
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Controlled Data Races in Enclaves:
Attacks and Detection

Sanchuan Chen, Fordham University; Zhiqiang Lin, The Ohio State University;
Yinqian Zhang, Southern University of Science and Technology

https://www.usenix.org/conference/usenixsecurity23/presentation/chen-sanchuan

Controlled Data Races in Enclaves: Attacks and Detection

Sanchuan Chen1

Fordham University
schen409@fordham.edu

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Yinqian Zhang
Southern University of

Science and Technology
yinqianz@acm.org

Abstract
This paper introduces controlled data race attacks, a new class
of attacks against programs guarded by trusted execution en-
vironments such as Intel SGX. Controlled data race attacks
are analog to controlled channel attacks, where the adversary
controls the underlying operating system and manipulates the
scheduling of enclave threads and handling of interrupts and
exceptions. Controlled data race attacks are of particular inter-
est for two reasons: First, traditionally non-deterministic data
race bugs can be triggered deterministically and exploited for
security violation in the context of SGX enclaves. Second, an
intended single-threaded enclave can be concurrently invoked
by the adversary, which triggers unique interleaving patterns
that would not occur in traditional settings. To detect the con-
trolled data race vulnerabilities in real-world enclave binaries
(including the code linked with the SGX libraries), we present
a lockset-based binary analysis detection algorithm. We have
implemented our algorithm in a tool named SGXRACER, and
evaluated it with four SGX SDKs and eight open-source SGX
projects, identifying 1,780 data races originated from 476
shared variables.

1 Introduction

Trusted execution environment (TEE) such as Intel SGX al-
lows programmers to protect application secrets in hardware-
isolated enclaves, without trusting the system software such as
operating systems and hypervisors. It provides the strongest
security guarantee to a user level application to date: any
memory reads or writes to an enclave from other software
are prohibited, regardless of their privileges. The adoption of
TEE in clouds has enabled a new computing paradigm known
as confidential cloud computing for data analytics [48, 50],
machine learning [42], and bioinformatics [27]. Today, many
mainstream cloud providers offer confidential cloud services,
including Alibaba Cloud’s SGX VM instances [1], Microsoft

1The bulk of this work was performed when this author was at The Ohio
State University.

Azure’s confidential computing [2], Google’s confidential
virtual machines [3], etc.

Unfortunately, TEEs, such as Intel SGX, are not abso-
lutely secure, due to their large attack surfaces from such
as hardware (e.g., the VoltJockey attack [46], Rowhammer at-
tack [24]), micro-architecture (e.g., cache side channels [38],
speculative execution side channels [9]), operating systems
(e.g., controlled side channels [7, 60], Iago attacks [8]), and
applications from the enclave code itself (e.g., the buggy code
to cause buffer overflow [29], use after free, double free, or
null pointer deference [26]). These attacks are particularly
severe since the adversary can control the underlying system
software, which serves syscalls [8], handles interrupts [55]
and exceptions [60], and schedules threads [59].

In this paper, we show the existence of another important
attack category against TEE enclaves: controlled data race
attacks. Controlled data race attacks are particularly interest-
ing for two reasons: First, unlike traditional data race bugs
that only occur in non-deterministic manners, a data race in
SGX can be exploited deterministically to breach the secu-
rity of the enclave code, because the adversary controls the
OS and is in charge of thread scheduling and interrupt/ex-
ception handling. Therefore, a data race bug in the enclave
code can become a security vulnerability. Second, an intended
single-threaded enclave can be unexpectedly invoked by the
adversary in a concurrent manner, which triggers unique in-
terleaving patterns that would not occur in traditional settings.
Hence, enclave code that is not developed to be reentrant can
be exploited in controlled data race attacks.

While data race problems have been broadly studied in tra-
ditional computing environment (e.g., multi-core) [12–14, 33,
35, 41, 47], no data race detector in the enclave code has been
proposed for handling the unexpected interleavings caused
by a privileged attacker in TEEs. Given the privileged at-
tackers who have the ability of creating new enclave threads
and making new enclave calls, enclave code has more possi-
ble interleavings, both intended and unintended. Moreover,
enclave code is primarily written in C/C++, with synchroniza-

USENIX Association 32nd USENIX Security Symposium 4069

tion locks often written using inline assembly. Thus, binary
analysis is more appealing than source code analysis.

Therefore, to detect the controlled data race vulnerabilities,
we propose a static reentrancy-aware binary analysis tool
named SGXRACER that systematically identifies possible
shared (i.e., the racing) variables and explores both intended
and unintended thread interleavings in enclave code to inspect
whether there are proper synchronizations on shared variables.
A data race is identified if there is a lack of synchronization
primitives when TCSnum is configured to be more than one.
The key idea is to assume that every ecall can run concur-
rently with another ecall (including itself), given a strong
privileged attacker who can abuse enclave thread creation,
ecall invocation, and fine-grained enclave code execution. At
a high level, SGXRACER contains two phases of analysis:
the variable analysis phase and the data race detection phase.
The variable analysis phase recovers shared variables and
lock variables from enclave code and generates locksets
and lock acquisition histories. The data race detection phase
considers each ecall to be possibly concurrent and performs
a reentrancy-aware lockset-based data race detection.

We have implemented SGXRACER, which can analyze a
variety of SGX binaries developed in different programming
languages such as C/C++, and Rust. We have evaluated
SGXRACER with eight open source SGX projects crawled
from github.com and four popular SGX SDKs, namely,
Intel SGX SDK, Open Enclave SDK, Rust-SGX SDK, and
Rust EDP SDK, among which SGXRACER has identified
476 shared variables, which contribute to 1,780 data races.
Such a high alarming number of data races shows that data
race in SGX enclave is indeed a serious problem. We have
informed Intel, Microsoft, Baidu, Fortanix and developers of
the evaluated SGX projects about the discovered data races,
one of which has filed CVE-2020-5499 for the identified
vulnerability.

Contributions. In short, this paper makes the following con-
tributions:

• Novel Attacks. We are the first to show controlled data
race attack, an attack that can be launched at the trusted
component interface (i.e., enclave call), and demonstrate
the severity of these attacks.
• Systematic Detection. We present a reentrancy-aware,

binary analysis based, controlled data race detection
algorithm for SGX programs, with a set of enabling
techniques such as shared variable analysis, lock variable
analysis, synchronization primitive identification at the
binary code level.
• Empirical Evaluation. We have implemented

SGXRACER and evaluated it with eight popular
open source SGX projects and also four SGX SDKs, and
identified thousands of possible data races among them.

2 Background

Intel SGX Threads. Multiple threads can be executed con-
currently inside an enclave. Each thread has a thread con-
trol structure (TCS) inside the enclave, which contains con-
trol fields such as the thread’s execution flag, the number
of TCS (i.e., TCSnum), the maximum number of TCS (i.e.,
TCSMaxNum), etc., specified in the configuration file.

However, thread creation inside an enclave is not supported
in SGX. A thread is first created outside the enclave and then
bound to a trusted thread execution context inside the enclave.
The binding is controlled by untrusted code outside the en-
clave, and an enclave may have either binding or non-binding
mode. A variety of SGX SDKs [16, 21, 37, 57] all provide
synchronization primitives (e.g., sgx_spin_lock and sgx_
thread_mutex_lock in Intel SGX SDK) to support multi-
threading within enclaves. (A summary of synchronization
primitives and API functions provided by these SGX SDKs
can be found in Table 5 in Appendix §A).

Concurrency Bugs. A concurrency bug may occur when
multiple threads of a program run concurrently. Various
concurrency vulnerabilities have been discovered over the
years, such as data race [12–14, 40, 41, 47], atomicity viola-
tion [33, 35], and deadlocks [14]. These vulnerabilities are
prevalent in multi-threaded programs [34] and are notoriously
difficult to detect due to their nondeterministic natures.

Particularly, a data race occurs in a multi-threaded program
if two threads access the same memory location without
order constraints on the two accesses, and at least one access
is a write. Moreover, a data race is challenging to observe
since a program can exhibit different behaviors even when
rerun with the same input. Furthermore, a data race often
silently violates the programmer’s intention without causing
a crash and could be noticed much later from the root cause.

To detect a data race, there are two classical approaches:
(1) lockset-based approach [47], which detects a data race if
two threads access a memory location without holding a com-
mon lock, and (2) happens-before based approach [13], which
detects a data race if two accesses from different threads are
not ordered based on Lamport’s happens-before relation [28].

3 Controlled Data Race Attacks

Threat Model. We consider an adversary who has full con-
trol of the SGX platform except the trusted components (e.g.,
enclave and CPU). We assume that the adversary has the
capability of launching, suspending, resuming, and terminat-
ing the enclaves at will. We also assume that the adversary
could arbitrarily create untrusted threads outside the enclave
and make ecalls to trigger the enclave’s execution. Moreover,
we assume the adversary has the capability of performing
side-channel attacks (e.g., page faults [60], cache [6], branch
shadowing [30]) against the enclave to track its control flow,

4070 32nd USENIX Security Symposium USENIX Association

github.com

1 void ecall_0(void) {
2 sgx_thread_mutex_lock(&global_mutex_0);
3 global_counter = 0;
4 ...
5 if(global_counter == 0) foo();
6 sgx_thread_mutex_unlock(&global_mutex_0);
7 }
8 void ecall_1(void) {
9 sgx_thread_mutex_lock(&global_mutex_1);

10 global_counter = 1;
11 sgx_thread_mutex_unlock(&global_mutex_1);
12 }

Figure 1: Working example

although we do not assume that the enclave has any secret-
dependent control flow that permits leakage of the secrets
through the side channels.

Controlled Data Race Attacks. A controlled data race at-
tack can be launched when there is no synchronization pro-
tection for a “shared” variable and TCSnum is greater than
one. As illustrated in a working example in Figure 1, two
enclave calls ecall_0 and ecall_1 are intended to execute
as a single-threaded program; however, a malicious attacker
can create an attacker thread when the TCSnum is greater than
one and perform the controlled data race attack.

Figure 2 shows thread interleavings for the working
example. Specifically, Figure 2a shows the intended
thread interleaving, in which no data race occurs, as it is a
single-threaded program. Figure 2b and Figure 2c show the
unintended thread interleavings, where malicious attacker
creates another attacker thread to make the program multi-
threaded. Figure 2b and Figure 2c illustrate two interleavings
of controlled data race threads, and in the first interleaving
(W-W race), the data in victim thread T0 is corrupted by the
malicious thread T1 and we call it data corruption attack,
and in the second interleaving (R-W race), the control flow
in victim thread T0 is diverged by the malicious thread T1 and
we call it control flow diversion attack.

In particular, controlled data race attack is carried out in
three steps (as illustrated in Figure 2b): Step ¬–attacker cre-
ates an untrusted thread which will be bound to the context
of trusted enclave threads later, Step ­–attacker makes ecalls
in each created thread at his/her choice to enable concurrent
execution of trusted enclave threads, and Step ®–attacker
forces the occurrence of a controlled data race by making the
concurrent threads synchronize at specific program points via
interrupts or (controlled) page faults.

