
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Minimalist: Semi-automated Debloating
of PHP Web Applications through Static Analysis

Rasoul Jahanshahi, Boston University; Babak Amin Azad and Nick Nikiforakis,
Stony Brook University; Manuel Egele, Boston University

https://www.usenix.org/conference/usenixsecurity23/presentation/jahanshahi

USENIX’23 Artifact Appendix: Minimalist: Semi-automated Debloating
of PHP Web Applications through Static Analysis

Rasoul Jahanshahi
Boston University
rasoulj@bu.edu

Babak Amin Azad
Stony Brook University

baminazad@cs.stonybrook.edu

Nick Nikiforakis
Stony Brook University
nick@cs.stonybrook.edu

Manuel Egele
Boston University
megele@bu.edu

A Artifact Appendix

A.1 Abstract
Our artifact facilitates building and running Minimalist for ph-
pMyAdmin 4.0.0. We packaged the artifact in a set of Docker
containers. There is no restriction on the CPU architecture or
the operating system to build and run the Docker containers.

In this appendix, we describe the workflow of analyzing a
PHP application (e.g., phpMyAdmin) using Minimalist, iden-
tifying the set of unnecessary functions according to prior
user interaction, and debloating the PHP applications. Finally,
we demonstrate that debloating PHP applications leads to re-
ducing the size of the application as well as removing security
vulnerabilities.

A.2 Description & Requirements
A.2.1 How to access

Download the Artifacts from: https://github.com/
BUseclab/Minimalist/releases/tag/v1.0.1

A.2.2 Software dependencies

Docker and Docker compose

A.2.3 Benchmarks

In our artifact evaluation of Minimalist, we use phpMyAdmin
v4.0.0 as the benchmark for our artifact evaluation.

A.3 Set-up
A.3.1 Installation

Our instructions are based around Docker containers. Please
install Docker and Docker compose to run these containers:

• Docker https://docs.docker.com/get-docker/

• Docker-compose https://docs.docker.com/
compose/install/

A.3.2 Prepration

In order to run our artifact, you need to download the required
packages for Minimalist as well as Less is More artifact. To
do so, please run the following command to download the
required packages.

$ cat prepare.sh # Examine the script

$./prepare.sh # Run the prepare script

A.3.3 Basic Test

Our basic test involves building and running Minimalist on a
sample PHP web application inside a Docker container. In
order to run the basic test, please run the following command
in the main directory of the artifact.

$ cat init.sh # Examine the init script...

$./init.sh # Build and run the initial test
In case of a successful initial test, you should see the fol-

lowing message.
Basic Test was successful.

A.4 Evaluation workflow

A.4.1 Major Claims

Minimalist is a debloating mechanism for PHP web applica-
tions. According to our paper, we prove the following claims
regarding the evaluation of our artifact and its results:
(C1): Minimalist reduces the size of a given PHP web appli-

cation (e.g., phpMyAdmin) in terms of lines of code. This
claim is proven by the reduction in size of phpMyAdmin

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 335

https://github.com/BUseclab/Minimalist/releases/tag/v1.0.1
https://github.com/BUseclab/Minimalist/releases/tag/v1.0.1
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

in experiment (E1), which is described in Section 4.4.1
as well as Figure 7 of our paper.

(C2): Minimalist removes the security vulnerabilities in PHP
applications by removing unnecessary features. This
claim is proven in experiment (E2), which is described
in Table 1 of our paper.

A.4.2 Experiments

(E1): [Debloat] [20 human-minutes + 1 compute-hour +
5GB disk]: In this experiment, Minimalist statically ana-
lyzes phpMyAdmin 4.0.0 and generates the call-graph.
Next, Minimalist debloats the web application using Less
is More interface.
Preparation: None
Execution: The first step is running the Minimalist
analysis on phpMyAdmin 4.0.0. To do so, run the
following commands to download phpMyAdmin, create
a Docker container, prepare the Docker environment,
and run the analysis.

$ cat step_1.sh # Examine step_1 script

$./step_1.sh # Run step_1 script

At the end of this step, Minimalist generates the
call-graph for phpMyAdmin 4.0.0. You can compare the
results regarding the number of different function calls
shown in the terminal with the numbers in the first three
columns of Table 1 for phpMyAdmin 4.0.0.
The next step includes debloating phpMyAdmin using
the Less is More (LIM) container. To do so, run the
following commands to run the LIM container.

$ cat step_2.sh # Examine step_2 script

$./step_2.sh # Run step_2 script

After running the LIM container, you can import
Minimalist results to LIM either manually or auto-
matically. You can follow our tutorial in our Github
repository to import the results manually. Run the
following command to import the results automatically.
Note that this process takes up to 20 minutes.

$ cat auto_import.sh #Examine import script

$./auto_import.sh #Run import script

Before debloating, run the following command
to measure the lines of code (LoC) for phpMyAdmin
4.0.0.

$./phploc.sh # Run the phploc Docker

Furthermore, run the following command to perform a
SQLi attack on phpMyAdmin 4.0.0. For a successful
attack, the server takes more than five seconds to
respond.

$./exploit.sh # Run exploit script

In the last step, visit the following link to start
the debloating process.
http://localhost:8086/admin/software_file/
description
In the following link, click on the add button in the top
right corner, fill out the form using the following inputs,
and click populate database.

Software: phpMyAdmin
Version: 4.0.0
Web App Directory: /var/www/html/4.0.0/
Description: Artifact

After finishing the above process, click on the
Debloat functions to start the debloating process.
This process takes up to five minutes to complete. For
more information, you can follow the visual tutorial in
our Github repository.
After finishing the debloating process for phpMyAdmin
4.0.0, you can run the phploc script again to calculate
the LoC for the debloated web application. As shown in
Figure 7 in our paper, you can observe the reduction in
LoC for phpMyAdmin 4.0.0 before and after debloating.

(E2): [Attack] [10 human-minutes + 10 compute-minutes]:
In this experiment, you perform a SQLi attack to examine
the removed vulnerability from Minimalist-debloated
phpMyAdmin.
Prepration: To perform this experiment, do not stop
the LIM container.
Execution: In order to perform the SQLi attack, run
the following command in a separate terminal.

$ cat exploit.sh # Examine exploit script

$./exploit.sh # Run exploit script
Results: In the case of a failed attack, the response from
phpMyAdmin is immediate. Otherwise, the server takes
more than five seconds to respond.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

336 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

http://localhost:8086/admin/software_file/description
http://localhost:8086/admin/software_file/description
https://secartifacts.github.io/usenixsec2023/

