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Abstract
Using secure multiparty computation (MPC), organizations
which own sensitive data (e.g., in healthcare, finance or law
enforcement) can train machine learning models over their
joint dataset without revealing their data to each other. At
the same time, secure computation restricts operations on the
joint dataset, which impedes computation to assess its qual-
ity. Without such an assessment, deploying a jointly trained
model is potentially illegal. Regulations, such as the Euro-
pean Union’s General Data Protection Regulation (GDPR),
require organizations to be legally responsible for the errors,
bias, or discrimination caused by their machine learning mod-
els. Hence, testing data quality emerges as an indispensable
step in secure collaborative learning. However, performing
distribution testing is prohibitively expensive using current
techniques, as shown in our experiments.

We present HOLMES, a protocol for performing distribu-
tion testing efficiently. In our experiments, compared with
three non-trivial baselines, HOLMES achieves a speedup of
more than 10× for classical distribution tests and up to 104×
for multidimensional tests. The core of HOLMES is a hybrid
protocol that integrates MPC with zero-knowledge proofs
and a new ZK-friendly and naturally oblivious sketching algo-
rithm for multidimensional tests, both with significantly lower
computational complexity and concrete execution costs.

1 Introduction

The MIT Technology Review article, “AI is sending people
to jail–and getting it wrong” [1] is a reminder that machine
learning models are determining people’s fate. The article
explains how COMPAS1, a system that rates people’s risk of
future crime and decides if one should be held in jail before
trial, has been shown to disproportionately target low-income
populations and minorities [1]. Other examples where AI has
infiltrated our everyday life include models to detect tradition-
ally unrecognized anxiety and depression from speech [2, 3]

1Correctional Offender Management Profiling for Alternative Sanctions.

or diagnose attention deficiency [4]. In these cases, accuracy
is crucial for people to receive the right treatment.

However, if the training data is inaccurate, skewed, or af-
fected by systemic biases, without any special attention to
this issue, the trained model will also be biased [5]. There are
many approaches (e.g., [6–9]) to guarantee fairness, starting
from detecting and removing imbalances from the training
data. For example, if a dataset has a large number of negative
records (e.g., low credit scores) toward a certain group, one
can reduce the imbalance by subsampling.

The situation in secure collaborative learning, where the
model is trained in a way that none of the parties has access
to the whole dataset, is vastly different. If the quality of the
joint dataset is good, we expect the model trained on the
joint dataset to be superior to models trained on individual
datasets [10–14]. However, due to privacy considerations (e.g.,
due to GDPR [15]) organizations cannot know if the data is
indeed of high quality. GDPR also requires organizations
using such models to prevent errors, bias, and discrimination
and take liability of the model [16]. Hence, organizations face
the following conundrum. How can an organization take the
(unknown) risk for another organization’s untested data?

Organizations will use collaborative secure computation
only if there are data quality guarantees about the joint dataset.
Hence, the ability to check data quality in secure computation
is as important as data confidentiality and integrity. The first
step toward this direction is to perform distribution testing
over the joint dataset to examine:

• one-dimensional properties, such as the histogram of val-
ues of a specific attribute (e.g., income), or as basic as check-
ing the range of each entry (e.g., age should be ≤ 200).

• multidimensional properties, such as whether the distri-
bution of several attributes (e.g., age, gender, and income)
fits into a desired distribution (e.g., represents a balanced
demographic composition).

Distribution testing is a prominent method in statistical
analysis. For instance, in clinical trials, the NIH Collabora-
tory [17] recommends comparing the distribution of different
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datasets to detect data discrepancies. However, this useful
tool is missing in prior works of secure collaborative learning
(e.g., [18–21]), often left as an open problem. This is likely
due to its extremely high overhead in MPC.

We present HOLMES, a protocol that performs such distri-
bution testing efficiently, often at only a small fraction of the
cost of secure collaborative learning. In our experiments, com-
pared to three non-trivial baselines that we describe below,
HOLMES achieves a speedup of more than 10× for classical
one-dimensional tests and up to 104× for multidimensional
tests. The core of HOLMES is a hybrid protocol that integrates
MPC with zero-knowledge proofs and a new ZK-friendly, nat-
urally oblivious sketching algorithm for multidimensional
tests. HOLMES is already open-sourced in GitHub (anony-
mously): https://github.com/holmes-inputcheck/

1.1 Utilising IZK
Intuitively, to guarantee privacy no data-dependent computa-
tion should be performed outside the MPC protocol used in
secure collaborative learning. So, bypassing the inefficiency
of MPC seems impossible. Our insight is that the computation
in distribution testing can be divided into parts that involve a
single party’s dataset. Hence, distribution testing is mostly a
verification task, instead of a direct computation. This brings
us to the non-trivial first baseline described below.
First Baseline: Each party provides some auxiliary informa-
tion based on their individual dataset, called witness, for the
distribution tests. All parties verify each party’s computation
using the witnesses and proceed to compute the distribution
tests in MPC. Verifying a computation can be significantly
faster than directly computing. For example, verifying that a
value x is in the range [a,b] typically involves computing the
bit decomposition of (x−a) and (b− x). Hence, it becomes
easier when each party provides this information as a witness.

However, this solution is still costly to implement in secure
collaborative systems, when we require malicious security
with a dishonest majority. SPDZ [22] and SCALE-MAMBA
[23] are the fastest well-known MPC protocols for generic
arithmetic computations with a dishonest and malicious ma-
jority, and are commonly used in secure collaborative learning
(e.g., [19]). Since efficient distribution testing algorithms are
based primarily on linear arithmetic operations, SPDZ-type
protocols have lower computational overhead than other gen-
eral MPC approaches, such as garbled circuits.

However, the cost of performing distribution tests still
grows rapidly in this setting. Assume that t parties, each
with the same amount of data, want to check the data quality
of each individual dataset using distribution tests. We specifi-
cally use the standardized measure "wall-clock time" to de-
scribe the computational overhead, which refers to the amount
of time each party takes until the MPC protocol finishes.
• In the best case, all t parties agree on the same set of distri-

bution tests for all individual datasets. If the computation of

the tests on a single dataset requires C multiplications, the
computation for t datasets has cost C · t multiplications, and
the online phase of SCALE-MAMBA has computational
overhead O(C · t) field elements 2. Moreover, the offline
computational overhead of SCALE-MAMBA is propor-
tional to the product of number of parties and the size of the
online computation, i.e., O(C · t2), since for each multipli-
cation we need to produce t pieces of information, one for
each party. Thus, running the distribution tests on t datasets
in this t-party MPC leads to a wall-clock time of O(C · t2).

• In the worst case, each party provides a different set of
distribution tests for each individual dataset. Assuming
that each set of tests has computational overhead O(C) in
SCALE-MAMBA, the online computational overhead us-
ing a t-party protocol is O(C · t2); this is because the online
cost for all sets of tests on each individual dataset is O(C · t).
Taking into account the offline phase, running the distribu-
tion tests on all t datasets in this t-party MPC leads to a
wall-clock time of O(C · t3).

We present a solution that reduces the wall-clock time to
O(C · t) in all cases.

HOLMES: efficiency via IZK. Zero-knowledge proofs
are protocols that allow verifying a computation on a sin-
gle party’s dataset, without revealing any other information.
Thus, they are more suited for efficient distribution testing.
Specifically, using interactive zero-knowledge (IZK) proofs,
which are 2-party protocols involving a prover and a verifier,
each party proves to (t−1) parties the distribution tests for its
individual dataset, and verifies the tests for the other (t−1)
datasets. In contrast to the first baseline, now the pairwise IZK
protocols can be run concurrently, i.e., while P1 runs an IZK
withP2, the parties P3 andP4 can also run an IZK etc. Hence,
if the computational overhead in IZK for the distribution tests
on an individual dataset is O(C), the wall-clock time for the
datasets in IZK is O(C ·t) : each party proves t−1, potentially
different, statements and verifies t−1 statements.

IZK reduces the computational overhead as performing
distribution tests on an individual dataset, in essence, is not a
computation that requires input from t parties; thus, it does not
actually need t-party MPC. This new computational model
leaves two challenges:
1. How can we ensure that the data in the MPC for collabo-

rative learning is the same data used in IZK?
2. Are IZK-based solutions concretely efficient?

We answer the first question in §3.1 by proposing a
lightweight consistency check. Additionally, our evaluation
in §4 confirms that the answer to the second question is yes.