An End-to-end Binary Only Attack. Using SGXRACER,
an attacker can analyze the enclave binary directly without
accessing the source code, and further carry out a binary only
controlled data race attack. We illustrate the attack by first

global_counter = 0;

if(global_counter == 0) foo();

Victim Thread

global_counter = 1;

(a) Intended single-threaded interleaving with no data race (ecall_0
first and then ecall_1)

global_counter = 0;

if(global_counter == 0) foo();

global_counter = 1;

Victim Thread Attacker Thread

① Create thread T1

② Make ecall_1

③ Single-step
execution

W WData race
Data corrupted

(b) Unintended multi-threaded interleaving in controlled data race
attack leads to data corruption (T0 invokes ecall_0 and T1 invokes
ecall_1)

global_counter = 0;

if(global_counter == 0) foo(); global_counter = 1;

Victim Thread Attacker Thread

①

②

③

R W

Data race
Control flow
diverged

(c) Unintended multi-threaded interleaving in controlled data race
attack leads to control flow diversion

Figure 2: Intended and unintended thread interleavings in
working example

detecting the data races in the working example, in which
SGXRACER reports the vulnerable assembly lines. In ad-
dition to the victim thread, we create a malicious thread
and make the enclave call. By pinning both victim and mali-
cious threads on two designated cores, we change the enclave
asynchronous enclave exit (AEX) callback routine, where
we check the CPU core currently accessing the callback
and set Intel Advanced Programmable Interrupt Controller
(APIC) [22] timer.

We send two types of APIC timer interrupts to the victim
thread and the attacker thread. One type of APIC timer inter-

USENIX Association 32nd USENIX Security Symposium 4071

1 void aex_cb_func(void) {
2 /* check attack mode */
3 if(attack == 1) {
4 /* get current cpu core */
5 int cur_cpu = get_cpu();
6 /* if thread reaches break point */
7 if(erip == BREAK_POINT[cpu]) {
8 /* send shorter interrupts to
9 delay execution */

10 if(times < EXCESSIVE_INTERRUPTS_NUM) {
11 apic_timer_irq(SGX_BREAK_POINTS_TIMER_INTERVAL);
12 times++;
13 }
14 }
15 /* otherwise send stepping interrupts */
16 else apic_timer_irq(SGX_STEP_TIMER_INTERVAL);
17 }
18 }

Figure 3: Sending APIC interrupts in AEX call back function.

rupt has a longer interval SGX_STEP_TIMER_INTERVAL that
single-steps the execution of the victim thread and the other
has a shorter interval SGX_SYNC_POINTS_TIMER_INTERVAL
that delays the execution of the victim thread and the attacker
thread to trigger controlled data races.

While the victim thread executes ecall_1, the attacker
thread makes ecall_2. Multiple APIC interrupts are sent to
the victim thread and attacker thread to force their single-
stepped executions. To handle these APIC interrupts, the
threads need to perform asynchronous enclave exits (AEXs)
to the outside world. In the AEX callback function, the rip
register is read from the EDBGRD instruction. Once the synchro-
nization points are encountered, excessive APIC interrupts are
sent to the specific CPU core to delay the thread execution,
causing the data race. The code snippet for sending APIC
interrupts in the AEX callback function is listed in Figure 3.
Note that the instruction under execution can also be inferred
using side channels instead of EDBGRD instruction, which is
out of the scope of our paper, and we leave it for future work.

Root Causes. The exploited data race is caused by non-
reentrancy, in which the programmers first make the ecall
non-reentrant, and then multiple ecalls reenter the enclave
concurrently, either intended by the programmers, or unin-
tended by malicious attackers. Both the intended and unin-
tended ”non-reentrant” controlled data races are actually quite
different from traditional data races, since they can be con-
trolled in a deterministic manner from a layer below, namely
the malicious OS. This attack is possible for the following
three obvious reasons. First, thread creation in SGX is not sup-
ported by the enclave itself, and instead is controlled by OS.
This is because enclave applications are partitioned in such a
way [19, 32] that minimizes the size of its trusted computing
base (TCB) and, meanwhile, makes thread management out of
its TCB. As such, it provides a malicious OS with the capabili-

<ecall_0>:
...
3a3c: call a170 <sgx_thread_mutex_lock>
3a41: movq $0x0,0x20754(%rip) # 241a0 <global_counter>
...
3a4c: mov 0x2074d(%rip),%rax # 241a0 <global_counter>
3a53: test %rax,%rax
3a56: jne 3a5d <ecall_0+0x30>
3a58: call 3a22 <foo>
...
3a64: call a3d0 <sgx_thread_mutex_unlock>

<ecall_1>:
...
3a7b: call a170 <sgx_thread_mutex_lock>
3a80: movq $0x1,0x20715(%rip) # 241a0 <global_counter>
...
3a92: call a3d0 <sgx_thread_mutex_unlock>

Figure 4: Assembly code of the working example.

ties to create an arbitrary number of threads to attack a victim
process. Second, an enclave call (ecall) has no ordering
guarantee [19] and can be called in arbitrary order. A mali-
cious OS can deliberately create multiple threads to trigger the
same ecall, so that any instruction accessing global or shared
heap variables may become reentrant, potentially causing data
races. Third, unlike in traditional settings, an enclave thread
execution can be precisely controlled by a malicious OS using
either page faults [60] or APIC timer interrupts [55, 56]. The
attacker could even cause single-step enclave execution at the
granularity of the instruction level, which leaves ample room
for them to synchronize two threads precisely at any point of
their execution and thus cause controlled data races.

Yet, there is still one more possibility that can cause con-
trolled data races. A programmer may be well aware of the
concurrent access of a shared variable if he or she knows that
there will be two threads accessing it and will properly guard
the access. However, if an SGX program is never intended for
multithreading, programmers may forget to add protection of
the possible shared variable access during the development.
Consequently, if TCSnum is also set to be greater than one, a
controlled data race attack could just target such an intended
single-threaded enclave program, since the malicious OS can
create multiple threads and allow each of the threads to instan-
tiate the single-threaded enclave code (e.g., via calling ecalls).
In this way, any global variable used in a single-threaded
enclave program now accidentally becomes shared by these
concurrent threads. It turns out that many developers (even
including developers of the SGX SDK) could make such
mistakes, as demonstrated in our evaluation (see §6).

4072 32nd USENIX Security Symposium USENIX Association

4 Controlled Data Race Detection

Detecting controlled data races in enclave code imposes
substantial challenges, which never rise in earlier works.
Specifically, the widely used TEE implementation, Intel
SGX, adopts a new threat model, where the application
program is partitioned into trusted components and untrusted
components, and trusted components can be invoked via
ecall interface, whereas in traditional data race detector, the
program is considered as a whole and follows the intended
program control flow, without such a threat model in mind.
Statically detecting such data races in enclave binary code
requires addressing the following challenges:

Shared variables in enclave binaries. Unlike variables in
program source code that are declared and obvious to identify
(e.g., variable global_mutex_0 used at line 2 in Figure 1),
the variables in the binaries are hard to identify, since the
symbols are all gone and the variables have all been translated
into just registers and memory addresses. We have to rely on
the access of memory addresses and registers to abstract the
variables, based on each instruction’s semantics, which has
been proved to be a challenging task. Besides, to detect a data
race, we have to know the specific access types (e.g., R-Read,
or W -Write) to the variables, since only R/W or W /W accesses
cause races.

In the literature, one promising technique to statically
identify shared variables in binary is the value set analysis
(VSA) [4]. Recently, there has been significant development
with VSA in binary analysis (e.g., [17, 58, 62]), and certainly
we can leverage these advances to identify shared variables
when developing SGXRACER. To further differentiate the
specific access of the variables, we can rely on the instruc-
tion semantics, such as “inc %rax” implying both a read and
write access of rax, “mov $1, %rax”, and “pop %rax” im-
plying write accesses of rax, and “cmp $0, %rax” implying
a read access of rax.

Lock variables in enclave binaries. After identifying the
shared variables, we must further identify whether they
are protected by any synchronization primitives, and then
exclude synchronized memory accesses from our analysis.
However, there are many synchronization primitives typically
provided by SGX SDKs, such as thread once, barriers, spin
locks, mutex locks, reentrant mutex locks, read-write locks,
and condition variables. In addition, there are programmer
defined synchronization primitives such as locks built from
LOCK prefix (e.g., an instruction sequence “mov $0x1,%ecx”,
“lock cmpxchg %ecx,(%rdx)” which moves a constant
value 1 to the lock variable indexed by register rdx and then
locks it), and also the special xchg instruction which asserts
the lock signal regardless of LOCK prefix.

For standard synchronization primitives, fortunately, the
SGX SDK provides the corresponding APIs. For instance, as
shown in our working example Figure 1, there are APIs such

Variable Name Line# A-LOC PC R/W
global_counter 3 (0x241a0, ⊥, ⊥) 0x3a41 W
global_counter 5 (0x241a0, ⊥, ⊥) 0x3a4c R
global_counter 10 (0x241a0, ⊥, ⊥) 0x3a80 W
global_mutex_0 2 (0x24000, ⊥, ⊥) 0x3a35 R
global_mutex_0 6 (0x24000, ⊥, ⊥) 0x3a5d R
global_mutex_1 9 (0x24040, ⊥, ⊥) 0x3a74 R
global_mutex_1 11 (0x24040, ⊥, ⊥) 0x3a8b R

Table 1: Shared variable accesses in the working example

as sgx_thread_mutex_lock, and sgx_thread_mutex_un
lock. We can identify them based on the APIs provided. To
identify self-defined synchronization primitives, we can first
identify the instructions with LOCK prefix and perform data
flow analysis to identify the lock variables associated with the
lock instructions and the specific lock/unlock values written
to them (e.g., 0 to unlock, and 1 to lock).

Unintended thread interleavings. As ecalls can be reen-
tered arbitrarily by a malicious attacker, all ecalls become
concurrent, which introduces many more possible thread
interleavings than a traditional data race detector needs to
consider. Intuitively, for an SGX program with m ecalls
(m > 1), there are

(m
2

)
+
(m

1

)
= 1

2 m(m + 1)1 possible con-
current ecall combinations, some of which are not originally
intended to be concurrent and now become unintended inter-
leavings. For instance, Figure 1 is a simple enclave program
which has two ecalls: ecall_0 and ecall_1. In the origi-
nal program, ecall_0 and ecall_1 are never assumed to be
concurrent and should only yield the intended interleaving
in Figure 2a where no data races occur on shared variable
global_counter. However, in controlled data race attacks,
the attacker can concurrently reenter ecall_0 and ecall_1
at a very fine-grained granularity, and can result in the unin-
tended interleavings in Figure 2b and Figure 2c which have
data races on shared variable global_counter.

Prior to our efforts in detecting the controlled data races
in this TEE setting, earlier data race detectors (e.g., [33, 40])
do not have a malicious attacker in mind, and thus no notions
of data races in trusted program components (i.e., enclave).
These detectors detect data races based on program’s intrinsic
control flow and leaves out the unintended reentrancy by the
attackers. Our insight is to design a reentrancy-aware data
race detector, which focuses all possible reentrant ecalls and
explores their possible combinations. This helps efficiently
detect new data races due to the enclave call reentrancy in
SGX settings.

