é} usenix
4 THE ADVANCED

' 4

COMPUTING SYSTEMS
ASSOCIATION

Practical Asynchronous High-threshold Distributed
Key Generation and Distributed Polynomial Sampling

Sourav Das, University of Illinois at Urbana-Champaign; Zhuolun Xiang, Aptos;
Lefteris Kokoris-Kogias, IST Austria and Mysten Labs;
Ling Ren, University of lllinois at Urbana-Champaign

https://www.usenix.org/conference/usenixsecurity23/presentation/das

This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the
32nd USENIX Security Symposium.

August 9-11, 2023 « Anaheim, CA, USA
978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX
Security Symposium is sponsored
by USENIX.

ARTIFACT
EVALUATED
yusenix

' 4

AVAILABLE

USENIX’23 Artifact Appendix: Practical Asynchronous High-threshold Distributed
Key Generation and Distributed Polynomial Sampling

Sourav Das’

Zhuolun Xiang* Lefteris Kokoris-Kogias

3 Ling Ren!

YUniversity of Illinois at Urbana-Champaign, *Aptos, 3IST Austria & Mysten Labs

souravd2 @illinois.edu, xiangzhuolun @ gmail.com, lefteris @mystenlabs.com, renling @illinois.edu

A Artifact Appendix
A.1 Abstract

Our artifact is built using docker, and can be run on a single
machine with multi-threaded or multi-processes emulation,
and in a geo-distributed setting with multiple amazon-web
service virtual machines.

There are four important parameter choices of our artifact:
(1) num: number of nodes in the ADKG protocol, (ii) ths:
maximum number of faulty nodes, (iii) deg: the degree of the
ADKG polynomial, and (iv) curve: the choice of the elliptic
curve, which is either b1s12381 or ed25519.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

N/A

A.2.2 How to access

Our entire artifact is packaged as a single library and can be
downloaded from:

e https://github.com/souravl547/htadkg
We recommend using the version specified by the commit:
* https://github.com/souravl547/htadkg/commit/
0d221e8965c5cf6b18823d894ef48c0fabc34bbe
A.2.3 Hardware dependencies
The basic tests require a stable internet connection. The main
experiments require num amazon web services instances.
A.2.4 Software dependencies

e Docker https://www.docker.com/
* Docker compose https://docs.docker.com/compose/
* Python 3.7.x or higher https://www.python.org/

A.2.5 Benchmarks

None.

A.3 Set-up

Our artifact requires docker and docker compose. To install
docker, see https://docs.docker.com/get-docker/. To
install docker-compose, see https://docs.docker.com/
compose/install/. Check that docker and docker com-
pose are installed correctly by running the $docker and
$docker-compose commands in the terminal. Upon success-
ful installation, both of these commands will display the avail-
able options.

Start the docker daemon. In case of docker desktop start the
docker daemon by starting the docker desktop application or
by running the Sopen -a Docker command in the terminal.

A.3.1 Installation

Our entire artifact is packaged as a single library and can be
downloaded from:

e https://github.com/souravl547/htadkg

Once the docker and docker compose are installed, and
docker daemon is running, is installed build the code using
the following instructions. Note that building the adkg docker
image will take approximately 10 minutes, possibly longer
depending upon the internet connection.

1. cd to htadkg folder

2. Build using $docker-compose build adkg.

3. Run a docker image of adkg $docker-compose run
--rm adkg bash

Upon successful installation, the last command will open a
terminal with root@fb0991941061: /usr/src/adkgt.
Remark. If the docker daemon is not running, expect the fol-
lowing error message while building the adkg docker image.

USENIX Association

Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 315

https://github.com/sourav1547/htadkg
https://github.com/sourav1547/htadkg/commit/0d221e8965c5cf6b18823d894ef48c0fabc34b6e
https://github.com/sourav1547/htadkg/commit/0d221e8965c5cf6b18823d894ef48c0fabc34b6e
https://www.docker.com/
https://docs.docker.com/compose/
https://www.python.org/
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
https://github.com/sourav1547/htadkg

docker.errors.DockerException: Error while
fetching server API version: 500 Server
Error for http+docker://localhost/version:
Internal Server Error ("b’dial unix
docker.raw.sock: connect: connection
refused’")

[71057] Failed to execute script
docker-compose

A.3.2 Basic Test

There are two modes to perform basic tests, and both of these
tests can be run locally. We elaborate on each of these tests
below.