Remark: choice of IZK protocol. A generic approach for
IZK is to use pairwise secure two-party computation (2PC)
protocols. Namely, each pair of parties performs a 2PC proto-
col to show that a set of tests on its individual dataset passes

2Additions do not require communication in SCALE-MAMBA.
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and to verify a (potentially different) set of tests on the other
party’s dataset. However, there are also specialized IZK pro-
tocols that focus on the functionality of proving statements
instead of a general two-party computation. In §4.4.1, we
provide a comparison between HOLMES and other base-
lines. In HOLMES, we use QuickSilver [24] as the under-
lying IZK protocol. We show that the baseline of pairwise
generic 2PC protocols, e.g., using SCALE-MAMBA, is up
to 46× slower. Additionally, we investigate baselines based
on non-interactive ZK (NIZK) protocols, e.g., Spartan [25],
which may asymptotically reduce the communication of each
party to O(C), as in this case each party only needs to produce
a single proof for the tests on its individual dataset and broad-
cast it to the other t− 1 parties. However, NIZK protocols
typically suffer from large proving times. Indeed, we find that
producing an NIZK proof (i.e., using Spartan) is slower than
performing t−1 IZK protocols (i.e., using QuickSilver) for
various dataset sizes and up to t = 10 parties. Since we are
interested in the most efficient solution, including the compu-
tational overhead of each party, we use QuickSilver. We leave
as an open problem to find an NIZK that is concretely more
efficient in our setting.

1.2 Testing multidimensional properties
We now turn our focus to the task of efficiently testing mul-
tidimensional properties of distributions. For example, in a
financial dataset, instead of focusing on a single attribute (i.e.,
one dimension) such as “debt”, we want to understand the
properties of the joint distribution of several attributes (i.e.,
multiple dimensions), for example gender, age, race, income
level, and debt. A property we might want to ensure is that the
histogram of these attributes is not far from a balanced distri-
bution, in which different genders, ages, races, and income
levels are fairly represented.

In plaintext systems, this can be done by directly computing
the histogram; namely, putting the data into buckets, where
each bucket represents a different combination of values for
the attributes gender, age, race, income level, and debt. Then,
the distribution test is done by performing a Pearson’s χ2-test.
In secure computation, the bucketing must be oblivious, in
that it cannot reveal to which bucket a sample belongs. This
either requires a linear scan of the buckets for each sample, as
shown in Fig. 1, or oblivious RAM (ORAM) [26–33] in MPC,
which theoretically has better complexity but in practice is
concretely expensive.

The curse of oblivious bucketing. As shown in Fig. 1, in
linear scan besides the real update (indicated by a black line),
there are many dummy updates (indicated by red lines). In
particular, the total number of updates is equal to the number
of buckets. If the i-th attribute takes Di distinct values, then the
number of buckets is ∏i Di = D1 ·D2 · ... ·Dd, which quickly
becomes prohibitively large. Therefore, the cost of oblivious
bucketing for N data points is O(N ·∏i Di). Our experiments

…

𝐷!×𝐷" …×𝐷d buckets

Baseline:
Oblivious bucketing

HOLMES: 
ZK-friendly sketching

Figure 1: Methods for multidimensional distribution testing.

in §4 show that such oblivious bucketing for 5 attributes with
values ranging from 1 to 10 takes 105 seconds.

Streaming and sketching to the rescue. We avoid oblivious
bucketing by utilizing two concepts from algorithm design:
streaming and sketching.

• Streaming: an algorithm that takes as input a sequence and
only needs access to limited memory.

• Sketching: an algorithm that (approximately) performs the
computation, using a compressed representation of the data.

We present a sketching algorithm that, given pseudoran-
domness, compresses the histogram of a dataset while preserv-
ing the necessary information for applying Pearson’s χ2-test.
We also show how to compute this compressed representa-
tion in a streaming fashion, i.e., by accessing sequentially
each entry in the dataset. This algorithm applies a random
linear projection that approximately preserves the `2-norm,
according to the Johnson-Lindenstrauss lemma [34].

A challenge that arises in our algorithm is how to efficiently
obtain pseudorandomness in IZK, as running classical pseudo-
random functions, such as SHA-256, is impractical. Instead,
we strive to find a tailored way to obtain pseudorandomness
for our algorithm. We call this construction “ZK-friendly
sketching”.

Finding pseudorandomness for random projection. Our
random projection requires r pseudorandom maps with an
one-bit output b ∈ {−1,1}. Although we can use any pseu-
dorandom function and extract one bit from it through bit
decomposition, we find that many ZK-friendly hash functions
[35, 36] are still costly. Instead, we discover that Legendre
PRF, which has been studied recently [37–40] and is conjec-
tured to be a universal one-way hash function (UOWHF) [41,
42] with a one-bit extractor, is a natural fit, and is extremely
cheap–it only requires 8 input or multiplication gates in IZK.

With these techniques, HOLMES’s multidimensional dis-
tribution testing only requires O(r ·N) computation, where
r is the output size of the random linear projection. In our
experiments, we show that this solution is up to 104× faster
compared to linear scan.
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Figure 2: System model of HOLMES.

1.3 Summary of contributions
In summary, HOLMES’s contributions are:
• a new hybrid protocol that integrates MPC, IZK, and

a lightweight consistency check for distribution testing,
which has lower complexity and is concretely much more
efficient (at least 10× in our experiments) compared to
three non-trivial baselines;

• a new efficient multidimensional distribution testing proce-
dure via ZK-friendly sketching, which has lower complex-
ity and is concretely much more efficient (up to 104× in
our experiment) compared to the naive multidimensional
distribution testing.

Using HOLMES, we create a library of well-known statistical
tests, such as z-test, t-test, F-test, and χ2-test. We also perform
extensive experimental evaluation of HOLMES, including
evaluation using real-world datasets from bank marketing [43,
44], healthcare [45, 46], and online auctions [47].

2 Protocol Overview

We assume that t parties want to participate in secure col-
laborative learning based on a t-party MPC protocol (e.g.,
SCALE-MAMBA). In HOLMES, the parties perform two
types of computation: MPC and IZK, as shown in Fig. 2.
During the distribution testing, parties participate in a t-party
MPC, which is also used for the collaborative learning, and
run IZK in a pairwise and bidirectional manner, where each
party communicates with every other party, and both parties
take turns as a prover and verifier to perform distribution tests
on each other’s individual dataset. We require that MPC and
IZK allow parties to load their datasets before learning the
distribution tests, which prevents adaptively changing their
input. We formalize this property in §3.1.

Tests. A distribution test is a predicate over an individual
or joint (i.e., from multiple parties) dataset. Examples in-
clude well-known statistical tests, such as mean equality z-
test (when the variance of the dataset is known) and t-test
(when the variance is unknown), variance equality F-test, and
Pearson’s χ2-test. These tests check a property between two
populations, or between a population and a public distribution.

Each population can be an individual or a joint dataset and can
contain data points with multiple attributes (e.g., age, gender,
income, etc.). HOLMES implements these tests and various
distribution test gadgets.

Workflow. HOLMES runs as a subroutine in the early stages
of secure collaborative learning when all parties have loaded
their datasets in MPC. HOLMES is invoked to perform dis-
tribution tests before MPC starts to run the actual training
algorithm, as follows.
1. Input loading in IZK: Each party loads its dataset in IZK.

This prevents the party from changing the input adaptively
after seeing the revealed distribution tests.

2. Revealing the distribution tests: The parties reveal the
distribution tests they want to perform.

3. Consistency check: Parties perform a consistency check
(e.g., as in §3.1) to verify that the input loaded in IZK and
MPC is the same. Parties reject if the check fails.

4. IZK verification: Each pair of parties acts as the prover
and the verifier in IZK. The prover proves the correct
calculation of some specified statistics about their dataset.
The verifier verifies the proof and rejects if IZK fails.

5. MPC finishing touches: For distribution tests over joint
datasets (e.g., z, t, F-tests), parties decide whether the data
passes the test in MPC. Here, MPC only performs a small
computation over statistics verified in IZK; thus we call it
the “finishing touches”.

If all parties accept the distribution tests in HOLMES, the
secure collaborative learning continues.

2.1 Protocol Components
HOLMES combines three underlying protocols:
1. an MPC protocol Πmpc, which performs computations in-

volving two or more parties;
2. an IZK protocol Πizk, which verifies computation per-

formed by a single party;
3. a consistency check (CC) protocol Πcc (§3.1), which en-

sures that a party loads the same inputs in the MPC and
IZK.
The underlying MPC and IZK protocols have to addition-

ally satisfy the following properties.

Definition 1. An MPC protocol Π enables input-loading if
in the beginning of the protocol each party Pi with input
xi, without access to the function F , computes and sends
loadmpc( j,xi) to party P j. Then, the parties receive F and
proceed to the protocol with inputs loadmpc( j,xi), without
further access to the inputs xi.