USENIX Association 32nd USENIX Security Symposium 4073

Shared Variable
Analysis

(§5.1)

Reentrancy-aware
Lockset Analysis

(§5.2)

Synchronized
Shared

Variables
Shared

Variables
Data
Races

W-W
R-W

Enclave
Binaries

Thread
Interleavings

Access
Pairs

W-W
R-W

W-W
R-W

Figure 5: Overview of SGXRACER

5 Detailed Design

An overview of SGXRACER is illustrated in Figure 5. To de-
tect a data race in enclave binaries, it has two analysis phases:
(i) shared variable analysis to identify the set of all possible
shared variables and their accesses, and (ii) reentrancy-aware
lockset analysis to identify the set of all possible synchro-
nization primitives protected shared variables and their ac-
cesses. The intersection of these two sets considering both
the intended thread interleavings and the unintended thread
interleavings will be the final detected data races.

5.1 Shared Variable Analysis
To find out data races on shared variables, we first need to de-
tect all shared variable accesses in the enclave binary, since the
data race must come from these shared variable accesses. Vari-
ables in a program can be divided into three categories: global
variables, heap variables, and stack variables. Since stack vari-
ables are local, they are typically not shared. Therefore, we
only need to analyze global variables and heap variables. To
identify (or index) a global variable, we can use its static
memory address, but for heap variables, their addresses are
dynamic, and we cannot use their run-time addresses and in-
stead we can use their allocation site to identify (index) them.
Also, since a data race occurs when particular instructions
access an unprotected shared variable, we have to identify the
shared variables at each instruction. Thus, a data flow analysis
is needed to identify the definitions (i.e., the W accesses) and
uses (i.e., the R accesses) of these shared variables among the
instructions.

Therefore, we have designed a data flow analysis based
algorithm 1 to identify the shared variable accesses. In a
nutshell, the algorithm inspects every instruction in enclave
binary and finds variable definitions and variable uses (line 2-
27). At each data definition site, the data flow analysis first
updates the variable values according to the corresponding
instruction semantics, such as data arithmetic using VSA [4]
(line 4). Then at each data definition (line 5-19) and use site

1Note that
(m

2

)
denotes the total number combinations of any two inde-

pendent ecalls (e.g., <ecall_0, ecall_1>), and we have to add additional(m
1

)
ecall pairs which are those the same ecalls (e.g., <ecall_0, ecall_0>),

to get the total number of all combinations.

(line 20-27), the algorithm further identifies whether the data
use of the variable is a global variable or a heap variable,
whether the variable is a shared variable, and whether the
access is an R, a W , or both. The output of the data flow
analysis is a set of shared variable accesses, as shown in
Table 1 for our working example. Next, we present in greater
detail how the algorithm identifies global and heap variables.

Global variable identification. A global variable is iden-
tified at the variable definition site if the data flow analy-
sis shows that the variable address value could be resolved
to a value in binary data sections (data pointers in, e.g.,
.text) or text sections (code pointers in, e.g., .data, .bss
and .rodata), as shown in line 7-8. Global variables are ac-
cessible from different threads and thus are shared variables
on their own. Note that a global variable can be accessed via
direct memory access (e.g., “mov (0x248bb0),%rax” where
0x248bb0 is a global memory address, or indirect access via
an instruction sequence (e.g., “lea $0x248fa0,%rax” and
“mov (%rax),%r8”) where a global address 0x248fa0 is first
loaded into rax, and then dererferenced to load its value into
r8. We follow the standard data flow analysis to identify
them. Having recognized the global variables from the bi-
nary, SGXRACER further distinguishes the different types
of the access (i.e., R, W , or RW) as shown in line 9-12 and
line 23-24.

Heap variable identification. Heap variables are not neces-
sarily shared across threads, and only when they are passed
through pointer references as function parameters or to a
global variable. As such, SGXRACER first identifies a heap
variable with depth-one context sensitivity, i.e., with the call
site and caller function (at line 13-14), although we can use
context sensitivity with depth-two or more, we choose depth-
one context for performance trade-offs. Then, SGXRACER
tracks heap variables during the data flow analysis to check
whether the pointer of a heap variable is passed to a shared
variable (e.g., global variable or function parameter) at the
variable definition sites. If so, the heap variable becomes a
shared heap variable (described in line 5-6). For instance, in
the following assembly code of function do_save_tcs:

4074 32nd USENIX Security Symposium USENIX Association

Algorithm 1: Shared variable analysis
1 Function SharedVariableAnalysis(binary):

/* Identify shared variable accesses via data flow
analysis */

2 foreach instruction i ∈ binary do
3 case i defines v do
4 Value(v)← Update(Value(v))
5 if DestOp(i) ∈ SharedVariable ∧ SrcOp(i) ∈

HeapVariable
6 SharedVariable← SharedVariable t SrcOp(i)

// If defines a global variable
7 if MemoryAccess(i) ∧ Addr(v) ∈ [global_start,

global_end]
8 SharedVariable← SharedVariable t v
9 case R /∈MemoryAccess(i) ∧W ∈

MemoryAccess(i) do
10 SharedAccess← SharedAccess t (v, i, W)
11 case R ∈MemoryAccess(i) ∧W ∈

MemoryAccess(i) do
12 SharedAccess← SharedAccess t (v, i, RW)

// If defines a heap variable
13 if CallInst(i) ∧ CallTarget(i) ∈ AllocationFuncs
14 HeapVariable← HeapVariable t v (callsite, caller)
15 if v ∈ HeapVariable ∧ v ∈ SharedVariable
16 case R /∈MemoryAccess(i) ∧W ∈

MemoryAccess(i) do
17 SharedAccess← SharedAccess t (v, i, W)
18 case R ∈MemoryAccess(i) ∧W ∈

MemoryAccess(i) do
19 SharedAccess← SharedAccess t (v, i, RW)
20 case i uses v do

// If uses a global variable
21 if MemoryAccess(i) ∧ Addr(v) ∈ [global_start,

global_end]
22 SharedVariable← SharedVariable t v
23 case R ∈MemoryAccess(i) do
24 SharedAccess← SharedAccess t (v, i, R)

// If uses a heap variable
25 if v ∈ HeapVariable ∧ v ∈ SharedVariable
26 case R ∈MemoryAccess(i) do
27 SharedAccess← SharedAccess t (v, i, R)

/* Generate shared variable access pairs */
28 foreach (v, i0, acc0) ∈ SharedAccess ∧ (v, i1, acc1) ∈

SharedAccess do
29 AccessPair← AccessPair t ((v, i0, acc0), (v, i1, acc1))

88d4 <_ZL11do_save_tcsPv>:
...
896a: callq 100b1 <dlmalloc>
896f: mov %rax,-0x10(%rbp)
...
89a5: mov -0x10(%rbp),%rax
89a9: mov %rax,(0x248b48)#<_ZL10g_tcs_node>

a heap variable is allocated at instruction address 896a but not
yet a shared variable. Until at address 89a9, when the heap
variable pointer is assigned to a global variable at 0x248b48,
this heap variable becomes a shared variable. The variable
access type is also inferred (at line 15-19, and line 25-27).

Generating shared variable access pairs. Based on the data
flow analysis results, our shared variable analysis generates
possible data race pairs (line 28-line 29), namely shared vari-

able access pairs, which is a set of access pairs between two
threads (i.e., thread0 access and thread1 access, assuming two
threads) on the same shared variable. In particular, if a shared
variable has n accesses, there are totally

(n
2

)
+

(n
1

)
shared

variable access pairs for this variable, i.e., a combination of
different shared variable accesses

(n
2

)
plus a combination of

identical shared variable accesses
(n

1

)
. For instance, in our

working example, the data flow analysis generates in total
seven shared variable accesses, as shown in Figure 6. The
total number of access pairs is 12, as

(3
2

)
+

(3
1

)
= 6 pairs,

(2
2

)
+

(2
1

)
= 3 pairs, and

(2
2

)
+

(2
1

)
= 3 pairs.

5.2 Reentrancy-aware Lockset Analysis

Having generated the shared variable access pairs from the
variable analysis, SGXRACER further finds out whether any
of them have been protected by synchronization primitives
(essentially locks), and if so remove them from the detection
results. Our reentrancy-aware lockset analysis first perform
liveness analysis of lock variable (§5.2.1) to identify whether
there is any lock associated with the shared variable accesses,
and then considers all thread interleavings caused by con-
current reentrant ecalls, either intended by the programmers,
or unintended by the malicious attackers and compute the
corresponding lockset for the shared variable access (§5.2.2).

5.2.1 Liveness Analysis of Lock Variables

SGXRACER identifies two sets of lock variables: variables de-
fined by the standardized synchronization APIs, and variables
defined by programmers:

Identifying lock variables defined by synchronization
APIs. SGX SDKs typically provide a variety of synchro-
nization primitives (as shown in Table 5 in Appendix §A).
Fundamentally, all of these synchronization primitives can
be translated into a lock representation. Therefore, to have
a uniformed algorithm, we have to first translate and map
them into locks. Specifically, 1) thread-once is mapped as the
call-once function holding a unique mutex lock; 2) barrier
is mapped as holding N mutex locks and N is the number of
predefined waiting threads; 3) spinlock is mapped as a mu-
tex lock on the spinlock object; 4) reentrant mutex is also
mapped as a mutex lock; 5) read-write lock is mapped as a
read or write lock depending on whether it is used for read or
write; 6) conditional variable is mapped as lock and unlock
operations on the associated conditional variable.

Identifying self-defined lock variables. Besides off-the-
shelf synchronization primitives, SGX program can also use
other self-defined synchronization primitives, e.g., locks built
from xchg instruction. To identify them, SGXRACER scans
the binary for instructions xchg, lock xchg, cmpxchg and
lock cmpxchg and considers these instructions to be a lock
synchronization primitive through data flow analysis. A lock

USENIX Association 32nd USENIX Security Symposium 4075

Thread0 Thread1

Locksets Lock
History Shared Variable Access Shared Variable Access Shared Var.

Access Pair
At Least
A Write

∩ Locksets Consistent
History

Data
Races

{global_mutex_0} ∅ <global_counter, 3, W> <global_counter, 3, W> ✓ {global_mutex_0} × ×

{global_mutex_0} ∅ <global_counter, 5, R> <global_counter, 5, R> ✓ {global_mutex_0} × ×

× {global_mutex_0} × ×

{global_mutex_1} ∅ <global_counter, 10, W> <global_counter, 10, W> ✓ ∅ × ✓

✓ ∅ × ✓

✓ {global_mutex_1} × ×

∅ ∅ <global_mutex_0, 2, R> <global_mutex_0, 2, R> × ∅ × ×

∅ ∅ <global_mutex_0, 6, R> <global_mutex_0, 6, R> × ∅ × ×

× ∅ × ×

∅ ∅ <global_mutex_1, 9, R> <global_mutex_1, 9, R> × ∅ × ×

∅ ∅ <global_mutex_1, 11, R> <global_mutex_1, 11, R> × ∅ × ×

× ∅ × ×

❶

❸

⓿

❹

❻

❺

❷

❶

❸

⓿

❹

❻

❺

❷

(⓿, ⓿)

(⓿, ❶)

(❶, ❶)

(⓿, ❷)

(❶, ❷)

(❷, ❷)

(❸, ❸)

(❸, ❹)

(❹, ❹)

(❺, ❺)

(❺, ❻)

(❻, ❻)

Figure 6: The step-by-step internal results showing how SGXRACER detects the two data races for our working example

or unlock is identified according to the associated instruction
operand. The lock or unlock semantics is based on the value
of the operand (e.g., 1 means lock, and 0 means unlock).

