
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Hiding in Plain Sight: An Empirical Study
of Web Application Abuse in Malware

Mingxuan Yao, Georgia Institute of Technology; Jonathan Fuller, United States
Military Academy; Ranjita Pai Kasturi, Saumya Agarwal, Amit Kumar Sikder,

and Brendan Saltaformaggio, Georgia Institute of Technology
https://www.usenix.org/conference/usenixsecurity23/presentation/yao-mingxuan

USENIX’23 Artifact Appendix: Hiding in Plain Sight:
An Empirical Study of Web Application Abuse in Malware

Mingxuan Yao1, Jonathan Fuller2, Ranjita Pai Sridhar1, Saumya Agarwal1,
Amit K. Sikder1, Brendan Saltaformaggio1

1Georgia Institute of Technology 2United States Military Academy

A Artifact Appendix

A.1 Abstract
The artifact is a code repository (with supporting documen-
tation) for Marsea, an automated concolic analysis pipeline
used to perform a scalable and retroactive study of malware
that abuses web applications. Marsea consists of the backend
for malware’s symbolic execution and the hook project for
dynamic binary instrumentation.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact should not pose any inherent security, privacy, or
ethical concerns. No preexisting data is read or transmitted.
If the user decides to install and run active malware for the
purpose of verifying Marsea’s claims, they do so at their own
risk. For security and ethical reasons, the artifact does not
include any active malware.

A.2.2 How to access

The artifact is a code repository and well-documented
tutorial thta can can be accessed on GitHub:
https://github.com/CyFI-Lab-Public/MARSEA/
tree/fc53c4629065eeaad78258a11d950265cb059c5d

A.2.3 Hardware dependencies

Marsea requires a Linux machine and a Windows Machine.

A.2.4 Software dependencies

The preferred environment for running Marsea is Ubuntu
22.04 LTS (Long Time Support). However, Marsea should
work with any recent version of Ubuntu. Given the fact that
Ubuntu is Debian based operataion system. Marsea should
also work on Debian 11 and up (64 bit).

Another important component of Marsea is its customized
DLL (Dynamic Linked Library), which enables Marsea to
instrument the malware and introduce symbolic value amid

the execution The maintaining and the building of this DLL
project requires a Windows machine (Windows 7 or above).
The preferred environment for the DLL project is Microsoft
Visual Studio (2017 or above), with Windows 8.1 SDK and
version 141 Platform Toolset. However, the newer version of
SDK and Platform Toolset should works as well.

A.2.5 Benchmarks

The primary bench mark used in the paper is a collection
of Web-App-Engaged (WAE) malware, such as information
stealer, dropper, and other types of malware that target web
applications. because it represents a common and important
threat to web applications and it allows for a thorough evalua-
tion of the effectiveness of the Marsea. The benchmark was
run on the Ubuntu 22.04 LTS operating system with Marsea
deployed, and the results are show in Table 2 of the paper. We
also performed the baseline concrete execution comparison
using Marsea with no instrumentation.

A.3 Set-up
A.3.1 Installation

Users should follow the Setup section of the README to
deploy Marsea.

A.3.2 Basic Test

Users should follow the Usage section of the README,
which covers includes a step-by-step tutorial of running
Marsea against malware, Razy, which abuses the Twitter to
resolve the C&C server address. Notably, to avoid the pos-
sible security risk, we verified that the resolved C&C server
has already been mitigated.

Running Marsea against Razy should reveal:

1. The context-rich execution trace of the target malware.
For Razy, Marsea explores different paths and reveals
the its connection to VirusTotal, Twitter, and the backend
C&C server.

2. Reconstructed network sessions initiated by the target
malware. For Razy, Marsea reveals (a) a connection to

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 369

https://github.com/CyFI-Lab-Public/MARSEA/tree/fc53c4629065eeaad78258a11d950265cb059c5d
https://github.com/CyFI-Lab-Public/MARSEA/tree/fc53c4629065eeaad78258a11d950265cb059c5d

the VirusTotal with an API key in the request and the
malware itself as payload; (b) a connection to Twitter
with an user specified.

3. The malicious vectors the malware performed given the
abused web apps. For Razy, Marsea reveals (a) the flood-
ing attack the malware performed towards VirusTotal;
(b) the backend C&C server resolving by abusing the
tweet posted on the Twitter.

The README contains step-by-step instructions for de-
ployment and provides running examples to assist users in
verifying the successful completion of each phase.

A.4 Evaluation workflow
This subsection serves to illustrate the assertions made in our
paper. However, due to ethical considerations, we are unable
to release the malware dataset utilized in our research at this
time. Consequently, users are required to obtain their own
malware dataset for analysis.

A.4.1 Major Claims

(C1): Marsea is able to identify 40 abuse vectors across 20
malware samples. This is proven by experiment (E1)
described in Section 4.1 of the paper and illustrated in
Table 2.

(C2): Marsea identified 86% of vectors compared with con-
crete execution. This is proven by experiment (E2) de-
scribed in Section 4.1 of the paper and illustrated in
Table 2.