Definition 2. An IZK protocol Π for the language L = {x :
∃w s.t. (w,x) ∈R} enables input-loading if in the beginning
of the protocol the prover sends l := loadizk(w), where loadizk
is a cryptographic commitment and during the protocol the
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prover proves that x ∈ L and l is a commitment to w, i.e.,
runs an IZK for the language L′ = {(x, l) : ∃w s.t. (w,x) ∈
R and l = Com(w)}.

We remark that the majority of MPC and IZK protocols
are input-loading. For MPC, loadmpc typically corresponds to
secret sharing (e.g. [23, 48, 49]).

The protocol of HOLMES is described in Fig. 3. We define
the security of HOLMES in the real/ideal-world paradigm
using the standard definition for (standalone) malicious secu-
rity [50] . In malicious security, up to t−1 of the parties can
collude (statically) and arbitrarily deviate from the protocol.
The ideal functionality FHOLMES (Fig. 3) takes as input the list
of distribution tests and the datasets; it outputs whether the
datasets pass the tests or fail. Finally, in the full version of
the paper [51] we provide the security proof of the following
theorem.

Theorem 1. If Πmpc is a secure MPC protocol that enables
input-loading, Πizk is an IZK protocol that enables input-
loading, and Πcc is a consistency check protocol (see full
version [51] for the formal definition), then HOLMES securely
computes FHOLMES.

Choice of protocols. HOLMES can be instantiated with a
variety of MPC and IZK protocols, as long as they satisfy Def-
inition 1 and Definition 2. In §3.1, we present a lightweight
consistency check for MPC and IZK with additional, yet typi-
cal, properties, and in §4, we discuss how different protocol
choices affect the efficiency of HOLMES.
Leakage from distribution tests. Note that any distribution
testing leaks one-bit information – whether the test passed or
failed. Hence, it is important that a party does not participate
in distribution tests that may leak sensitive information. We
leave as an open direction quantifying the privacy loss due to
distribution tests, as discussed in §6.
Input-loading as a safeguard. Informally, the input-loading
phase impedes parties from trying to tune their input data to
pass the distribution tests. Even if parties abort after learn-
ing the distribution tests (e.g., pretending that the network
is down) and request to redo the distribution testing, input-
loading enforces that parties in the second execution must use
the initial data.

3 Our Design

3.1 Consistency Check
HOLMES ensures that data used in MPC and IZK is the
same via a consistency check, which is a protocol between
a prover and t−1 verifiers. We define this functionality for-
mally in the full version of the paper [51]. We now describe
our lightweight protocol for specific types of MPC and IZK,
which we use in our implementation of HOLMES. The proof
of Lemma 1 appears in the full version of the paper [51].

Lemma 1. The construction below is a consistency check.

Construction. Let Πmpc be a secure MPC protocol over
field Fp that enables input-loading through additive se-
cret sharing; namely, for an input x = (x1, . . . ,xN) ∈ FN

p ,
(loadmpc( j,x)) j∈[t] = (share j(x1), . . . ,share j(xN)) j∈[t].

Let Πizk be an IZK protocol over field Fp that enables
input-loading through homomorphic commitments; namely
for an input x = (x1, . . . ,xN) ∈ FN

p , (loadizk( j,x)) j∈[t] =
(Comck j(x1), . . . ,Comck j(xN)) j∈[t]. The protocol Πcc works
as follows.
1. Prover P samples a random number r←$Fp and sends

(loadmpc( j,r), loadizk( j,r)) := (share j(r),Comck j(r)) to
each verifier V j.

2. Parties run a coin toss protocol [52] to obtain a random
challenge β←$Fp.

3. Parties run an MPC protocol to compute
ρ := r + ∑

N
k=1 xk · βk. Note that each V j knows

(share j(x1), . . . ,share j(xN),share j(r)).
4. Prover P runs an IZK proof with each verifier V j for prov-

ing that Comck j(ρ)−Comck j(r)−∑
N
k=1Comck j(xk) ·βk =

Comck j(0).
5. Verifiers accept if all IZK proofs are valid. Otherwise, they

reject.

Cost analysis. Computing ρ and Comck j(ρ)−Comck j(r)−
∑

N
k=1Comck j(xk) · βk requires O(N) local operations since

the MPC uses additive secret sharing and the commitment
scheme is homomorphic. Hence, the main cost is due to the
coin toss protocol and the IZK for proving that a value is
a commitment to 0. Both of these functionalities are very
efficient in state-of-the-art systems.

3.2 One-Dimensional Distribution Tests
We now provide more details about how IZK and MPC
work together in each distribution test. We describe one-
dimensional tests in this section, and present multidimen-
sional tests in §3.3. We split the distribution tests into two
steps: (1) compute statistical properties of an individual
dataset, which is done in IZK, as described in §3.2.1; and
(2) perform distribution tests using the computed statistical
properties. If the distribution test is over an individual dataset,
the second step is performed in IZK, but if it is over a joint
dataset, the second step is done in MPC, as described in §3.2.2.
We discuss the cost of these distribution tests in the full ver-
sion of the paper [51].

3.2.1 IZK: Verifying basic statistics

HOLMES verifies basic statistical properties in IZK over
an individual dataset: range, histogram, mean, variance, and
trimmed mean.

Range. To prove that a ≤ x ≤ b where x ∈ Fp, the prover
P shows that x−a≥ 0 and b− x ≥ 0. We describe in detail
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HOLMES protocol

For t parties P1, · · · ,Pt with inputs (x1, . . . ,xt) respectively, the protocol proceeds as follows:

1. MPC input-loading: Each party Pi sends `mpc[i, j] := loadmpc( j,xi) to party P j for j ∈ [t]\{i}.
2. IZK input-loading: Each party Pi initiates t−1 IZK protocols as a prover P with w = x with parties V = P j for j ∈ [t]\{i}. Pi sends

`izk[i, j] := loadizk( j,xi) to party P j for j ∈ [t]\{i}, where loadizk( j, ·) is the loadizk function of the IZK with P = Pi and V = P j.

3. Distribution tests: Each party Pi sends a set of distribution tests testsi to each party P j for j ∈ [t]\{i}.
4. Consistency check: Each party Pi performs Πcc with the other t− 1 parties to show that `mpc[i, j] = loadmpc( j,xi) and `izk[i, j] =

loadizk( j,xi).

5. IZK protocol: Each party Pi performs Πizk with P j for each test in tests j as described in §3.2 and §3.3.

6. MPC protocol: Parties perform Πmpc for each test in testsi for i ∈ [t] as described in §3.2 and §3.3. For each test, the parties either
output pass or fail.

Ideal functionality FHOLMESFHOLMESFHOLMES

For t parties P1, · · · ,Pt and a simulator Sim, FHOLMES proceeds as follows: Upon receiving a message (Pi,xi,testsi) from each of the t
parties (or from Sim if that party is corrupted),

1. Abort: FHOLMES awaits a message deliver or abort from Sim to decide whether the computation should move forward. FHOLMES proceeds
to the next step if the message is deliver. Otherwise, FHOLMES sends abort to each Pi and Sim, and halts.

2. Distribution tests: FHOLMES runs the distribution tests specified in (tests1, . . . ,testst) with respect to the inputs (x1, . . . ,xt). For each
distribution test, FHOLMES sends either pass or fail to each Pi and Sim, and halts.

Figure 3: HOLMES protocol and ideal functionality FHOLMES.

the range check for a single element x ∈ Fp in the full version
of the paper [51]. The gadget range(〈S〉,attr, [a,b]) performs
a range check on each data point of the population S with
respect to attribute attr.
Histogram. The histogram of a population S for an attribute
attr with values in Fp counts the data points in a set of non-
overlapping buckets. Each bucket might correspond to a single
value or a range [a,b]. For instance, for the attribute “marital
status”, we have single-value buckets (e.g., single, married,
etc.), whereas for the attribute “age” we might be interested in
range-buckets (e.g., 0-10, 11-20, etc.). In our setting, all values
are elements in Fp, so a single value a can be described by the
range [a,a]. Hence, we focus on the case of range-buckets.