Liveness analysis of lock variables. With the identified lock
variables, we perform a liveness analysis with them. The de-
tailed algorithm is presented in algorithm 2. More specifically,
at each variable definition site, if a lock variable is defined by
either standard APIs or user-defined (line 5), then we generate
a GEN set (line 6). This variable will be live for the remaining
instructions until it is killed by either unlock APIs or user-
defined unlocks (line 13), and correspondingly we generate
a KILL set (line 14). For instance, in our working example,
line 2 and line 9 are call sites of lock synchronization func-
tion sgx_thread_mutex_lock and thus global_mutex_0
and global_mutex_1 are generated API defined lock vari-
ables, and they are live at lines 3-5 for global_mutex_0, and
line 10 for global_mutex_1 because they are killed at line 6
and line 11, respectively.

5.2.2 Reentrancy-aware Lockset Analysis

After identifying all lock variables in enclave binary code, we
further explore the reentrancy of the enclave, i.e., considering
all possible thread interleavings including those caused by
multiple maliciously reentered ecalls. Reentrancy-awareness
is the unique feature of our lockset algorithm because threat
model in SGX, specifically the enclave call (ecall) interface
between the trusted and untrusted components, is not avail-
able in the target code of previous data race detector. In a
nutshell, our reentrancy-aware lockset analysis first generates
the lockset and lock acquisition history, and then enumerates
all thread interleavings that lead to non-reentrancy and uses

lockset and lock acquisition history to detect controlled data
races.

Note that other than lockset, lock acquisition history is
also needed for our analysis as no common lock does not
necessarily lead to data race. For instance, as shown in Fig-
ure 7, the shared variable access at line 6 holds a lockset of
{global_mutex_0} and the access at line 14 holds a lockset
of {global_mutex_1}. The intersection of the two locksets
is an empty set, but in fact there is no data race between
them. Intuitively, to reach line 6, thread 0 must have acquired
global_mutex_0, which prevents thread 1 from acquiring it
in line 11, and thus line 6 and line 14 cannot execute in paral-
lel, and no data race can occur. In the following, we formally
introduce lockset, lock acquisition history, and consistent lock
acquisition histories:

Definition 1 (Lockset). Given thread Ti and an instruction I,
we define the lockset(Ti, I) to be the possible set of locks alive
at instruction I with thread Ti.

Definition 2 (Lock Acquisition History) Given thread Ti
and an instruction I, for lock l, if l ∈ lockset(Ti, I), then we
define the lock acquisition history LockHistory(Ti, l) to be the
set of locks that were acquired (and possibly released) by Ti
after the last acquisition of l by Ti.

Definition 3 (Consistent Lock Acquisition Histories).
Given two locks, l0 and l1, their acquisition histories are con-
sistent if and only if there do not exist locks l0 and l1, such
that l0 is in lock acquisition history of l1 and l1 is in lock
acquisition history of l0.

To collect lockset and lock acquisition history, SGXRACER
also relies on the liveness analysis, as shown in line 6-15. In
particular, for lockset, each time when a lock is defined, the

4076 32nd USENIX Security Symposium USENIX Association

Algorithm 2: Lockset analysis
1 Function LockAnalysis(binary, AccessPair):

/* Generate locksets and lock acquisition history
via data flow analysis */

2 foreach instruction i ∈ binary do
3 if i defines v

// Update variable value
4 Value(v)← Update(Value(v))
5 if (CallInst(i) ∧ CallTarget(i) = lock) ∨ SelfDefineLock(i)

// GEN lock variables
6 LockVariable← LockVariable t Op(i)

// GEN locksets
7 LockSet(i)← LockSet(i) t Op(i)
8 foreach lock l do
9 if l = Op(i)

// KILL lock acquisition history
10 LockHistory(i,l)← /0

11 else
// GEN lock acquisition history

12 LockHistory(i,l)← LockHistory(i,l) t Op(i)
13 if (CallInst(i) ∧ CallTarget(i) = unlock) ∨

SelfDefineUnlock(i)
// KILL lock variables

14 LockVariable← LockVariable − Op(i)
// KILL locksets

15 LockSet(i)← LockSet(i) − Op(i)
/* Generate synchronized shared variable access

pairs via reentrancy-aware lockset analysis */
16 foreach ((v, l0, acc0), (v, l1, acc1)) ∈ AccessPair do

// check if at least one access is a write
17 if acc0 = R ∧ acc1 = R
18 SynAccessPair← SynAccessPair t ((v, l0, acc0), (v, l1,

acc1))
// check if there are common locks

19 else if LockSet(i) u LockSet(i) 6= /0

20 SynAccessPair← SynAccessPair t ((v, l0, acc0), (v, l1,
acc1))

// check if lock acquistion histories are
consistent

21 foreach different locks la, lb do
22 if la ∈ LockHisotry(i0, lb) ∧ lb ∈ LockHisotry(i1, la)
23 SynAccessPair← SynAccessPair t ((v, l0, acc0),

(v, l1, acc1))
/* Generate data races */

24 DataRace← AccessPair − SynAccessPair

liveness analysis generates (GEN) the lockset (i.e., the lock is
added to the lockset), and kills (KILL) the lockset (i.e., the
lock is removed from it) if the lock is unlocked. As for lock
acquisition history, each time when a lock is defined, the live-
ness analysis kills (KILL) the lock history for this lock (set it to
be empty) and generates (GEN) the lock history for other locks
(add it to the lock history). In this way, the liveness analysis is
able to generate lockset and lock acquisition history for each
instruction. As in our working example, for instance, line 3 has
the lockset of {global_mutex_0} since global_mutex_0 is
the only lock acquired (at line 2) and not yet released (at line
6). LockHistory(3, {global_mutex_0}) is empty, since after
the last acquisition of lock {global_mutex_0}, no locks are
acquired (and possibly have been released). The lockset and

1 void ecall_0(void) {
2 sgx_thread_mutex_lock(&global_mutex_0);
3 sgx_thread_mutex_lock(&global_mutex_1);
4 ...
5 sgx_thread_mutex_unlock(&global_mutex_1);
6 global_counter = 0;
7 sgx_thread_mutex_unlock(&global_mutex_0);
8 }
9 void ecall_1(void) {

10 sgx_thread_mutex_lock(&global_mutex_1);
11 sgx_thread_mutex_lock(&global_mutex_0);
12 ...
13 sgx_thread_mutex_unlock(&global_mutex_0);
14 global_counter = 1;
15 sgx_thread_mutex_unlock(&global_mutex_1);
16 }

Figure 7: Motivating example of lock acquisition history

lock acquisition history for each shared variable access are
listed in Figure 6.

Reentrancy-aware Lockset-based Data Race Detection.
Our reentrancy-aware lockset-based data race detection algo-
rithm extends lockset algorithm in [25], with extra awareness
of reentrancy, i.e., at line 16, we assume that every access
pair can be concurrent, since malicious attacker can reenter
the enclave at any time. The awareness of reentrancy is one
of main differences between our algorithm and prior works
(e.g., [33, 40]), in which more interleavings are being consid-
ered due to the unique threat model of Intel SGX. Then, for
every shared variable access pair, SGXRACER checks three
conditions: (1) whether one of the accesses is a write (line 17-
18), (2) whether there is no common lock in the two locksets
(line 19-20), and (3) whether the lock acquisition history for
these two instructions is consistent (line 21-23). If all of these
conditions are met, SGXRACER marks the shared variable ac-
cess pair as a data race. For instance, in our working example,
after counting interleavings caused by reentrancy, column six
of Figure 6 lists 12 shared variable access pairs as potential
data races. Among them, two data races are identified since
they satisfy the three required conditions, as listed in column
nine of Figure 6. Throughout this paper, the number of data
races are reported along with the number of shared variables
that contribute to the data races.

6 Evaluation

We have implemented SGXRACER, which currently supports
four well-known SGX SDKs: Intel SGX SDK, Microsft Open
Enclave SDK, Apache Teaclave Rust-SGX SDK, and Fort-
anix Rust EDP SDK. SGXRACER uses angr [51] to parse
SGX enclave binary code and performs variable analysis
and data race detection. The source code of SGXRACER

USENIX Association 32nd USENIX Security Symposium 4077

Intel SGX Open Enclave Rust-SGX Rust EDP Intel SGX Open Enclave Rust-SGX Rust EDP
Variables Variable Distribution

Shared Var. Access (R) 317 591 362 161 Data Variable libsgx_trts.a (4) liboecore.a (17) libenclave.a (1) std::sys (1)
Shared Var. Access (W) 119 214 134 21 libtlibc.a (4) liboeenclave.a (3) libsgx_trts.a (4) std::panicking (1)
Shared Var. Access (R&W) 6 7 16 7 libunwind.a (2) liboelibc.a (2) libtlibc.a (4) std::thread (0)
Uniq. Shared Var. 143 197 138 81 libcpprt.a (1) liboesyscall.a (1) libunwind.a (1) std::sys_common (0)
Lock Var. Access (Mutex) 7 9 0 20 libirc.a (6) libmbedcrypto.a (8) libirc.a (1) std::sync (0)
Lock Var. Access (Spinlock) 53 105 19 0 Total (DV) 17 31 11 2
Lock Var. Access (Others) 0 4 1 5 Code Pointer libsgx_trts.a (0) liboecore.a (1) libenclave.a (0) std::sys (0)
Uniq. Lock Var. 9 14 6 1 libtlibc.a (0) liboeenclave.a (0) libsgx_trts.a (0) std::panicking (0)

Lockset and Acquisition History libunwind.a (1) liboelibc.a (0) libtlibc.a (0) std::thread (0)
Ins. Lockset Size (Max.) 2 7 5 1 libcpprt.a (0) liboesyscall.a (0) libunwind.a (1) std::sys_common (0)
Ins. Lockset Size (Min.) 0 0 0 0 libirc.a (0) libmbedcrypto.a (0) std::panicking (1) std::sync (0)
Ins. Lockset Size (Ave.) 0.46 0.36 0.93 0.30 Total (CP) 1 1 2 0
Acqui. History Size (Max.) 8 13 5 0 Total 18 32 13 2
Acqui. History Size (Min.) 0 0 0 0
Acqui. History Size (Ave.) 3.34 0.1 1.47 0

Performance (effectiveness and efficiency) Function Distribution
Shared Variables 18 32 13 2 Libraries libsgx_trts.a (9) liboecore.a (31) libenclave.a (1) std::sys (1)
Data Races 39 134 28 6 libtlibc.a (5) liboeenclave.a (1) libsgx_trts.a (8) std::panicking (2)
FP 7 18 1 0 libunwind.a (5) liboelibc.a (15) libtlibc.a (4) std::thread (1)
FP % 17.95% 13.43% 0.00% 0.00% libcpprt.a (2) liboesyscall.a (3) libunwind.a (3) std::sys_common (1)
Shared Variable Access Pairs 1,567 9,625 2,000 145 libirc.a (5) libmbedcrypto.a (18) libirc.a (1) std::sync (1)
Variable Analysis Time (m) 508.8 12,614.4 453.6 441.2 std::panicking (1) alloc::sync (1)
Data Race Detection Time (m) 0.4 2.2 0.2 0.2 Total 26 68 18 7
Total Time (m) 509.2 12,616.6 453.8 441.4

Table 2: Data race detection results for the four SGX SDKs

SGX Applications
Detected Data Races # Total Variable Race Total # Shared Var. # Lock Var. Ave. Ave. Acq.