(C3): Marsea revealed a 226% increase in malware only
relying on web apps since 2020, showing malware’s
growing adoption of web app abuse. This is proven by
experiment (E3) described in Section 5.1 of the paper
and illustrated in Table 3.

(C4): Marsea revealed 893 WAE malware in 97 families
abusing 29 web apps. This is proven by experiment (E4)
described in Section 5.2 of the paper and illustrated in
Table 4.

(C5): Marsea found that 48% of 893 WAE malware remained
actiev until the day of our study. This is proven by ex-
periment (E5) described in Section 5.3 of the paper and
illustrated in Table 5.

(C6): Marsea revealed that WAE malware could have in-
fected up to 909,788 victims from 33 abused web app
content. This is proven by experiment (E6) described in
Section 5.4 of the paper and illustrated in Table 6.

A.4.2 Experiments

(E1): [10 human-days + 3 compute-days + 300GB storage]:
Evaluate the performance of Marsea in ground truth
dataset.

Preparation: Collected malware are manually reverse-
engineered to derive ground truth.
Execution: Run Marsea against the malware in the
ground truth dataset and collect the generated results,
such as the execution trace, malicious vectors, and re-
constructed network sessions.
Results: Marsea should be able to identify the web apps
that have been abused and detect most malicious vectors.

(E2): [5 human-days + 3 compute-days + 400GB storage]:
Compare the performance of Marsea with the concrete
execution.
Preparation: Prepare for concrete execution analysis
and set up Marsea.
Execution: Analyze the malware using both Marsea
and concrete analysis techniques, and compare the ma-
licious vectors identified by Marsea and the concrete
analysis.
Results: Marsea should be able to identify more mali-
cious vectors and abused web apps than concrete analy-
sis.

(E3): [10 human-days + 10 compute-days + 5TB storage]:
Execute Marsea on the large scale to evaluate the preva-
lence of WAE malware.
Preparation: Collect malware from online resources.
To ensure an unbiased dataset, the collection should be
random and normalized across the timeline (i.e., the
same number of samples should be taken for each eval-
uated time slot). Use domain reputation resources to
evaluate the maliciousness of the communication tar-
gets.
Execution: Run Marsea against the malware and collect
the communication targets. Extract the effective Second-
Level Domain (eSLD) for each communication target
and measure its maliciousness using domain reputation
resources.
Results: Marsea should be able to identify the increase
of WAE malware in the last three years.

(E4): [3 human-days + 20 compute-days + 10TB storage]:
Run Marsea on large-scale WAE malware to evaluate
the capabilities the abused web apps provide attackers.
Preparation: Collect WAE malware.
Execution: Run Marsea on a large-scale WAE malware
collection, collect the execution trace, and identify the
vectors.
Results: Marsea should be able to a wide range of vec-
tors the malware could perform using web apps.

(E5): [10 human-days + 2 compute-days + 50GB storage]:
Examine the effectiveness of the current mitigation of
WAE malware by evaluating the activity of the malicious
web app content.
Preparation: The communication targets as the inter-
mediate results from E4. VirusTotal access is required to
identify the first seen date and the last seen date of the
malware.

370 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

Execution: Query the first seen and last seen date of the
analyzed malware on VirusTotal. Then, run the web app
harvest component of Marsea to extract the first creation
time and the last update time of abused web app content.
Results: Marsea should be able to show that some web
app content can remain on the platform for a long time,
even after the corresponding malware has been identified.
Note that users may need to write their own harvest
components to support additional web apps.

(E6): [3 human-days + 2 compute-days + 20GB storage]:
Use the engagement data on the web app platform to
prove the large scope of infection caused by WAE mal-
ware.
Preparation: The communication targets results inter-
mediate results from E4.
Execution: Run Marsea’s web app harvest component
to extract the engagement data from the abused web app
platforms.
Results: Marsea should be able to identify a significant
scope of infection on specific web apps.

A.5 Notes on Reusability

Marsea has a wide range of in-house scripts that can be used
directly or easily extended for other research purposes.

• custom-hook.cpp: A general framework to inject
the DLL into the target program.

• utils.cpp: An in-house extension built on top of
S2E symbolic analysis framework. It supports symbolic
tag extraction, on-demand concretization, VM-to-host
dropped file transferring, memory symbolic expression
extraction, and taint analysis logic.

• forkprofiler.py: This is an investigation-oriented
analysis tool that iterates through the execution traces
generated by Marsea and reports the triaged path explo-
sion source (i.e., system APIs) if there is any.

• NewCodeSearcher.cpp: This is a code-coverage-
driven exploration technique that has been implemented
as an S2E plugin. Unlike the default exploration tech-
nique, which picks a random module and then a random
execution state to explore, our technique prioritizes unex-
plored code regions in the target module being analyzed.

• LibraryCallMonitor.cpp: This is a customized
built-in S2E plugin that provides detailed execution trac-
ing by logging all system APIs invoked by the target
binary during analysis.

• CyFiFunctionModels.cpp: This is an in-house
S2E plugin that provides the backbone functionality for
the injected DLL.

• pipeline.py: This is the pipeline script used to cre-
ate a Marsea project and terminate the analysis in case
of a timeout.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 371

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