The prover P first computes a one-hot encoding (OHE)
−→
σ = (σk)

D
k=1 = (0,0, ...,1, ...,0,0) for each entry such that

if σk is 1, the entry belongs to the k-th bucket. In the full
version of the paper [51], we describe how the prover P
proves that −→σ is a valid one-hot encoding and how to per-
form the histogram check. We also discuss the extension
to the multidimensional case, where each data point has
d attributes (i.e., is in Fd

p) and each bucket corresponds
to d ranges ([ai,bi])

d
i=1, one for each attribute. The gadget

histogram(〈S〉,(attr1, ...,attrd),(b1, . . . ,bD)) →
−−−→
count per-

forms a histogram check on attributes attr1, ...,attrd for the
population S with respect to buckets b1, . . . ,bD.
Mean and variance. Mean and variance are essential in
many tests, such as z-tests and t-tests. To prove that x is

the mean of values (x j)
N
j=1, the prover P shows that N · x ≈

∑
N
j=1 x j. In practice, we want to keep a few decimal places

for x (e.g., x = 12.34 with two decimal places). This is done
by defining x′ = 1234, a fixed-point representation of x, and
asking P to show that N ·x′≤ 100 ·∑N

j=1 x j <N ·(x′+1) using
the range algorithm. To prove the correct calculation of the
variance s2, P first proves the calculation of the mean x and
of the mean of the square of each value, y. The variance can
be verified by checking that s2 ≈ N

N−1 (y− x2).3 We provide
the two gadgets mean(〈S〉,attr)→ x and variance(〈S〉,attr)
→ s2.

Trimmed mean. Trimmed mean is similar to mean, but
it only considers entries with values within a certain range
[0,θ]. This statistic is useful as it can remove extreme val-
ues before computing the mean. This check combines range
checks and a mean check as shown in the full version of the
paper. HOLMES implements trimmed mean in the gadget
trimmedMean(〈S〉,attr,θ)→ x̃.

3.2.2 MPC: Finishing touches

Distribution tests use the basic statistics of §3.2.1. If the tests
involve an individual dataset, they are computed in IZK. If
they involve dataset from multiple parties, the final computa-
tion is done in MPC. Since basic statistics are verified in IZK,

3The term N/(N−1) corrects the bias of the variance because x is com-
puted from the data [53].
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only the “finishing touches” (i.e., a small computation) are
performed in MPC. We discuss how to perform well-known
statistical tests: z-test, t-test, F-test, and Pearson’s χ2-test. Be-
low we denote by yellow the basic statistics that depend on
private datasets and have been verified in IZK.

zzz-test. This distribution test checks whether the means of two
populations S1 and S2 (of size N1, N2) for the attribute attr
are equal, assuming known variances. The parties provide the
means x1 and x2, and the test passes if:

(x1− x2) /
√

σ2
1/N1 +σ2

2/N2
?
≤ Tα,N1,N2 ,

where Tα,N1,N2 is the critical value determined by the signifi-
cance level α, N1, and N2 and is computed outside of MPC.

ttt-test. This distribution test checks whether the means of two
populations S1 and S2 for the attribute attr are equal, when
the variances are not known. Parties provide the means x1 and
x2, and the variances s2

1 and s2
2. The test passes if:

x1− x2 /

√
s2

1 /N1 + s2
2 /N2

?
≤ Tα,df

where Tα,df is the critical value determined by the significance
level α and the degrees of freedom, which are defined as
follows.

df =

(
s2

1 /N1 + s2
2 /N2

)2

(
s2

1 /N1

)2
/(N1−1)+

(
s2

2 /N2

)2
/(N2−1)

,

The value Tα,df is computed in MPC using a lookup table for
df. In our implementation, the lookup table for df ranges from
1 to 100. When df > 100, Tα,df is approximated by 1.645.

FFF-test. This distribution test checks whether the variances of
populations S1 and S2 for the attribute attr are equal. Parties
provide the variance s2

1 and s2
2, and the test passes if:

s2
1 / s2

2

?
≤ Tα,N1,N2

where Tα,N1,N2 is determined by the significance level α, N1,
and N2 and is computed outside of MPC.

(One-dimensional) Pearson’s χχχ222-test. This distribution test
checks whether the attribute attr of population S (which can
be a joint dataset) follows a public distribution. Parties provide
the histogram −−−→count of their joint dataset over the attribute
attr which has D buckets, and the test passes if:

∑
D
j=1( count[ j] −Np j)

2/(Np j)
?
≤ Tα,D,

where N is the number of entries and p j is the probability mass
for the j-th bucket of the public distribution−→p = (p1, . . . ,pD).
The critical value Tα,D is determined by the significance level
α and D and is computed outside of MPC.

3.2.3 Subsampling with malicious security

HOLMES allows distribution tests to be performed on a ran-
dom subset of the dataset, which is decided after the data has
been loaded to IZK and MPC. The random subset is chosen
using a pseudorandom function, with a seed that comes from
a coin toss protocol among the t parties [52]. Though this
might sacrifice accuracy, it boosts efficiency and allows more
tests to be performed with a given computational budget. We
leave as an open direction identifying applications where the
subsampling is beneficial, as discussed in §6.

3.3 Multidimensional Distribution Tests
We now discuss the setting where we want to test the distri-
bution over multiple attributes (i.e., dimensions). Particularly,
we want to test if the distribution of a dataset is close to a pub-
lic distribution (e.g., a balanced distribution where different
groups are represented appropriately) using Pearson’s χ2-test.
Note that in this case, the number of buckets is ∏

d
j=1 Di where

Di is the number of buckets of the i-th attribute.
Baseline: multidimensional bucketing. We can naturally
extend the one-dimensional Pearson’s χ2-test by creating
multidimensional buckets. In particular, given the histogram−−−→
count over the attributes (attr1, · · · ,attrd), the test checks if:

∑
D1·D2·...·Dd
j=1 ( count[ j] −Np j)

2/(Np j)
?
≤ Tα,D,

where N is size of population S, D j is the number of distinct
buckets of the j-th attribute attr j, D = ∏

d
i=1 Di, and p j is the

probability mass for the j-th bucket of the public distribution
−→p = (p1, . . . ,pD). The critical value Tα,D is determined out-
side of MPC by the significance level α and the number of
buckets D. We illustrate this test in Fig. 4.
Cost analysis of the baseline. This baseline becomes im-
practical when the number of buckets D is high.
• IZK cost: A multidimensional histogram with D buckets is

computed obliviously . This requires an arithmetic circuit
of size O(N · (D+d`)), where each bucket contains ranges
of size at most 2`, and becomes impractical when D is large.

• MPC cost: The MPC performs the final computation for
Pearson’s χ2-test, which involves the histogram −−−→count of
length D, which has been verified in IZK. The cost in
MPC is O(D ·cost÷) operations and one comparison, where
cost÷ is the cost of division in MPC.

The linear growth with respect to D is discouraging. In our ex-
periments in §4.4.3, performing distribution testing over four
attributes—age, jobs, marital status, and education—results
in D = 37,500 and takes 105 seconds to compute.
New test: unnormalized χ2χ2

χ2-test. HOLMES uses another
test for goodness-of-fit, called unnormalized χ2-test inspired
by the work of Arias-Castro, Pelletier, and Saligrama [54].
This test has a more complicated critical value, but it requires
no divisions. The test checks if:
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Figure 4: Two methods of multidimensional distribution testing.

∑
D1·D2·...·Dd
j=1 ( count[ j] −Np j)

2
?
≤ Tα,N,p1,p2,...,pD ,

where the critical value Tα,N,p1,p2,...,pD is computed from a
variant of the generalized χ2 distribution with parameters (p1,
. . . ,pD) [55–57]. We provide the details of the statistical test
in the full version of the paper [51]. Since the parameters are
public, Tα,N,p1,p2,...,pD is computed outside MPC.
Workflow in HOLMES. Naively computing the unnormal-
ized χ2-test has the same IZK cost as the baseline, and hence
it is still prohibitively expensive for large D. We use sketch-
ing and pseudorandom functions (PRFs) to reduce this cost.
The overall workflow for computing the unnormalized χ2-
test is also illustrated in Fig. 4. We show why our approach
approximates well the unnormalized χ2-test in §3.3.1.
• PRF keys: After the input-loading in IZK and MPC, parties

run a coin toss protocol to sample r keys for the Legendre
PRF, denoted by k1,k2, . . . ,kr. These PRF keys will be used
to produce a pseudorandom matrix consisting of values in
{−1,1} for the random linear projection. We expand upon
our sketching using random linear projections in §3.3.1.
Details about the Legendre PRF can be found in the full
version of the paper [51].