Var. Races FP FP % Acc. Pair Inter. Ana. (m) Det. (m) Time(m) Access Var. Access Var. Lockset History
Cryptography

mbedtls-SGX [61] 37 105 16 15.24% 7,817 15,317 205.2 2.4 207.6 372 84 68 3 0.198 0.000
intel-sgx-ssl [20] 138 646 7 1.08% 5,431 10,002 230.4 3.5 234 1,217 331 138 4 0.164 0.038
TaLoS [54] 148 487 0 0.00% 3,692 6,743 629.4 6.7 636 938 283 63 6 0.297 0.139
Network

LibSEAL [31] 2 4 0 0.00% 13 20 138.6 5.4 144 930 352 0 0 0.000 0.000
Database

SGX_SQLite [49] 95 356 3 0.84% 2,673 4,867 38.4 1.2 39.6 641 177 34 1 0.007 0.000
stealthdb [52] 2 4 1 25.00% 16 26 157.8 6.4 164.4 9 5 38 1 0.018 0.000
Learning

SGXDeep [23] 8 24 0 0.00% 190 332 330.6 6.9 337.8 293 96 29 2 0.634 0.606
Others

hot-calls [18] 0 0 0 0.00% 1 1 28.8 0.8 29.4 5 5 44 1 0.027 0.000

Table 3: Data race detection results for the SGX applications

has been made publicly available at https://github.com/
OSUSecLab/SGXRacer.

To evaluate SGXRACER, we crawled 73 real-world SGX
projects from github.com. 29 of them set TCSnum to one in
their configuration files and hence are not vulnerable to the
attacks. In the rest 44 projects, we select the project that has
at least 10 stars in github.com, resulting in eight projects in
total, and compile these eight projects with Intel SGX SDK
(version 2.6) to get their final binaries for our evaluation. We
also additionally analyzed other three SDK libraries from
Open Enclave SDK (0.7.0), Rust-SGX SDK (1.0.8), and Rust
EDP SDK (commit dbe1430) to detect whether the SDK
implementations contain any data races for the possible ecalls.
All of our experiments were carried out on a Dell x86-64 PC
with eight Intel Core i7-7700 processors and 32GB memory.

6.1 Effectiveness

6.1.1 Detection Results

SGX SDKs. We first apply SGXRACER to detect data races
in SGX SDKs. Surprisingly, among them, SGXRACER has
detected in total 39 races, 134 races, 28 races, and 6 races,
in these four SDKs, with 18, 32, 13, and 2 shared variables
contributing to these data races, as reported in Table 2. Open
Enclave SDK has far more data races than the other three
SDKs, and we found that a key reason is that a shared vari-
able, namely mul_count (which is a unit test variable left in
binary), is involved in 55 data races, consisting 41% of its
total detected data races.

To also illustrate how SGXRACER analyzes these SDKs,
we also provided internal statistics, including the number
of shared variable accesses, unique shared variables, lock
variable accesses, unique lock variables, lockset size, etc., in
Table 2. For instance, as listed in row 3–6, the number of

4078 32nd USENIX Security Symposium USENIX Association

https://github.com/OSUSecLab/SGXRacer
https://github.com/OSUSecLab/SGXRacer
github.com
github.com

read-only accesses of shared variable in each SDK are 317,
591, 362, and 161, respectively.

Finally, to investigate which libraries these variables and
functions belong to, we also manually identified shared vari-
ables and functions involved in each data race in the source
code of the four SDKs, and list the distributions in Table 2.
Interestingly, some data races come from third-party libraries,
e.g., libirc.a, which is a closed-source library and uses
global variables without concerning thread safety. We also
find that some SDKs even leave their unit test code in binary
which involves data races on global variables with no lock
protection. For instance, Open Enclave SDK binary has global
variables such as mul_count which introduce data races. The
testing code left by developers increases the trusted comput-
ing base (TCB) and attack surface, which should be avoided
in a trusted execution environment such as Intel SGX. An-
other interesting finding is that, even though Rust-SGX reuses
some code from Intel SGX SDK, as it alters the compilation
configurations, Rust-SGX is compiled to a different binary,
which leads to different race detection results.

SGX Applications. Next, we tested SGXRACER with eight
open source projects collected from github.com. We group
these projects into different categories and present the eval-
uation results in Table 3. As shown in this table, SGXRACER
detects in total 1,626 data races and 430 contributing vari-
ables from these eight SGX projects. The SGX application
with the maximum number of data races is intel-sgx-ssl
(which has 646 data races with 138 contributing variables),
and also there is one SGX application that has 0 data race
due to the properly synchronized shared variable accesses.

Similar to the internal statistics for the SGX SDKs, we
also show the internal statistics for these SGX applications in
Table 3. For instance, we can notice from this table that the av-
erage number of shared variable accesses is 550.6 with a max-
imum of 1,217 (intel-sgx-ssl) and the average number of
unique variables is 53.5 with a maximum of 352 (LibSEAL).

6.1.2 Analysis of False Positives

To determine whether there are false positives in our result,
we manually inspected the source code of four SGX SDKs
and eight SGX application projects. The manual inspection
follows the criteria below:

• Whether the two accesses are on the same shared variable;
• Whether at least one of the two accesses is write;
• Whether the two accesses can happen at the same time.

In four evaluated SGX SDKs, we find 7, 29, 0, and 0 false
positives, which resulted in a false positive rate of 8.74%. For
the eight SGX projects, we find 16, 7, 0, 0, 3, 1, 0, 0 false
positives, with a false positive rate of 5.27%. The overall
false positive rate is 6.43%. The false positives are due to two
reasons: (1) Initialization routines. For instance, an initial-
ization routine _GLOBAL__sub_I_tmem_mgmt.cpp in SGX

project intel-sgx-ssl is used to initialize the static vari-
able addr_info_map, which cannot be executed in parallel
with other accesses to this static variable. (2) Dead code. An
example in Open Enclave SDK is mbedtls_ecp_self_test,
which is used for unit testing in the mbedtls library. Although
mbedtls_ecp_self_test is compiled into the enclave code,
it cannot be called from the enclave entry. The dead code will
not race with other functions. Since SGX SDKs contain more
library functions with initialization routines and dead code,
SDKs have higher false-positive rates than applications.

In addition to the false positives we found in manual analy-
sis, we expect more false positives due to the following rea-
sons. First, we use a binary analysis based approach, and we
might have missed some shared variables, if they are highly
sophisticated or obfuscated in the instruction access (e.g.,
using an array index to pass a pointer, and our data flow anal-
ysis could miss them). Fortunately, we have not witnessed
such a case, and we found that identified shared variables and
lock variables do not involve these sophisticated operations.
Second, while SGXRACER can identify standardized syn-
chronization primitives using SDK APIs, it could miss the
unusual programmer self-defined synchronization primitives.
Heap variables. Heap variables are different from global vari-
ables (which is accessible through a global address) such that
heap variables are created each time an allocation function is
called. This allocation function call is identified by its call site
and calling context. In SGXRACER, we use depth-one con-
text sensitivity, i.e., call sites and caller function contexts. Due
to the context-sensitive analysis, we observed no false posi-
tives of heap variables in our benchmarks. We also observe
no allocation function wrappers. Per our manual analysis,
we identify 51, 116, 96, and 36 heap variables for four SGX
SDKs and 115, 523, 461, 0, 137, 65, 153, and 22 heap vari-
ables for eight SGX applications, among which we observe
no false positive explosions.

In order to evaluate the performance of SGXRACER under
excessive heap allocations, we modified the working exam-
ple and add 1024 heap allocation sites in two enclave call
functions via calling malloc wrapper function, as shown in
Figure 9. Our evaluation shows that SGXRACER does not
introduce additional false positives due to excessive heap al-
locations (i.e., 1024) thanks to the context sensitivity in our
analysis. The total analysis time without excessive heap allo-
cations is 23.671s, while with 1024 excessive heap allocations
total analysis time is 26.165s, with an increase of 12.436%.

6.1.3 Analysis of False Negatives

We conducted a manual inspection of the source code of four
SGX SDKs and eight SGX application projects similarly as
in the analysis of false positives. However, this is extremely
challenging as it requires ground truth of data races in our
benchmarks. Should we have such data, we would not need
to perform our analysis. We did not observe false negatives in

USENIX Association 32nd USENIX Security Symposium 4079

github.com

1 pub extern "C" fn t_global_init_ecall(id: u64,
2 path: * const u8, len: usize)
3 {
4 enclave::set_enclave_id(id as sgx_enclave_id_t);
5 let s = unsafe {
6 let str_slice = slice::from_raw_parts(path, len);
7 str::from_utf8_unchecked(str_slice)
8 };
9 enclave::set_enclave_path(s);

10 }

(a) A data race on ENCLAVE_ID in Apache Teaclave Rust-
SGX SDK

1 bool oe_configure_shm_capacity(size_t cap) {
2 ...
3 capacity = cap;
4 return true;
5 }
6 void* oe_shm_malloc(size_t size) {
7 ...
8 shm.capacity = capacity;
9 ...