* Emulating num threads inside a docker image.
* Emulating num processes inside a docker image

Emulating multiple threads. After completing the steps men-
tioned in §A.3.1, run this test using the following command
inside the adkg docker.
Spytest tests/test_adkg.py -o log_cli=true
--num 4 --ths 1 --deqg 2 --curve ed25519
The command runs an ADKG protocol with four nodes
where at most one node is corrupt, and we want to secret share
the ADKG secret key using a polynomial of degree two. Note
that num>3*ths and ths-1<deg<num-ths. It is possible to
change these values arbitrarily as long as they satisfy these
constraints. We recommend running this basic test with less
than 10 nodes for quicker results.

Emulating multiple processes. This approach creates mul-
tiple processes within a single docker image. Each process
corresponds to one ADKG node and these processes commu-
nicate using an Inter-process communication (ipc) channel.
To start the experiment, run the following command after
following the instructions in §A.3.1.
$sh scripts/launch-tmuxlocal.sh
scripts/adkg-tutorial.py [NUM_NODES]

For this basic test, our artifact supports 16, 32, and 64 nodes.
To evaluate with arbitrary num, ths and deg, first, generate the
corresponding configuration files using gen_config.py. We
recommend testing with 16 and 32 nodes for quicker results.
Remark 1. Although this process runs NUM_NODES number
of ADKG nodes, our artifact only displays the log of the first
four nodes. All remaining logs are available at dump. log.
Remark 2. Since each node in this basic test communicates
using ipc, the bandwidth usage of this basic test approximates
the bandwidth usage we report in Table 3 of the paper.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1) The ADKG protocol improves the average runtime and
bandwidth usage per node compared to the state-of-the-

art, as summarized in Table 3 of the paper.

A.4.2 Experiments

(E1) [Setup AWS machines] [30 human-minutes]. Here are
the steps to set up the AWS machines:

1. Create an AWS account and sign in to the AWS Manage-
ment Console.

2. Open the EC2 console and then choose Launch Instance.

3. Choose an Amazon Machine Image (AMI), which is a
pre-configured virtual machine image that contains the
operating system, docker and docker compose.

4. Select the region where you want to launch your instances,
and then choose an instance type, which specifies the hard-
ware of the host computer.

5. Configure the instance details, such as the number of in-
stances, network settings, and IAM roles.

6. Choose the storage and add any additional storage volumes,
if required.

7. Configure the security group, which acts as a virtual fire-
wall for your instance to control inbound and outbound
traffic.

. Review and launch the instances.

9. Create a key pair to securely access the instances remotely

over SSH. Download and save the private key file (.pem
extension) on your local machine.

o]

We automate steps 4, 5, and 8 using the AWS CLI and
the configuration file https://github.com/souravl547/
htadkg/blob/main/aws/aws-config. json. Note that the
configuration file specifies the regions, security group IDs,
image IDs, key file path, key name, instance type, and other
parameters needed to launch and configure the instances.
Make sure to fill in these fields with the appropriate values.
We describe the configuration file in more detail in https:
//github.com/souravl547/htadkg/tree/main/aws

(E2) [ADKG experiments][1 human hour + 3 compute
hours]: Follow the instructions on https://github.com/
souravl547/htadkg/blob/main/aws/README . md.

1. cd /path/to/htadkg/aws

2. Update the config with appropriate parameters. Run
python3 -m aws.run-on-ec2 to start the AWS in-
stances and run the adkg command specified in the config.
This command creates a current.vms file which consists
of instance ids of the VMs created during this run. Subse-
quent runs of this command will reuse the same VMs.

3. Upon completion, the raw data from each ADKG node
will be available in the /path/to/htadkg/data/ folder
in your local machine.

4. After you are done testing you can delete the VMs using
python3 -m aws.delete_vms.

316 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium

USENIX Association

https://github.com/sourav1547/htadkg/blob/main/aws/aws-config.json
https://github.com/sourav1547/htadkg/blob/main/aws/aws-config.json
https://github.com/sourav1547/htadkg/tree/main/aws
https://github.com/sourav1547/htadkg/tree/main/aws
https://github.com/sourav1547/htadkg/blob/main/aws/README.md
https://github.com/sourav1547/htadkg/blob/main/aws/README.md

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