• IZK sketching: Each party Pi whose dataset is involved in
the computation proves the following in IZK:
1. computation of the linear index o (i.e., the index of value

1 in the one-hot encoding) of each data point for the
attributes (attr1, . . . ,attrd);

2. computation of PRFk j(o) for each j ∈ [r] and the linear
index o of each data point. For the k-th data point, this
result in a r-vector~uk consisting of elements in {−1,1};

3. computation of −−→sumi as ∑
Ni
k=1~uk, where Ni is the dataset

size of Pi.
• MPC finishing touches: Similarly to the other tests, the

computation in MPC is lightweight:
1. compute −−→sum= ∑

t
i=1
−−→sumi, where t is the number of

parties whose dataset is involved in the test;

2. check if ∑
r
v=1(sum[v]−qv)

2
?
≤ r ·Tα,N,p1,p2,...,pD .

The vector −→q is computed outside of MPC as follows: Let
R ∈ Fr×D

p be a matrix such that R[i][ j] = PRFki( j), then

−→q = N ·R ·−→p .

Cost analysis of HOLMES’s approach. The IZK requires
an arithmetic circuit of size O(N ·r ·costPRF) for a joint dataset
of size N, where costPRF is the cost of a PRF evaluation in
IZK. The cost in MPC is O(t+r) operations in Fp. The cost of
computing −→q is O(D · r · costPRF) local operations. However,
this computation is public, so its cost is negligible. In our
experiments §4.4.2, HOLMES’s approach can be 104 times
faster than the baseline.

3.3.1 Why sketching works?

We now explain why HOLMES’s approach approximates well
the unnormalized χ2-test.
Approximating the unnormalized χ2χ2

χ2-test. Observe that
the unnormalized χ2-test compares the Euclidean distance of−−−→
count and N−→p , dist(−−−→count,N−→p ), to the value Tα,N,p1,p2,...,pD .
From well-known results in statistics [34, 58] which we re-
view in the full version of the paper [51], the Euclidean dis-
tance of two D-dimensional vectors ~x and ~y, dist(~x,~y), can
be approximated by dist(R ·~x,R ·~y)/r where R ·~x and R is a
r×D matrix with entries (pseudo-)randomly chosen from
{−1,1} and r is sufficiently large, but independent of D.
Hence, for suitable r

dist(
−−−→
count,N−→p )≈ dist(R ·−−−→count,−→q )/r .

Proving that−−→sum= R ·−−−→count−−→sum= R ·−−−→count−−→sum= R ·−−−→count. The histogram −−−→count stores
the number of elements in each bucket. Hence, if −→σk is the
one-hot encoding of the k-th value in the dataset, then

−−−→
count= ∑

N
k=1
−→
σk .

Using this equality, it follows that

R ·−−−→count= R ·∑N
k=1
−→
σk = ∑

N
k=1 R ·−→σk .

Since −→σk is a one-hot encoding, it contains a single element
of value 1. Let ok be the index of the element of value 1; we
call ok the linear index of −→σk. Then,

R ·−→σk = R[ok],
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where R[ok] is the ok-th column of the matrix R. In our sketch-
ing, the matrix R is pseudorandom, and each element R[i][ j]
is equal to PRFki( j), i.e., the evaluation on input j of a pseu-
dorandom function with key ki. Hence,

R[ok] = (PRFk1(ok), . . . ,PRFkr(ok)) ,

which is by definition equal to ~uk. Overall, since −−→sum =

∑
N
k=1~uk, it holds that

−−→sum= R ·−−−→count .

Choice of parameter rrr. In our implementation, we choose
r = 200, which empirically results in 1.1 approximation factor.
We discuss this choice in the full version of the paper [51].

3.3.2 Choosing an IZK-friendly PRF

Why use a PRF? The naive solution for our sketching is to
sample R with random elements, without the special structure
related to PRF evaluations. In this case, for the k-th data
point, party Pi provides the computation R[ok] obliviously,
i.e., performs a lookup on the D columns of the random matrix
R. Using a linear scan, this requires an arithmetic circuit of
size O(N · r ·D) in IZK. In our IZK sketching, the matrix R
is produced from pseudorandom functions and this allows
computing R[ok] directly, without a linear scan. Hence, for a
dataset to size N,Pi produces a proof that−−→sumi was computed
correctly with N ·r PRF evaluations. When the PRF evaluation
cost in IZK is small, our solution is more efficient.

Our choice: Legendre PRF. A concern with PRF evalua-
tions in IZK is that the cost for common PRFs (e.g., SHA-256)
is prohibitive. Thus, new ZK-friendly PRFs have been devel-
oped, e.g., Rescue [36] and Poseidon [35]. In our ZK-friendly
sketching, we identify Legendre PRF [37–40] as the most suit-
able choice. Recall that in the sketching algorithm, the output
of each PRF evaluation is an element in {−1,1}. Legendre
PRF, whose output is the Legendre symbol of a value modulo
a prime, already has this property. In contrast, for other PRFs
we need to extract these bits from a longer output, which in-
curs extra cost. We provide details about the Legendre PRF
and compare its cost with other PRFs in the full version of
the paper.

4 Implementation and Evaluation

In this section, we present and discuss the evaluation results
of HOLMES, which answer the following questions:
• How well do HOLMES’s distribution tests hold up against

corruptions to both simulated and real-world data? (§4.3)
• How does HOLMES compare to the baselines, as well as

alternative efficient system implementations? (§4.4)
• What is the overhead of HOLMES on real-world datasets?

What contributes to this overhead? (§4.4.3)

4.1 Setup
We run our experiments on AWS c5.9xlarge instances, each
with 36 cores and 72 GB memory. Each party has its own
c5.9xlarge instance. We limit each instance’s bandwidth to
2 Gbps and add a round-trip latency of 20 ms. We standardize
data inputs across all protocols as field elements in Fp where
p = 262−216 +1. Text labels of an attribute are mapped and
converted to field elements in Fp. A d-dimensional input is
formed as a vector of d field elements in Fp, where the k-th
vector entry represents the range bucket that the data point
falls into for the k-th attribute. Decimals arising from divisions
are stored in fixed-point representation (§3.2.1), where we
multiply the operand by 102 to achieve a precision up to two
decimal places by default. This fixed-point accuracy can be
easily changed anytime by the parties for their use case.

General parameters for all setups include the statistical
security parameter λ = 30, computational security parameter
κ = 128, the input size, and the fixed-point accuracy.

HOLMES and the baselines are implemented using state-
of-the-art cryptographic libraries, as follows.

HOLMES. We use QuickSilver [24] due to the lower prover
overhead for IZK. The version of QuickSilver we use has
integrated the latest techniques in Silver [59]. The number of
concurrent threads run in a single prover-verifier protocol is
defaulted to 32 to maximize multithreading. The input form
that we use is the IntFp datatype, which represents a field
element in Fp.

We use SCALE-MAMBA [23] and MP-SPDZ [22, 60] for
MPC, where the Low Gear protocol in MP-SPDZ is used for
the offline phase of MPC and SCALE-MAMBA is used for
the online phase. They are the state-of-the-art MPC protocols
for arithmetic computations over large prime fields with a
dishonest and malicious majority. For MP-SPDZ and SCALE-
MAMBA, we use the Full Threshold Linear Secret Sharing
Scheme with prime set to p = 262−216 +1. Furthermore, we
compile our circuits with the sint bit length limited to 32
bits, statistical security parameter λ = 30, and prime modulus
size limited to 64 bits.

We compare HOLMES with three baselines–generic MPC,
pairwise generic 2PC, NIZK/SNARK–to quantify the effi-
ciency advantages. We now describe the setup of these sys-
tems.

Baseline 1: Generic MPC. The baseline runs HOLMES’s
MPC setup in entirety, using SCALE-MAMBA and MP-
SPDZ. The data are only loaded once, and since there is no
other auxiliary protocol there is no need for the consistency
check.

Baseline 2: Pairwise 2PC. Each pair of parties runs a
2PC with the same setup as the generic MPC baseline us-
ing SCALE-MAMBA and MP-SPDZ. We instantiate a single
party to host and execute 2PC protocols to all other parties on
concurrent threads. Each individual 2PC protocol is run on a
separate network port.
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Baseline 3: NIZK & SNARK. We use a state-of-the-art
NIZK and SNARK system, Spartan [25], with low communi-
cation overhead and small verification time. To utilize data-
parallel circuit uniformity in Spartan, we copy the subcir-
cuits of the distribution tests for each data entry. Further-
more, we parallelize verifications of NIZK/SNARK proofs on
concurrent threads. We adapt the 62-bit field with modulus
p = 262−216 +1.

4.2 Artifacts
We released HOLMES in an open-sourced anonymous repos-
itory in GitHub. The implementation consists of three parts:
• Compute engine: The original QuickSilver is not compat-

ible with many efficient MPC protocols because it works
on a special prime field.4 We perform an extensive search
for a prime with low Hamming weight that is compatible
with such MPC preprocessing protocols, and we settle to
p = 262−216 +1. We contribute a fork of EMP-ZK, called
EMP-ZK-HOLMES5, which includes a highly tuned, spe-
cialized implementation for modular reduction and learning-
parity-with-noise (LPN) map for this prime.