10 }

(b) A data race on capacity in Open Enclave SDK

1 static uint64_t seed;
2

3

4 void srand(unsigned s) {
5 seed = s-1;
6 }
7

8

9 int rand(void) {
10 seed = 6364136223846793005ULL*seed + 1;
11 return seed>>33;
12 }

(c) A data race on seed in Open Enclave SDK

1 static oe_allocation_failure_callback_t _failure_callback;
2 void oe_set_allocation_failure_callback(
3 oe_allocation_failure_callback_t function) {
4 _failure_callback = function;
5 }
6 void* oe_malloc(size_t size) {
7 ...
8 if (_failure_callback)
9 _failure_callback(__FILE__, __LINE__,

10 __FUNCTION__, size);
11 ...
12 }

(d) A data race on _failure_callback in Open Enclave SDK

1 network *final_net;
2 void ecall_build_network(char *file_string,
3 size_t len_string, char *weights, size_t size_weights){
4 ...
5 network *net = (network *)malloc(sizeof(network));
6 list *sections = sgx_file_string_to_list(file_string);
7 net = sgx_parse_network_cfg(sections);
8 ...
9 final_net = net;

10 ...
11 }

(e) A data race in SGXDeep

1 BASIC_CONSTRAINTS *in_bc = NULL;
2 void * ecall_X509_get_ext_d2i(X509 *x, int nid,
3 int *crit, int *idx)
4 {
5 void* ret = X509_get_ext_d2i(x, nid, crit, idx);
6 ...
7 in_bc = (BASIC_CONSTRAINTS*)ret;
8 out_bc->ca = in_bc->ca;
9 out_bc->pathlen = in_bc->pathlen;

10 ...
11 }

(f) A data race in TaLoS

Figure 8: The code snippet in our security case studies

our code inspection. Nonetheless, four possible false negative
types might occur in the evaluated SGX SDKs and applica-
tions (Table 2 and Table 3):

• Limited context sensitivity, e.g., in heap variable identifi-
cation, not all context sensitivity levels are considered.
• Unsolved variables, i.e., shared variables that are difficult

to analyze for value set analysis (e.g., obfuscated binaries).
• Self-defined synchronizations, e.g., self-defined synchro-

nization primitives with xchg, lock xchg, cmpxchg and
lock cmpxchg instructions.
• Vulnerable synchronizations, i.e., synchronization primi-

tives with data races (SGXRACER assumes that there are
no such races). We inspected the SGX SDKs and applica-
tions binary code, but identified no such FNs. Note that it
is possible in other SDKs and applications.
• Self-defined heap allocations, i.e., heap variables

SGXRACER misses (e.g., using an unknown heap

allocation function). All SGX SDKs and applications
we evaluate do not use self-defined heap allocations. For
instance, Apache Teaclave Rust-SGX intended to use
malloc functions, with all other functions such as sbrk
wrapped.

6.2 Security Case Studies

Certainly, not all data races are exploitable. Automatically
detecting whether a data race is exploitable is a separate prob-
lem and requires automatic security impact analysis. Nev-
ertheless, in the following, we demonstrate six manual case
studies to show how some of these races can be exploited.

Setting two Rust-SGX enclaves with the same
ENCLAVE_ID. In Apache Teaclave Rust-SGX SDK,
SGXRACER detects a data race on shared variable
ENCLAVE_ID in function t_global_init_ecall, as shown

4080 32nd USENIX Security Symposium USENIX Association

1 void* malloc_wrapper(size_t size) { return malloc(size);}
2 void ecall_0(void) {
3 sgx_thread_mutex_lock(&global_mutex_0);
4 ...
5 heapvar[0] = (char *)malloc_wrapper(64); ...;
6 heapvar[511] = (char *)malloc_wrapper(64);
7 sgx_thread_mutex_unlock(&global_mutex_0);
8 }
9 void ecall_1(void) {

10 sgx_thread_mutex_lock(&global_mutex_1);
11 ...
12 heapvar[512] = (char *)malloc_wrapper(64); ...;
13 heapvar[1023] = (char *)malloc_wrapper(64);
14 sgx_thread_mutex_unlock(&global_mutex_1);
15 }

Figure 9: Excessive heap allocations in working example

in Figure 8a. We exploited this data race by calling init
ialize_enclave in two threads at the same time, which
successfully makes two Rust-SGX enclaves have the same
ENCLAVE_ID, as shown in Figure 10a.

Crashing oe_shm_malloc in Open Enclave SDK. In
Open Enclave SDK, SGXRACER detects a data race in the
shared variable capacity in function oe_shm_malloc and
oe_configure_shm_capacity, as shown in Figure 8b. We
set capacity to zero in another thread so that subsequent
calls to the function oe_shm_malloc will fail, as shown in
Figure 10b. This gives the attackers an ability to Denial of
Service at the attackers’ discretion.

Corrupting function srand seeds and de-randomizing
function random output. In Open Enclave SDK,
SGXRACER detects a data race in the shared variable seed
in function srand and rand in the third party musl libc [39],
as shown in Figure 8c. We kept setting the shared variable
seed to a chosen value (e.g., 0x0) and successfully derandom-
ized the return value of the rand function in another thread,
as shown in Figure 10c. This shows a potential devastating
security threat that data races could be used to disable pseu-
dorandom number generation in enclave code.

Changing a callback function from another thread. The
code snippet from Open Enclave SDK in Figure 8d has a
data race on shared variable _failure_callback. We let
one thread keep updating the failure callback function to
NULL pointer. Thus, the failure callback function in the sec-
ond thread will be overwritten to NULL and the thread avoids
executing the intended callback function by checking its value
at line 8, as illustrated in Figure 10d. This case shows that a
data race could even happen on shared pointers, which might
be more devastating than non-pointers.

Replacing the built network in deep learning. SGX appli-
cation intel-sgx-deep-learning [23] has a data race on shared
variable final_net in function ecall_build_network, as
shown in Figure 8e. The write of shared variable final_net
at line 9 is improperly synchronized without any lock, and

a concurrent thread could replace the built network with its
own network, which is later used in deep learning.

Corrupting X509 certificate extension decoding. SGX ap-
plication ToLoS [54] has a data race on shared variable in_bc
in function ecall_X509_get_ext_d2i as illustrated in Fig-
ure 8f. Function ecall_X509_get_ext_d2i is used for de-
coding X509 certificate extension with a specific OID, which
further calls function X509_get_ext_d2i at line 4 and as-
signs the decoding results to the shared variable in_bc at line
6 without proper synchronization. A malicious thread could
corrupt this buffer, leading to incorrect decoding.

6.3 Efficiency
We also report SGXRACER efficiency to analyze these
benchmarks in Table 2 and Table 3. More specifically, Table 2
lists the average processing time of SGXRACER in four SGX
SDKs. The total processing time is 509.2 minutes, 12,616.6
minutes, 453.8 minutes, and 441.4 minutes for four SDKs,
in which the data race detection phase takes 0.4 minutes,
2.2 minutes, 0.2 minutes, and 0.2 minutes, respectively.
The results show that most of the processing time is used
in the variable analysis phase, which takes a long time to
analyze the data flows. Table 3 lists the time overhead in
eight SGX applications, and the average total time used in
each application is 224.1 minutes and the maximum total
time used is 636.0 minutes (TaLoS). The average variable
analysis time is 219.9 minutes with a maximum of 629.4
minutes (TaLoS) and the average data race detection time is
4.2 minutes with a maximum of 6.9 minutes (SGXDeep).

7 Discussion and Future Work

Potential Defenses. The alarming number of data races de-
tected by SGXRACER and proof-of-concept exploits devel-
oped in security case studies show the importance of defense
against controlled data race attacks. An immediate defense
is to set parameters such as TCSnum in Enclave configuration
file to 1 if multithreading is not involved. Another defense is
defensive programming [43], e.g., putting shared variables in
critical sections or Intel Transactional Synchronization Exten-
sions (TSX) transactions. Especially in our analysis, global
variables are rarely guarded by synchronization primitives
such as mutex locks, which could be improved to defense
against controlled data race attacks. Attacks and potential
defenses work similarly in Intel SGX2 [36] as in Intel SGX,
as in Intel SGX version 1, attackers can already initiate new
threads and allocate heap memory at application level, while
SGX2 introduces more dynamic memory management sup-
port at architecture level, such as committing enclave memory
and changing access permissions at run-time. But SGX2 does
offer defense opportunities, e.g., dynamically setting a page
to non-executable when intentional data races are absent.

USENIX Association 32nd USENIX Security Symposium 4081

1 void* thread_function(void* data) {
2 initialize_enclave();
3 }
4 int SGX_CDECL main(int argc, char *argv[]) {
5 ...
6 /* create and initialize two threads
7 at the same time */
8 pthread_create(&threads[0], NULL, thread_function,
9 (void *)data);

10 pthread_create(&threads[1], NULL, thread_function,
11 (void *)data);
12 ...
13 }

(a) PoC for the data race on ENCLAVE_ID

1 void ecall_thread_1()
2 {
3 // malloc
4 oe_shm_malloc(1000);
5

6 }
7

8 void ecall_thread_2()
9 {

10 // set shm capacity to zero
11 oe_configure_shm_capacity(0);
12

13 }

(b) PoC for the data race on capacity

1 void ecall_thread_1()
2 {
3 // keep setting the seed to a constant value
4 while(1)
5 srand(100000000000000);
6 }
7 void ecall_thread_2()
8 {
9 while(1)

10 oe_printf("rand returns: %d\n", rand());
11 }

(c) PoC for the data race on seed

1 void unexpected_callback() {
2 oe_printf("unexpected_callback triggered\n");
3 }
4 void ecall_thread_1() {
5 // set the failure callback to another callback
6 oe_set_allocation_failure_callback(unexpected_callback);
7 }
8 void ecall_thread_2() {
9 // trigger the failure callback

10 oe_malloc(10000000000000000000000000000);
11 }

(d) PoC for the data race on _failure_callback

Figure 10: Proof-of-concept (PoC) code for exploiting the identified controlled data races

Automating the Exploitability Analysis. Since not all data
races are exploitable, it is important to further filter the non-
security related ones so that developers can prioritize the
bug fix. While we have demonstrated in the case study that
this can be done through manual analysis, it is actually a
challenging task to automate. At a high level, we can notice
that in order to automate the exploitability analysis, we have
to first understand the execution flow that depends on the data
races, and then identify the executions that can cause security
damages (e.g., a data-only attack). It appears that a data flow
analysis with a security impact analysis can together solve
this problem, and we leave the exploration of these techniques
to one of our future efforts.

Heap Function Recognition. SGXRACER needs to identify
heap variables by recognizing heap related functions. Cur-
rently, it relies on list of well-known symbols of heap func-
tions (e.g., malloc, free) to identify heap related memory
accesses. However, this is not a fundamental limitation as we
could adopt existing techniques such as MemBrush [11] to
recognize these heap related functions in the binary code.

Handling Other Concurrency Bugs. SGXRACER only
identifies data races in SGX binaries, a particular category
of concurrency bugs. There are also other concurrency
bugs, such as atomicity violations and deadlocks. Extending
SGXRACER to detect these bugs will be another interesting
avenue to work with. We believe that SGXRACER has most
of the building blocks, especially with the variable analysis

and the lockset analysis algorithm. The extension we envision
can include the specific detection policies. For instance, to
detect deadlocks, it requires semantic knowledge of the locks
and how they are locked. Again, we leave these for another
future work.

Improving the Precision of the Analysis. Our manual con-
firmation with the identified data races has yielded 7 false
positives, and in theory SGXRACER could have more false
positives for several reasons, as shown in §6.1. One possi-
ble direction to improve the precision of the analysis is to
rely on compilers (e.g., LLVM) to only analyze the SGX pro-
grams with source code. One direction of our future work is
to investigate this approach.

8 Related Work

Synchronization Vulnerabilities in SGX. AsyncShock [59]
demonstrated that synchronization vulnerabilities in SGX are
serious security vulnerabilities. and can be used to hijack
enclave control flow or bypass access control. In particular,
AsyncShock exploits existing synchronization vulnerabilities,
e.g., use-after-free (UAF) and time-of-check-to-time-of-use
(TOCTTOU) vulnearbilities, in multi-threaded enclave code
by manipulating thread scheduling via forcing segmentation
faults on enclave pages. Different from AsyncShock which
exploits off-the-shelf n-day synchronization vulnerabilities,
SGXRACER detects 0-day vulnerable data races at 0 days

4082 32nd USENIX Security Symposium USENIX Association

instead, including unintended data races caused by arbitrarily
created threads and invoked enclave calls.

