrity).
A k-server authenticated-PIR scheme Π =

(Query,Answer,Reconstruct) for function class
F ⊆ Funs[[N]×{0,1}ℓ,F] and database size N ∈ N
ensures integrity if for every efficient adversary A , and for
every x1, . . . ,xn ∈ {0,1}ℓ, ℓ ∈ N, w ∈ Fn, λ ∈ N, f ∈ F ,
jgood ∈ [k], the following probability is negligible in the
security parameter λ:

Pr



y ̸∈
{

∑
i∈[N]

wi f (i,xi),⊥
}

:

(st,q1, . . . ,qk)←Query(1λ, f ){
a j
}

j ̸= jgood
← A(X,w,{q j} j ̸= jgood )

a jgood ← Answer(X,w,q jgood )

y← Reconstruct(st,a1, . . . ,ak)


,

where the probability is computed over all the random coins
used by the algorithms of the scheme.

Definition 14 (Authenticated PIR privacy). Let Π =
(Query,Answer,Reconstruct) be a k-server authenticated-
PIR scheme for function class F ⊆ Funs[[N]×{0,1}ℓ,F] and
database size N ∈N. For X = x1, . . . ,xn ∈ {0,1}ℓ, ℓ∈N, w∈
Fn, λ∈N, f ∈F , jgood ∈ [k], and an adversary A = (A0,A1),
define the distribution

REALA , jgood , f ,λ,X,w =


β̂ :

(st,q1, . . . ,qk)←Query(1λ, f )

a jgood ← Answer(X,w,q jgood )(
stA ,

{
a j
}

j ̸= jgood

)
← A0(X,w,{q j} j ̸= jgood )

y← Reconstruct(st,a1, . . . ,ak)

b← 1{y ̸=⊥}
β̂← A1(stA ,b)


.

Similarly, for n∈N, X = x1, . . . ,xn ∈ {0,1}ℓ, and a simulator
S = (S0,S1), define the distribution

IDEALA ,S ,F ,λ,X,w =

β :

(stS ,Q)← S0(1λ,F ,X,w)

(stA ,A)← A0(X,w,Q)

b← S1(stS ,A)

β← A1(stA ,b)

 .

We say Π is private if for every efficient adversary A =
(A0,A1), and for every X = (x1, . . . ,xn) ∈ ({0,1}ℓ)n, w ∈ Fn,
there exists a simulator S = (S0,S1) such that for all λ ∈ N,
f ∈ F , jgood ∈ [k], the following holds:

REALA , jgood, f ,λ,X,w ≈c IDEALA ,S ,F ,λ,X,w

Remark 15 (Selective-failure attacks). The inclusion of the
acceptance bit in the adversary’s view ensures protection
against selective failure attacks where whether a client accepts
or not leaks information about the client’s query. For example,
in an actual execution of an authenticated-PIR scheme, a ma-
licious server could replace a single record i in the database
with garbage. Now, if the client’s query does not depend on
the value of record i, then everything proceeds normally. How-
ever, if the query does depend on the value of record i, then
it receives a garbage value. Depending on the application,
receiving a garbage value could cause the client to abort the
protocol prematurely, or retry the protocol; in both of these
cases, if the client engages in some kind of recovery mech-
anism, the server immediately learns information about the
client’s chosen index i. Definition 14 captures security against
selective failure attacks by requiring that the probability of
whether the client’s response is valid or not (i.e., whether
y ̸= ⊥) is not correlated with the client’s query (since the
same simulator works for all functions f and moreover, the
simulator is not provided f as input). In this way, a malicious
server that learns whether the protocol completed successfully
or not still cannot learn anything about the client’s query.
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