• Distribution tests: We implement distribution tests for
range, histogram, mean, variance, trimmed mean, z-test, t-
test, F-test, and χ2-test, including both oblivious bucketing
and our ZK-friendly sketching. The codebase also includes
integration tests, unit tests, and individual benchmarks.6

• Examples and benchmarks: We assemble distribution
tests for the baselines and three real-world datasets (de-
scribed in §4.4.3) and benchmark their performance. We
also include accuracy evaluations for HOLMES’ statistical
tests against corruptions to simulated and real-world data.
Finally, we provide a QuickSilver-to-SCALE-MAMBA
source-to-source compiler and an online-only SCALE-
MAMBA for ease of benchmarking with the baselines.

4.3 Accuracy evaluation
We show how HOLMES performs in face of specific corrup-
tion scenarios. Our goal is to better understand the fraction
of data that needs to be corrupted for a distribution test to
fail. Our statistical testing suite for the accuracy evaluation in-
cludes the z-test, t-test, F-test, naive normalized χ2-test, naive
unnormalized χ2-test, and HOLMES’s ZK-friendly sketching
χ2-test. We evaluate the accuracy on both simulated and real
datasets.

General setup. We start with a dataset of positive integer val-
ues. We randomly divide the dataset into two equal parts; one

4QuickSilver is restricted to a Mersenne prime p = 261−1. However, this
prime is not compatible with MPC preprocessing protocols based on ring
learning-with-error (LWE) and would force the MPC to choose preprocessing
protocols based on oblivious transfer, which are slower.

5https://github.com/holmes-inputcheck/emp-zk
6https://github.com/holmes-inputcheck/holmes-library
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Figure 5: Accuracy of distribution tests after corrupting the dataset

part—which we call the "corrupted dataset"—is the dataset
controlled by the adversary, and the other is an honest dataset.
Our corruption model is as follows: at each iteration, we ran-
domly select a data point from the corrupted dataset; we then
modify, depending on the test, its value by 1, assuming that
it remains within the acceptable bounds. For t and z-tests,
we add 1 to the value, for F and χ2-test we choose to either
increase or decrease by 1. Note that this is a minimal amount
of corruption per iteration. For instance, for the χ2-tests, this
corresponds to moving the data point to the next or previous
bucket. The two populations in each test refer to the corrupted
and the honest dataset 7.

We compute the test statistic (i.e., the value before the
final comparison with Tα) via the formulas of §3.2.2 and
§3.3. We then calculate the p-value using inverse cumulative
probability functions8. Typically, a test fails if the p-value
is less than 0.05, which corresponds to a significance level
α = 0.95.

Simulated dataset. We simulate a dataset of randomly
sampled values from N (µ,σ2), the normal distribution with
mean µ and variance σ2. We sample 40000 entries with
µ = 17 and σ = 10 to prevent field integer overflow and un-
derflow while ensuring a diverse set of values in the dataset.
For our χ2-tests, we establish a histogram with 35 buckets
([0,1], [1,2], . . . , [35,∞)) to avoid excessive outliers at the
boundary buckets (i.e. [0,1] and [35,∞)), and ensure there
are no empty buckets. For the other tests, we use the param-
eters µ = 17 and σ = 10 and we calculate x2 and s2

2 using
the honest dataset. We graph the statistical p-values after
corruptions in Fig. 5(a).

Real dataset. We use a bank marketing dataset [43, 44],
which we describe further and time in our evaluation of
HOLMES on real-world datasets in §4.4.3. We perform the
z-test, t-test, and F-test over the telemarketing call duration

7In χ2-test, where there is a single population, we use the entire dataset
to compute the public distribution −→p and we ignore the honest dataset.

8For the unnormalized χ2-test with or without ZK-friendly sketching, we
compute a lookup table for the inverse cumulative probability functions as
outlined in the full version of the paper [51]. For the lookup table, we use
5000 random samples.
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attribute. We perform the χ2-tests (normalized, unnormalized
with and without our sketching) over the attributes age, job,
educational level, and marital status. We graph the statistical
p-values after corruptions in Fig. 5(b).

Results. For the simulated dataset, the z-test and the t-test,
both of which test the mean between two populations, fail at
around 10% corruptions and they follow the same trend as a
function of the fraction of corruptions. The normalized, unnor-
malized, and HOLMES χ2-tests follow the same trend, which
confirms the accuracy of HOLMES χ2-test. The χ2-tests fail
when approximately 5% of the dataset is corrupted, much
faster than all other statistical tests. Finally, the F-test is the
most robust to corruptions and fails at about 13% corruptions.

For the marketing dataset, the z-test and the t-test have the
same trend. However, now there might be an initial increase
in p-values, depending on the random split of the dataset
into honest and corrupted, since we use the honest dataset to
compute the underlying properties. For instance, if the honest
dataset has initially larger mean than the corrupted, increasing
the values of data points initially leads to an increase of the
p-value. Hence, the p-values drop at an offsetted percentage
of corrupted data entries for the z-test, t-test, and F-test. Simi-
larly to the simulated dataset, the χ2-tests drop off at the same
rate and lead to test failures at approximately the same point.

4.4 Evaluation discussion
We evaluate the overheads for our distribution tests. Our re-
sults are as follows: the histogram in HOLMES is about
5–11× more efficient than generic MPC; the mean and vari-
ance are 2–3× more efficient; and the trimmed mean is about
5–10× more efficient.

Next, in §4.4.1 we compare the overhead of range checks
and ZK-friendly sketching with alternative applicable sys-
tems; these are the two most expensive gadgets supported in
HOLMES. Range check is the main source of overhead for
many HOLMES gadgets (§3.2.1, etc.), while ZK-friendly
sketching is the bottleneck for HOLMES’s χ2-test. Later
on, in §4.4.2 we depict the drastic overhead reduction of
HOLMES’s χ2-test over the naive χ2-test. Finally, in §4.4.3
we show that HOLMES performs efficiently in practical set-
tings compared to our generic MPC baseline by modeling
distribution test workflows on real-world datasets.

4.4.1 Comparison of HOLMES with the Baselines

We evaluate range checks and ZK-friendly sketching for num-
ber of parties t = 2,6,10 and input size per party Nind = 100k,
200k, 500k.

Range and HOLMES’s χ2-test Setup. For the range check,
we vary the sizes of the range [a,b] (i.e., b− a) as 2` for
`∈ {8,12,16,20,24}. We run the range check algorithm with
these inputs and parameters. Our results are listed in Tab. 1.
In the ZK-friendly sketching, for simplicity, we assume that

all attributes take the same number of distinct values. We con-
sider the number of attributes d ∈ {2,4}, and vary the buckets
per attribute as D0 = · · ·= Dd ∈ {5,10,50}. We perform the
IZK check described in §3.3, i.e, for each data point, we com-
pute its linear index (detailed in the full version of the paper
[51]) and feed it into r = 200 Legendre PRFs with polyno-
mial degree 3, and quadratic nonresidue 7 ∈ Fp; the r = 200
unique keys are generated from a random oracle based on
SHA-256. We run the Legendre PRF algorithm with these
inputs and parameters. Our results are listed in Tab. 3.

Baseline 1: Generic MPC . The overhead grows quadrati-
cally in the number of parties and linearly in the input size;
hence, generic MPC is the slowest baseline in our comparison.
The baseline is 10–256× and 35–198× slower than Quick-
Silver for the range check and the ZK-friendly sketching,
respectively.

Baseline 2: Pairwise 2PC . Pairwise 2PC provides higher
throughput than generic MPC due to the parallelization of the
offline phases and online phases. It also has lower latency than
generic MPC, since 2PC reduces the creation of authenticated
shares from the entire t-party combined dataset of size t ·Nind

to the two-party combined dataset of size 2 ·Nind. MP-SPDZ
still needs to preprocess t−1 different inputs of size 2 ·Nind,
and as a result, the preprocessing phase contributes to most
of the overhead. In sum, the overhead grows linearly to the
number of parties and linearly to the input size.

Pairwise 2PC is faster than generic MPC, but slower than
HOLMES. Pairwise 2PC is 4–32× slower for the range check
and 13–36× slower for the ZK-friendly sketching than Quick-
Silver. For 10 parties, 2PC is 18× and 13× faster than generic
MPC for the range check and the ZK-friendly sketching, re-
spectively. For 6 parties, these numbers become 10× and 8×,
depicting a speedup factor of around O(t) over generic MPC.