Swami [53] suggested that an attacker can instantiate mul-
tiple copies of the enclave concurrently and trigger interrupts,
which forces data races in the enclave code to occur, by analyz-
ing the malleability of the enclave. In contrast, SGXRACER
explores concurrent vulnerabilities at the granularity of en-
clave calls, based on the observation that enclave calls are
made at the attacker’s will. SGXRACER further automatically
detects real-world data races in SGX programs, including
SDKs, whereas Swami [53] only manually analyzed platform
enclaves to identify the data race.

Data Race Detection. There are two categories of data race
detection algorithms. One category is based on Lamport’s
happen-before relation [28] and checks whether shared mem-
ory location accesses from different threads are ordered by
happen-before relation [13, 28, 44]. Dinning et al. [13] pro-
posed a dynamic data race detection algorithm called task
recycling, in which each program block has a unique task
identifier consisting of a task and a version number. Concur-
rency information is recorded in a parent vector, which is a
vector of version numbers. The parent vector entry and version
number of two threads are compared to check whether they
are concurrent. Happen-before relation-based approaches are
precise but less efficient, since they require recording accesses
information to each shared memory location.

The other category is the lockset-based algorithm, which
detects whether two threads that access the same shared mem-
ory location have a common lock [14, 15, 25, 40, 45, 47].
Eraser [47] is a dynamic data race detector for lock-based
multi-threaded programs, which maintains a set of candidate
locks for each shared variable and a set of locks held by each
thread. The set of candidate locks for each shared variable is
constantly refined by intersection with the set of locks held
by the current thread, and if the refinement result set is an
empty set, Eraser triggers a warning. Kahlon et al. [25] pro-
posed a fast and accurate static data race detection based on
the lockset algorithm and the leveraged lock acquisition his-
tory to further refine the data race warnings. SGXRACER
further extends the data race detection algorithm in [25] with
reentrancy-awareness, in which data races caused by concur-
rent non-reentrant ecall invocations are also detected.

We list the comparison with related works in Table 4. To our
knowledge, SGXRACER is the first static binary analysis tool
for data race detection, with or without Intel SGX. As listed in
Table 4, prior work focuses on source code, e.g., Java source
code or C source code, while SGXRACER focuses on binary
code. With this unique feature in mind, SGXRACER proposes
data flow analyses such as shared variable analysis (i.e., §5.1)
and reentrancy-aware lockset analysis (i.e., §5.2), in which
both algorithms are tailored for enclave-call interface and
static binary analysis.

Paper Year Dist
rib

ute
d Algo

rit
hm

s

Data
Rac

e Dete
cti

on

Hap
pe

n-B
efo

re

Loc
ks

et

Targ
et:

Jav
a Sou

rce
Cod

e

Targ
et:

C
Sou

rce
Cod

e

Targ
et:

Bina
ry

Cod
e

Dyn
am

ic

Stat
ic

Lamport et al. [28] 1978 3 3

Dinning et al. [13] 1990 3 3

Perković et al. [44] 1996 3 3 3

Savage et al. [47] 1997 3 3 3

Flanagan et al. [15] 2000 3 3 3 3

Engler et al. [14] 2003 3 3 3 3

Naik et al. [40] 2006 3 3 3 3

Pratikakis et al. [45] 2006 3 3 3 3

Kahlon et al. [25] 2007 3 3 3 3

Lu et al. [33] 2007 3 3 3 3 3

SGXRACER 2023 3 3 3 3

Table 4: A Comparison with closely related works

Value Set Analysis. Value set analysis (VSA) [4,5] is a static
binary code analysis technique that over-approximates the
value of each variable in the binary code. VSA employs a
value set to represent possible memory addresses and numeric
values. The analysis has an abstract memory model that sepa-
rates the address space into three kinds of memory regions,
i.e., global region, stack region, and heap region, and thus the
value set is often represented as a 3-tuple, where each element
denotes a memory region offset.

Balakrishnan et al. [4] originally proposed value set analy-
sis, and used it for binary code alias analysis, i.e., memory ac-
cesses can be alias if their value sets intersect. DeepVSA [17]
facilitated value set analysis with deep learning techniques in
postmortem program analysis, where incomplete control flow
information cannot provide enough context for value set anal-
ysis. A layer of instruction embedding and a bi-directional
sequence-to-sequence neural network is used to infer memory
regions, and therefore provides a better alias analysis.

SelectiveTaint [10] further leveraged the alias analysis abil-
ity of VSA and improved the efficiency of data flow analy-
sis. Specifically, SelectiveTaint statically analyzed the binary
code and conservatively determined the set of instructions that
needs data flow tracking, and then instrumented the binary
code with static binary rewriting. Different from the afore-
mentioned approaches [4,10,17], SGXRACER mainly utilizes
VSA to carry out data flow analyses, identifying shared vari-
ables, lock variables, and lock sets in enclave binary code for
data race detection.

9 Conclusion

We have presented the controlled data race attack, a new attack
launched deterministically by a malicious OS when enclave
data is not properly guarded. To detect the vulnerable code
that is subject to this attack, we also propose SGXRACER,
which detects controlled data races in the enclave code, by

USENIX Association 32nd USENIX Security Symposium 4083

systematically exploring possible concurrent enclave ecalls
from both intended and unintended thread interleavings. We
have implemented SGXRACER and evaluated it with eight
open source SGX applications and four SGX SDKs, with
which SGXRACER has identified totally 1,780 data races
among 476 shared variables.

Acknowledgments

We thank anonymous reviewers for their invaluable feed-
back. We also thank researchers and engineers from Intel, Mi-
crosoft, and Baidu for their inspiring insights. We particularly
thank Yu Ding for his help with Apache Teaclave Rust-SGX
SDK. Zhiqiang Lin was partially supported by ARO award
W911NF2110081 and DARPA award N6600120C4020. Yin-
qian Zhang was in part supported by Ant Group.

References

[1] Alibaba Cloud Released Industry’s First Trusted and Virtual-
ized Instance with Support for SGX 2.0 and TPM - Alibaba
Cloud Community, 2022. https://www.alibabacloud.com/
blog/alibaba-cloud-released-industrys-first-
trusted-and-virtualized-instance-with-support-
for-sgx-2-0-and-tpm_596821.

[2] Azure Confidential Computing – Protect Data-In-Use | Mi-
crosoft Azure, 2022. https://azure.microsoft.com/en-
us/solutions/confidential-compute/.

[3] Introducing Google Cloud Confidential Computing
with Confidential VMs | Google Cloud Blog, 2022.
https://cloud.google.com/blog/products/identity-
security/introducing-google-cloud-confidential-
computing-with-confidential-vms.

[4] G. Balakrishnan and T. Reps. Analyzing memory accesses in
x86 executables. In E. Duesterwald, editor, Compiler Construc-
tion, pages 5–23, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

[5] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum. Wys-
inwyx: What you see is not what you execute. In Working
Conference on Verified Software: Theories, Tools, and Experi-
ments, pages 202–213. Springer, 2005.

[6] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi. Software grand exposure: SGX cache
attacks are practical. In 11th USENIX Workshop on Offensive
Technologies (WOOT 17), Vancouver, BC, Aug. 2017. USENIX
Association.

[7] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and
R. Strackx. Telling your secrets without page faults: Stealthy
page table-based attacks on enclaved execution. In 26th
USENIX Security Symposium (USENIX Security 17), pages
1041–1056, Vancouver, BC, Aug. 2017. USENIX Association.

[8] S. Checkoway and H. Shacham. Iago Attacks: Why the System
Call API is a Bad Untrusted RPC Interface. In Proceedings of

the Eighteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, AS-
PLOS ’13, pages 253–264, New York, NY, USA, 2013. ACM.

[9] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai.
Stealing intel secrets from sgx enclaves via speculative execu-
tion. In Proceedings of the 2019 IEEE European Symposium
on Security and Privacy, June 2019.

[10] S. Chen, Z. Lin, and Y. Zhang. Selectivetaint: Efficient data
flow tracking with static binary rewriting. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Associa-
tion, Aug. 2021.

[11] X. Chen, A. Slowinska, and H. Bos. Who allocated my mem-
ory? detecting custom memory allocators in c binaries. In 2013
20th Working Conference on Reverse Engineering (WCRE),
pages 22–31. IEEE, 2013.

[12] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
V. Sarkar, and M. Sridharan. Efficient and precise datarace
detection for multithreaded object-oriented programs. In Pro-
ceedings of the ACM SIGPLAN 2002 Conference on Program-
ming Language Design and Implementation, PLDI ’02, pages
258–269, New York, NY, USA, 2002. ACM.

[13] A. Dinning and E. Schonberg. An empirical comparison of
monitoring algorithms for access anomaly detection. In Pro-
ceedings of the Second ACM SIGPLAN Symposium on Prin-
ciples &Amp; Practice of Parallel Programming, PPOPP ’90,
pages 1–10, New York, NY, USA, 1990. ACM.

[14] D. Engler and K. Ashcraft. RacerX: Effective, static detec-
tion of race conditions and deadlocks. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles,
SOSP ’03, pages 237–252, New York, NY, USA, 2003. ACM.

[15] C. Flanagan and S. N. Freund. Type-based race detection for
java. SIGPLAN Not., 35(5):219–232, may 2000.

[16] Fortanix. Rust Enclave Development Platform, 2021. https:
//edp.fortanix.com/.

[17] W. Guo, D. Mu, X. Xing, M. Du, and D. Song. DEEPVSA:
Facilitating value-set analysis with deep learning for post-
mortem program analysis. In 28th USENIX Security Sympo-
sium (USENIX Security 19), Santa Clara, CA, 2019. USENIX
Association.

[18] hot-calls, 2017. https://github.com/oweisse/hot-
calls.

[19] Intel. Intel Software Guard Extensions Developer Guide, June
2019. https://download.01.org/intel-sgx/linux-2.6/
docs/Intel_SGX_Developer_Guide.pdf.

[20] Intel. Intel Software Guard Extensions SSL, 2021. https:
//github.com/intel/intel-sgx-ssl.

[21] Intel. SDK for Intel Software Guard Extensions, 2021. https:
//software.intel.com/en-us/sgx/sdk.

[22] Intel. Intel Software Guard Extensions Programming Ref-
erence, 2022. https://download.01.org/intel-sgx/sgx-
linux/2.17/docs/Intel_SGX_Developer_Guide.pdf.

[23] intel-sgx-deep-learning, 2019. https://github.com/
landoxy/intel-sgx-deep-learning.

4084 32nd USENIX Security Symposium USENIX Association

https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://edp.fortanix.com/
https://edp.fortanix.com/
https://github.com/oweisse/hot-calls
https://github.com/oweisse/hot-calls
https://download.01.org/intel-sgx/linux-2.6/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-2.6/docs/Intel_SGX_Developer_Guide.pdf
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk
https://download.01.org/intel-sgx/sgx-linux/2.17/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/sgx-linux/2.17/docs/Intel_SGX_Developer_Guide.pdf
https://github.com/landoxy/intel-sgx-deep-learning
https://github.com/landoxy/intel-sgx-deep-learning

[24] Y. Jang, J. Lee, S. Lee, and T. Kim. SGX-Bomb: Locking
Down the Processor via Rowhammer Attack. In Proceedings
of the 2nd Workshop on System Software for Trusted Execu-
tion, SysTEX ’17, New York, NY, USA, 2017. Association for
Computing Machinery.

