
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Eos: Efficient Private Delegation of zkSNARK Provers
Alessandro Chiesa, UC Berkeley and EPFL; Ryan Lehmkuhl, MIT;

Pratyush Mishra, Aleo and University of Pennsylvania; Yinuo Zhang, UC Berkeley
https://www.usenix.org/conference/usenixsecurity23/presentation/chiesa

USENIX’23 Artifact Appendix: "EOS: Efficient Private Delegation of
zkSNARK Provers"

Alessandro Chiesa
UC Berkeley & EPFL

Ryan Lehmkuhl
MIT*

Pratyush Mishra
Aleo & University of Pennsylvania†

Yinuo Zhang
UC Berkeley

A Artifact Appendix

A.1 Abstract
We provide EOS, a Rust library that realizes our delegation
protocols for zkSNARKs, and includes components of in-
dependent interest. EOS relies on, and contributes to, the
state-of-the-art arkworks libraries. We generalize the exist-
ing arkworks implementations of PIOP and PC schemes of
the Marlin zkSNARK to support our new abstractions for
secret-shared field elements and polynomials.

A.2 Description & Requirements
EOS can be run on any system with access to a C and Rust
compiler. All the experiments we describe in subsequent sec-
tions can be run on a single machine, but recreating the exper-
imental setup used in the paper requires the following AWS
instances running Ubuntu >18.04:

• Delegator: A r4.xlarge instance in the us-west-2
region

• Worker 1: A c5.24xlarge instance in the us-west-1
region

• Worker 2: A c5.24xlarge instance in the us-west-2
region

This setup emulates the LAPTOPHB delegator setup de-
scribed in the paper. To emulate the LAPTOPLB delegator
setup, see Appendix A.2.4. We don’t provide instructions for
emulating the MOBILE delegator setup since this assumes
access to specific hardware.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

A tarball of EOS can be found at this link.

A.2.3 Hardware dependencies

None.

*Work partially done while at UC Berkeley.
†Work partially done while at UC Berkeley.

A.2.4 Software dependencies

EOS can be run on any system with access to a C and Rust
compiler. The Rust compiler can be installed using this link
and the C compiler can be installed from here. Parsing the ex-
ecution traces from the experiments required Python3 which
can be installed from here.

To emulate the LAPTOPLB delegator setup described in
the paper, the bandwidth of the delegator must be throttled to
350Mbps downlink and 13Mbps uplink. On Linux platforms,
this can be accomplished via the wondershaper package as
follows:

sudo wondershaper {interface} 350000 13000

This can be reset by running:

sudo wondershaper clear {interface}

A.2.5 Benchmarks

None.

A.3 Set-up

All machines used should accept TCP traffic on ports 8000-
10000.

A.3.1 Installation

See the README contained in the artifact.

A.3.2 Basic Test

To run a simple functionality test, navigate to the
experiments/artifact_evaluation directory and run
the bench_snark_delegator.sh, bench_snark_w1.sh,
and bench_snark_w2.sh locally within three separate shells.
These scripts should finish within 5 minutes (assuming
you’ve already built EOS) with the following output:

Running snark delegator with 2^15 constraints
Running snark delegator with 2^16 constraints
...

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 387

https://arkworks.rs
https://drive.google.com/file/d/13j2UKKgyPy2ChuMzs5g8VCQ_3sKMrgK2
https://www.rust-lang.org/tools/install
https://gcc.gnu.org/install/binaries.html
https://www.python.org/downloads/
https://github.com/magnific0/wondershaper

After it completes, run python3 parse.py from the del-
egator machine and ensure that no errors occured, i.e., you
should get text output that looks something like:

SNARK (mode 0, constraints 2^15):
Online latency: 3.7720s
Delegator uptime: 1.7731s

Online comm.: 11.5403MB

and not:

Failure when reading trace for SNARK (mode
0, constraints 2^15) -- try rerunning

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): EOS reduces end-to-end latency of proof generation by
up to 26× and lowers the delegator’s active computation
time by up to 1447× with minimal communication over-
head. This is proven by the experiment (E1) described
in Section 8.3 of our paper whose results are shown in
Table 1 and Figures 5, 6, 7, and 8.

(C2): EOS enables proving instances up to 256× larger in-
stances within a memory budget of 3GB. This is proven
by the experiment (E2) described in Section 8.2 of our
paper whose results are shown in Table 1.

A.4.2 Experiments

(E1): [10 human-minutes + 10 compute-minutes]: This ex-
periment will confirm the numbers given in Table 1 +
Figures 5, 6, 7, and 8 for the LAPTOPHB and LAPTO-
PLB setups. By default, it will run for instance sizes
of 215 − 220, but can be easily modified to run up to
instances of size 225 at the cost of more compute-time.

Note that, if desired, the latency baselines can be re-
created by running benchmarks for the Marlin zkSNARK
over the BLS12-381 curve locally on the worker and
delegator machines.

How to: See the README contained in the artifact for
information on how to configure and run the experiments
Results: The latency + communication results should
match the upperbounds given in Table 1 and the numbers
given in Figures 5, 6, 7, and 8 for the LAPTOPHB and
LAPTOPLB setups.

(E2): [10 human-minutes + 10 compute-minutes]: This
experiment follows a similar workflow as above, but
memory-usage is measured for each protocol execution.

How to: Run the same experiment above, except mod-
ify the relevant benchmarks/scripts to also output the
memory usage. For example, on Linux we can simply
prepend /usr/bin/time -v to the relevant command.

Results: After running, inspect the execution traces on
the delegator (in results/delegator) to retrieve the
memory usage. Using the /usr/bin/time command
described above, this can be obtained by looking for the
"Maximum resident set size" field. Ensure that this value
is consistent with the upperbounds given in Table 1.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

388 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

https://github.com/arkworks-rs/marlin
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