Baseline 3: NIZK & SNARK . SpartanNIZK is the second
fastest system behind HOLMES. NIZK and SNARK systems
scale well for a large number of parties, since each party only
generates a single proof for its dataset, and parties can con-
currently verify other parties’ proofs on multiple cores. Thus,
this approach has overhead that remains relatively constant
to the number of parties (up to the number of threads in our
machine). However, the overhead to prove dense circuits with
lots of constraints is large relative to arithmetic-based IZKs,
and still grows linearly to the input size; for instance, in the
two-party case, SpartanNIZK is 2.4–16× slower for the range
check and 4–45× slower for the ZK-friendly sketching than
QuickSilver. Hence, for extremely large and dense circuits
(e.g. ZK-friendly sketching), we extrapolate our small input
size experiments to larger input sizes.

For a small number of parties, SpartanNIZK is quite ineffi-
cient and has speeds comparable to pairwise 2PC. However,
for larger numbers of parties, e.g., 10, it is approximately 4–
5× and 3–4× faster for the range check and the ZK-friendly
sketching, respectively, than pairwise 2PC. SpartanNIZK is
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Table 1: Overhead of range checking on different protocols with varying input sizes. For a range [a,b], the range size is b−a. SpartanSNARK is
significantly slower than SpartanNIZK, so we omit benchmarks for input sizes 200k and 500k.

Number of parties = 2 Number of parties = 6 Number of parties = 10
NindNindNind Range Size 28 212 216 220 224 28 212 216 220 224 28 212 216 220 224

10
0k

QuickSilver 3.43.43.4s 3.73.73.7s 4.24.24.2s 4.74.74.7s 4.94.94.9s 17.017.017.0s 18.618.618.6s 21.021.021.0s 23.423.423.4s 24.524.524.5s 30.630.630.6s 33.433.433.4s 37.837.837.8s 42.142.142.1s 44.144.144.1s
Paired 2PC 35.0s 51.9s 73.2s 85.9s 103.4s 88.5s 133.1s 173.3s 216.4s 267.9s 145.3s 217.0s 288.7s 359.3s 432.3s
MPC 35.0s 51.9s 73.2s 85.9s 103.4s 894.7s 1309s 1739s 2134s 2568s 2566s 3795s 5024s 6241s 7603s
SpartanNIZK 30.4s 48.5s 59.9s 77.1s 108.0s 30.8s 49.0s 60.3s 77.6s 108.5s 31.5s 49.2s 60.6s 77.9s 109.8s
SpartanSNARK 275.5s 526.5s 526.9s 528.0s 1070s 276.7s 528.7s 529.2s 530.2s 1073s 278.4s 530.9s 531.4s 532.4s 1076s

20
0k

QuickSilver 4.74.74.7s 5.65.65.6s 6.26.26.2s 7.27.27.2s 7.87.87.8s 23.723.723.7s 27.827.827.8s 30.930.930.9s 36.136.136.1s 38.938.938.9s 42.642.642.6s 50.150.150.1s 55.655.655.6s 65.165.165.1s 70.170.170.1s
Paired 2PC 71.0s 104.5s 139.4s 173.7s 207.9s 178.9s 265.9s 345.2s 439.4s 523.3s 293.4s 433.3s 578.9s 716.8s 864.4s
MPC 71.0s 104.5s 139.4s 173.7s 207.9s 1757s 2682s 3423s 4278s 5303s 5092s 7576s 10142s 12691s 15064s
SpartanNIZK 66.2s 108.8s 130.9s 153.6s 208.2s 66.1s 108.6s 131.0s 154.2s 208.5s 66.4s 107.5s 132.1s 152.5s 210s

50
0k

QuickSilver 9.39.39.3s 10.310.310.3s 12.912.912.9s 14.814.814.8s 16.516.516.5s 46.746.746.7s 51.351.351.3s 64.464.464.4s 74.374.374.3s 82.482.482.4s 84.184.184.1s 92.492.492.4s 115.9115.9115.9s 133.7133.7133.7s 148.3148.3148.3s
Paired 2PC 177.3s 263.7s 361.1s 441.1s 530.9s 443.3s 663.7s 872.9s 1081.6s 1294.4s 729.9s 1092s 1446s 1797s 2142s
MPC 177.3s 263.7s 361.1s 441.1s 530.9s 4370s 6543s 8799s 10707s 13405s 12792s 19411s 25299s 31333s 38063s
SpartanNIZK 155.4s 244.3s 299.7s 356.5s 483.0s 155.5s 244.7s 300.1s 356.8s 483.3s 158.1s 242.6s 305.8s 357.3s 487.0s

1–3× slower for the range check and 4–5× slower for the
ZK-friendly sketching than QuickSilver.

SpartanSNARK has succinct proof size and verification time
but with massive prover overhead. Even for the most compli-
cated benchmark, the ZK-friendly sketching with Nind = 100k,
verification time is ∼1–2s. However, the computational over-
head for the same circuit in SpartanSNARK is around 9× larger
than SpartanNIZK and 2× slower than generic MPC.

4.4.2 Cost of multidimensional tests

We now measure the efficiency of HOLMES’s multidimen-
sional χ2-test. Namely, we test HOLMES’s ZK-friendly
sketching against the oblivious bucketing approach, which
we call the "naive χ2-test". For both HOLMES χ2-test and
naive χ2-test, we run the benchmarks entirely in our choice
of IZK: QuickSilver. We vary the number of attributes as
d ∈ {2,3,4,5}, and the buckets per attributes as D0 = · · ·=
Dd ∈ {5,10,15,20,25}. Since the naive approach is ex-
tremely expensive, we were able to run the experiment only
on a small scale, so extrapolate our small scale experiments
to a larger scale. In the full version of the paper [51], we show
that HOLMES and the naive χ2-test have drastically differ-
ent growth patterns. The overhead of the naive χ2-test grows
exponentially in the number of buckets per attribute. The
overhead of HOLMES multidimensional χ2-test is no longer
dominated by the number of multidimensional buckets as in
the naive χ2-tests; instead, the new overhead of our sketching
approach, O(N · r · costPRF), is now dominated by the input
size and the number of PRF keys. Based on our experiments,
we find that HOLMES’s sketching approach greatly improves
the efficiency of multidimensional tests when the number of
attributes and distinct values per attribute are large. For in-
stance, when d = 4 and Di = 25, we observe an efficiency
increase of around 104×.
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Figure 6: Marketing dataset overhead in generic MPC and
HOLMES.

Table 2: Cost breakdown for the marketing dataset (two-party).

Number of entries (41188×2) 82376
Number of attributes 21
Total time 29.19 s
Average time per entry 0.35 ms
Loading the data to IZK 0.27 s
Range tests for all attributes 5.40 s
Histogram and χ2 test on age 0.76 s
Multidimensional χ2 test on age, job, marital status, education 22.3 s
Mean, variance, and t test on call duration 0.12 s
Consistency check < 0.01 s

4.4.3 Evaluation on real-world dataset

We apply HOLMES and the generic MPC baseline to a real-
world bank marketing dataset and study the overhead. We
include two additional real-world examples of dataset testing
workflows and study their overheads in the full version of the
paper [51].

In our experiment, we vary the number of parties from 2
to 10 to see how HOLMES and the generic MPC baseline
scale with more parties. In secure collaborative learning with
more parties we expect to have access to more data, so we
assume that each party provides the same amount of data Nind;
when there are t parties, there are t ·Nind data. For example,
for our marketing data, we assume that each party provides
Nind = 41188 entries of data. When there are 10 parties, the
entire distribution testing would be over Nind · t = 411880
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entries.

Marketing dataset workflow. The dataset [43, 44] consists
of telemarketing records for financial products. It includes
client profile and call records. We choose a distribution test
workflow that fits the common use case of untrusted banks
who wish to jointly train a model to predict the success of
the campaign. Before training they want to ensure that the
dataset has a balanced number of customers from different
backgrounds. Therefore, banks may consider the following
tests:
• Pearson’s (histogram) χ2-test over age grouped into the

buckets 10–19, 20–29, · · · , 90–99 to ensure that the dataset
distribution is similar to the national census age distribution,

• Pearson’s (multidimensional) χ2-test over age, job, educa-
tional level, and marital status to check if the dataset is
balanced across customers with different backgrounds,

• t-test over the telemarketing call duration to check whether
their telemarketing records are similar enough to train a
model together, and

• range checks for all attributes.