[25] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta. Fast
and accurate static data-race detection for concurrent programs.
In Proceedings of the 19th International Conference on Com-
puter Aided Verification, CAV’07, pages 226–239, Berlin, Hei-
delberg, 2007. Springer-Verlag.

[26] M. R. Khandaker, Y. Cheng, Z. Wang, and T. Wei. COIN
Attacks: On Insecurity of Enclave Untrusted Interfaces in SGX.
In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, pages 971–985, New York,
NY, USA, 2020. Association for Computing Machinery.

[27] C. Kockan, K. Zhu, N. Dokmai, N. Karpov, M. O. Külekci,
D. P. Woodruff, and S. C. Sahinalp. Sketching algorithms
for genomic data analysis and querying in a secure enclave.
Nature Methods, 17:295–301, 2020.

[28] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, July 1978.

[29] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim,
M. Peinado, and B. B. Kang. Hacking in darkness: Return-
oriented programming against secure enclaves. In 26th
USENIX Security Symposium (USENIX Security 17), pages
523–539, Vancouver, BC, Aug. 2017. USENIX Association.

[30] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In 26th USENIX Security Symposium
(USENIX Security 17), pages 557–574, Vancouver, BC, 2017.
USENIX Association.

[31] LibSEAL, 2018. https://github.com/lsds/LibSEAL.

[32] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-
L. Aublin, F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers,
R. Kapitza, C. Fetzer, and P. Pietzuch. Glamdring: Automatic
application partitioning for Intel SGX. In 2017 USENIX An-
nual Technical Conference (USENIX ATC 17), pages 285–298,
Santa Clara, CA, 2017. USENIX Association.

[33] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and
Y. Zhou. MUVI: Automatically inferring multi-variable access
correlations and detecting related semantic and concurrency
bugs. In Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, pages 103–116,
New York, NY, USA, 2007. ACM.

[34] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:
A comprehensive study on real world concurrency bug charac-
teristics. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XIII, pages 329–339, New York,
NY, USA, 2008. ACM.

[35] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting atomicity
violations via access interleaving invariants. In Proceedings of
the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XII, pages 37–48, New York, NY, USA, 2006. ACM.

[36] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas. Intel® software guard exten-
sions (intel® sgx) support for dynamic memory management
inside an enclave. In Proceedings of the Hardware and Archi-
tectural Support for Security and Privacy 2016, HASP 2016,
New York, NY, USA, 2016. Association for Computing Ma-
chinery.

[37] Microsoft. Open Enclave SDK, 2021. https://
openenclave.io/sdk/.

[38] A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How
SGX amplifies the power of cache attacks. In 19th Interna-
tional Conference on Cryptographic Hardware and Embedded
Systems - CHES 2017, pages 69–90, 2017.

[39] musl-libc. musl-libc, 2020. https://www.musl-libc.org/.

[40] M. Naik, A. Aiken, and J. Whaley. Effective static race de-
tection for Java. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, PLDI ’06, pages 308–319, New York, NY, USA, 2006.
ACM.

[41] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detec-
tion. In Proceedings of the Ninth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP
’03, pages 167–178, New York, NY, USA, 2003. ACM.

[42] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa. Oblivious multi-party machine
learning on trusted processors. In 25th USENIX Security Sym-
posium (USENIX Security 16), pages 619–636, Austin, TX,
Aug. 2016. USENIX Association.

[43] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and
D. Holmes. Java Concurrency in Practice. Addison-Wesley
Professional, 2005.

[44] D. Perkovic and P. J. Keleher. Online data-race detection via
coherency guarantees. In Proceedings of the 2nd USENIX
Symposium on Operating System Design and Implementation,
1996.

[45] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH:
Context-sensitive correlation analysis for race detection. In
Proceedings of the 27th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’06,
pages 320–331, New York, NY, USA, 2006. ACM.

[46] P. Qiu, D. Wang, Y. Lyu, and G. Qu. VoltJockey: Breaching
TrustZone by Software-Controlled Voltage Manipulation over
Multi-Core Frequencies. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’19, pages 195–209, New York, NY, USA, 2019.
Association for Computing Machinery.

[47] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-
son. Eraser: A dynamic data race detector for multi-threaded
programs. In Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles, SOSP ’97, pages 27–37, New
York, NY, USA, 1997. ACM.

[48] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. Vc3: Trustworthy data
analytics in the cloud using sgx. In 2015 IEEE Symposium on
Security and Privacy, pages 38–54. IEEE, 2015.

USENIX Association 32nd USENIX Security Symposium 4085

https://github.com/lsds/LibSEAL
https://openenclave.io/sdk/
https://openenclave.io/sdk/
https://www.musl-libc.org/

[49] SGX_SQLite, 2018. https://github.com/yerzhan7/
SGX_SQLite.

[50] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan. A practical
encrypted data analytic framework with trusted processors. In
Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS’17), Dallas, TX, November
2017.

[51] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and
G. Vigna. SoK: (State of) The Art of War: Offensive Tech-
niques in Binary Analysis. In IEEE Symposium on Security
and Privacy, 2016.

[52] stealthdb, 2019. https://github.com/cryptograph/
stealthdb.

[53] Y. Swami. Intel SGX remote attestation is not sufficient. In
Black Hat USA 2017, 2017.

[54] TaLoS, 2019. https://github.com/lsds/TaLoS.

[55] J. Van Bulck, F. Piessens, and R. Strackx. SGX-Step: A prac-
tical attack framework for precise enclave execution control.
In Proceedings of the 2Nd Workshop on System Software for
Trusted Execution, SysTEX’17, pages 4:1–4:6, New York, NY,
USA, 2017. ACM.

[56] J. Van Bulck, F. Piessens, and R. Strackx. Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU
Interrupt Logic. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS
’18, pages 178–195, New York, NY, USA, 2018. ACM.

[57] H. Wang, P. Wang, Y. Ding, M. Sun, Y. Jing, R. Duan, L. Li,
Y. Zhang, T. Wei, and Z. Lin. Towards memory safe enclave
programming with rust-sgx. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, 2019.

[58] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna. Ramblr: Making reassem-
bly great again. In Proceedings of the Network and Distributed
System Security Symposium, 2017.

[59] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza. Async-
Shock: Exploiting synchronisation bugs in Intel SGX enclaves.
In I. Askoxylakis, S. Ioannidis, S. Katsikas, and C. Meadows,
editors, Computer Security – ESORICS 2016, pages 440–457,
Cham, 2016. Springer International Publishing.

[60] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks:
Deterministic side channels for untrusted operating systems.
In Proceedings of the 2015 IEEE Symposium on Security and
Privacy, SP ’15, pages 640–656, Washington, DC, USA, 2015.
IEEE Computer Society.

[61] F. Zhang. SGX-mbedtls, 2019. https://github.com/
bl4ck5un/mbedtls-SGX.

[62] Z. Zhang, W. You, G. Tao, G. Wei, Y. Kwon, and X. Zhang.
BDA: Practical Dependence Analysis for Binary Executables
by Unbiased Whole-program Path Sampling and Per-path Ab-
stract Interpretation. In Proceedings of the ACM on Program-
ming Languages Volume 3 Issue OOPSLA (OOPSLA 2019),
2019.

A Synchronization Primitives and Functions
in Four SGX SDKs

A summary of the synchronization primitives and API func-
tions provided in evaluated SGX SDKs is presented in Table 5.

SGX SDKs Sync. Primitive Function

Intel SGX SDK

Spinlock sgx_spin_lock
sgx_spin_unlock

Mutex
sgx_thread_mutex_lock
sgx_thread_mutex_trylock
sgx_thread_mutex_unlock

Condition Variable
sgx_thread_cond_wait
sgx_thread_cond_signal
sgx_thread_cond_broadcast

Open Enclave SDK

Thread-once oe_pthread_once

Spinlock oe_pthread_spin_lock
oe_pthread_spin_unlock

Mutex
oe_pthread_mutex_lock
oe_pthread_mutex_trylock
oe_pthread_mutex_unlock

Read-write Lock
oe_pthread_rwlock_rdlock
oe_pthread_rwlock_wrlock
oe_pthread_rwlock_unlock

Condition Variable
oe_pthread_cond_wait
oe_pthread_cond_signal
oe_pthread_cond_broadcast

Rust-SGX SDK

Thread-once Once::call_once
Once::call_once_force

Barrier Barrier::wait

Spinlock SgxThreadSpinlock::lock
SgxThreadSpinlock::unlock

Mutex

SgxThreadMutex::lock
SgxThreadMutex::trylock
SgxThreadMutex::unlock
SgxThreadMutex::unlock_lazy

Reentrant Mutex
SgxReentrantThreadMutex::lock
SgxReentrantThreadMutex::trylock
SgxReentrantThreadMutex::unlock

Read-write Lock

SgxThreadRwLock::read
SgxThreadRwLock::try_read
SgxThreadRwLock::write
SgxThreadRwLock::try_write
SgxThreadRwLock::read_unlock
SgxThreadRwLock::write_unlock

Condition Variable

SgxThreadCondvar::wait
SgxThreadCondvar::wait_timeout
SgxThreadCondvar::signal
SgxThreadCondvar::broadcast
SgxThreadCondvar::notify_one
SgxThreadCondvar::notify_all

Rust EDP SDK

Thread-once Once::call_once
Once::call_once_force

Barrier Barrier::wait

Mutex
Mutex::lock
Mutex::trylock
Mutex::unlock

Reentrant Mutex
ReentrantMutex::lock
ReentrantMutex::trylock
ReentrantMutex::unlock

Read-write Lock

RWLock::read
RWLock::try_read
RWLock::write
RWLock::try_write
RWLock::read_unlock
RWLock::write_unlock

Condition Variable

Condvar::wait
Condvar::wait_timeout
Condvar::notify_one
Condvar::notify_all

Table 5: Synchronization primitives and functions in four
SGX SDKs

4086 32nd USENIX Security Symposium USENIX Association

https://github.com/yerzhan7/SGX_SQLite
https://github.com/yerzhan7/SGX_SQLite
https://github.com/cryptograph/stealthdb
https://github.com/cryptograph/stealthdb
https://github.com/lsds/TaLoS
https://github.com/bl4ck5un/mbedtls-SGX
https://github.com/bl4ck5un/mbedtls-SGX

	Introduction
	Background
	Controlled Data Race Attacks
	Controlled Data Race Detection
	Detailed Design
	Shared Variable Analysis
	Reentrancy-aware Lockset Analysis
	Liveness Analysis of Lock Variables
	Reentrancy-aware Lockset Analysis

	Evaluation
	Effectiveness
	Detection Results
	Analysis of False Positives
	Analysis of False Negatives

	Security Case Studies
	Efficiency

	Discussion and Future Work
	Related Work
	Conclusion
	Synchronization Primitives and Functions in Four SGX SDKs