Results. We present our results in Fig. 6(a) and Fig. 6(b).
HOLMES’s approach outperforms the generic MPC baseline
by 77–264×. The overhead gap widens as the number of
parties increases. As expected, HOLMES’s overhead grows
linearly to t, while the baseline overhead grows quadratically
to t. We also present the cost breakdown in Tab. 2. We see
that the range and multidimensional tests contribute to a large
portion of the overhead compared to all other tests. The con-
sistency check between IZK and MPC has a small overhead.

5 Related Work

We summarize related works and explain their connection to
HOLMES.

Secure multiparty computation frameworks. A rich body
of works propose MPC protocols [49, 61, 62] for malicious
adversaries and dishonest majority, with SPDZ [63–65] and
authenticated garbling [66–69] being the state-of-the-art.
HOLMES uses SPDZ since it is more suitable for arithmetic
computation that is used for secure collaborative learning.

Zero-knowledge proofs. Zero-knowledge proofs [70] en-
able a party to prove a statement without leaking any infor-
mation. Constructing practical ZK has gained much attention,
especially since succinct non-interactive proofs [25, 71–74]
have been used in blockchains. New protocols for interactive
zero-knowledge proofs based on silent OT [24, 75–80] are
currently being studied for their efficiency. Although not cur-
rently ready for implementation, a subset of these protocols
known as line-point zero-knowledge (LPZK) [81, 82] promise
greater flexibility with primes and smaller prover and verifica-
tion overhead than QuickSilver. HOLMES in the future can
be extended to these newer protocols.

Statistics and range checks. There have been works [83,
84] whose goal is to perform statistical tests privately using
MPC. In contrast to our protocol, they mostly focus on the
two-party case and consider different threat models. Also,
range checks [72, 85, 86] are frequently used to limit the
effect of misreported values in secure computation. As an
example, Prio [85] (or Prio+ [86]) is a system that aggregates
statistics over multiple clients who wish to preserve the confi-
dentiality of their individual data but relies on the existence of
non-colluding semi-honest servers. HOLMES offers security
guarantees even with a dishonest majority.

Secure collaborative computation systems. Multiple
works build systems for data analytics and machine learn-
ing against malicious adversaries [18, 19, 87–100], but they
do not address the issue of corrupted input datasets or group
fairness, which is often left as an open question. We envision
an integration of HOLMES to secure collaborative compu-
tation systems as an efficient method for distribution testing.

6 Conclusion

We first discuss some challenges that HOLMES does not solve
and we identify several exciting directions for future work.
Finally, we conclude with a summary of our contributions.

Identifying necessary tests. HOLMES enables parties to
perform distribution tests tailored to their use case. It does not,
however, decide what the necessary tests are. The parties have
to specify tests depending on their application. We are not
aware of a systematic approach that identifies the necessary
tests for a specific application, such as measuring the data
quality or identifying bias in clinical trials. Since this is rele-
vant even without any privacy considerations, this question
is orthogonal to the goal of HOLMES: privately computing
distribution tests. A compelling future direction is to combine
HOLMES’s rich class of distribution tests with a systematic
approach to identify necessary tests in practical applications.

Privacy leakage from distribution tests. Any distribution
test leaks one-bit information – whether the test passed or
failed – which leads to potential attacks. For instance, assume
that an organization wants to check that the mean value of
another organization’s dataset is a close to a specific value,
e.g., in a medical study we might want to prove that the mean
efficacy of a drug is 0.9. A malicious organization, who is
not supposed to know this mean can recover it by requesting
multiple distributions tests. For example, in the medical study
example, the adversary can ask whether the mean is 0.01,
0.02, etc., until the distribution test succeeds.

Potential mitigations for this problem include having a
curated list of allowed distribution tests (e.g., proving that the
mean of the age of a population is below 150 does not leak
any sensitive information), or enforce a rate limit on the tests.
An interesting direction for future research is to devise attacks
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Table 3: Overhead of the ZK-friendly sketching with varying parameters. For simplicity, we assume that we have the same number of buckets
for each attribute. The dimension setup refers to [number of attributes, buckets of each attribute]. SpartanSNARK is significantly slower than
SpartanNIZK, so we omit benchmarks for input sizes 200k and 500k.

Number of parties = 2 Number of parties = 6 Number of parties = 10
NindNindNind Dimension setup [1,10] [4,10] [4,50] [1,10] [4,10] [4,50] [1,10] [4,10] [4,50]

10
0k

QuickSilver 57.357.357.3s 57.957.957.9s 58.558.558.5s 286.8286.8286.8s 289.9289.9289.9s 292.6292.6292.6s 516.3516.3516.3s 521.9521.9521.9s 526.7526.7526.7s
Paired 2PC 2064s 2074s 2074s 4340s 4385s 4354s 6927s 6955s 6966s
MPC 2064s 2074s 2074s 36333s 36330s 36522s 91387s 90982s 90648s
SpartanNIZK 2602s 2610s 2613s 2521s 2559s 2579s 2667s 2651s 2689s
SpartanSNARK 20752s 20985s 20212s 20754s 20988s 20214s 20757s 20990s 20217s

20
0k

QuickSilver 114.1114.1114.1s 111.8111.8111.8s 111.9111.9111.9s 570.6570.6570.6s 558.8558.8558.8s 559.6559.6559.6s 102710271027s 100610061006s 100710071007s
Paired 2PC 4086s 4098s 4106s 8734s 8737s 8708s 13915s 13788s 13935s
MPC 4086s 4098s 4106s 72600s 72934s 72863s 182917s 184209s 183890s
SpartanNIZK 5065s 5087s 5090s 5152s 5146s 5127s 5135s 5140s 5153s

50
0k

QuickSilver 280.5280.5280.5s 277.8277.8277.8s 276.9276.9276.9s 140214021402s 138913891389s 138513851385s 252425242524s 250025002500s 249224922492s
Paired 2PC 10136s 10163s 10201s 21914s 21794s 21773s 34820s 34941s 34840s
MPC 10136s 10163s 10201s 181400s 182747s 181889s 456853s 456366s 463618s
SpartanNIZK 10002s 9989s 10152s 10501s 10388s 10441s 10549s 10417s 10521s

that exploit this leakage and identify mitigations in specific
applications.

Improving HOLMES’s efficiency. Even though HOLMES
outperforms the baselines based on state-of-the-art systems
in our benchmarks, there are specific cases that other systems
have a small efficiency advantage. For example, in the range
check test with `= 8 and Nind = 100k, at 11 parties or more
we expect SpartanNIZK (31.5s) to be faster than QuickSilver
(34s) since Spartan’s overhead remains relatively constant to
a growing number of parties. We leave as an open question
how to build a system that is more efficient in all settings.

New protocols for interactive zero-knowledge proofs based
on silent OT [24, 75–80] are currently being studied for their
efficiency. Although not ready for implementation, a subset of
these protocols known as line-point zero-knowledge (LPZK)
[81, 82] promises greater flexibility with primes and smaller
prover overhead than QuickSilver. HOLMES in the future
can be extended to these newer protocols.

Additionally, HOLMES supports distribution tests per-
formed on a random subset of the dataset to boost efficiency.
When the datasets are sufficiently large, intuitively subsam-
pling should not affect accuracy. However, we are not aware
of specific applications where this feature can be tested.

Adversarial machine learning. HOLMES is a useful tool
for identifying bias in datasets used in machine learning train-
ing without compromising their privacy. Even though we have
experimented with the accuracy of HOLMES in specific ad-
versarial scenarios, our protocol does not offer any formal
guarantees. In the realm of adversarial machine learning, data
poisoning shows that it is possible to corrupt a machine learn-
ing model by using datasets practically indistinguishable from
the honest ones. As a mitigation, robust statistics [101–103]
focuses on statistics that are resilient to any corrupted in-
put distribution. A fascinating future direction is to augment
HOLMES with robust statistics that not only detect bias, but
can reduce its effect in the final machine learning application.

In conclusion, we present HOLMES, a protocol for per-
forming distribution testing in secure collaborative learning
efficiently. The core of HOLMES consists of two contribu-
tions:
– a new hybrid protocol that integrates MPC, IZK, and

a lightweight consistency check for distribution testing,
which is concretely more efficient than non-trivial base-
lines, and

– a novel, efficient multidimensional distribution testing pro-
cedure that utilizes sketching and pseudorandom functions
to avoid the severe penalty of oblivious computation.

These two tools significantly improve the performance of
distribution testing. Efficient support for distribution testing
can be seen as the first step towards detecting different types
of incorrect (or even malicious) inputs for secure compu-
tation in general, which is an essential for practical secure
collaborative learning. HOLMES is open-sourced in GitHub:
https://github.com/holmes-inputcheck/.
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