é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Controlled Data Races in Enclaves:
Attacks and Detection

Sanchuan Chen, Fordham University; Zhigiang Lin, The Ohio State University;
Yingian Zhang, Southern University of Science and Technology

https://www.usenix.org/conference/usenixsecurity23/presentation/chen-sanchuan

This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the
32nd USENIX Security Symposium.

August 9-11, 2023 « Anaheim, CA, USA
978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX
Security Symposium is sponsored
by USENIX.

-+ . = ——



ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix: Controlled Data Races in Enclaves:
Attacks and Detection

Sanchuan Chen
Fordham University
schen409 @fordham.edu

A Artifact Appendix

A.1 Abstract

The artifact SGXRACER is a controlled data race detection
tool analyzing Intel SGX enclave binary code. It is imple-
mented atop angr binary code analysis tool. SGXRACER
performs static analysis, particularly data flow analysis, to
detect shared variables and lock variables in binary code, and
then use a lockset based algorithm to detect data races. To
evaluate SGXRACER, we have tested four well-known SGX
SDKs and eight widely-used SGX applications. We have
open-sourced SGXRACER on GitHub.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Any discovered 0-day vulnerability should be reported to its
software vendor and vulnerability databases such as NVD.

A.2.2 How to access

SGXRACER can be accessed via the following GitHub repos-
itory: https://github.com/0SUSecLab/SGXRacer.

A.2.3 Hardware dependencies

The suggested hardware configuration is an x86-64 PC with
eight Intel Core 17-7700 processors and 32GB memory or
better.

A.2.4 Software dependencies

SGXRACER was originally developed and tested on Ubuntu
20.04. SGXRACER requires Python 3 environment, including
command line tool python3 and pip3. SGXRACER also
requires Python 3 package angr.

A.2.5 Benchmarks

(B1:) SDK binaries: In our repository, we have provided our
pre-built binary code for four well-known SGX SDKs:
Intel SGX SDK, Microsoft Open Enclave SDK, Apache
Teaclave Rust-SGX SDK, and Fortanix Rust EDP SDK.

Zhigiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Yingian Zhang
Southern University of
Science and Technology
yingianz@acm.org

(B2:) Application binaries: In our repository, we have also
provided our pre-built binary code for eight widely used
SGX Applications: mbedtls-SGX, intel-sgx-ssl, TaL.oS,
LibSEAL, SGX_SQLite, stealthdb, SGXDeep, and hot-
calls.

A.3 Set-up
A.3.1 Installation

(1) Set up an OS environment: Ubuntu 20.04. (2) Install pip3
for Python 3:

sudo apt install python3-pip

(3) Install binary code analysis framework angr:
sudo pip3 install angr

(4) Clone SGXRacer GitHub repository:
git clone https://github.com/0SUSecLab/SGXRacer.git

(5) Read the README.md file for SGXRacer tool description
and usage details.

A.3.2 Basic Test

Run the following command detects the controlled data races
in Intel SGX SDK and will test the basic functionality of all
software components:

python3 sgxrace.py -input \
./enclave_binaries/intel_sgx_sdk/enclave.signed.so \
—-output intel_sgx_sdk_results.txt \
-outputl intel_sgx_sdk_resultsl.txt \

> intel_sgx_sdk_stdout

This command may take minutes to execute. Please ignore

warnings. The command should execute successfully without
any exception. It will output three files:

intel_sgx_sdk_results.txt
intel_sgx_sdk_resultsl.txt

intel_sgx_sdk_stdout

The content of these files should match our corresponding
same name result files in the folder results/sdk_results.
intel_sgx_sdk_results.txt is detailed detection results.
intel_sgx_sdk_resultsl.txt is concise version detection
results. intel_sgx_sdk_stdout is detection statistics.

USENIX Association

Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 241


https://github.com/OSUSecLab/SGXRacer

A.4 Evaluation workflow
A.4.1 Major Claims

(C1:) SGXRACER has been used in detecting controlled data
race vulnerabilities in four well-known SGX SDKs: In-
tel SGX SDK, Microsoft Open Enclave SDK, Apache
Teaclave Rust-SGX SDK, and Fortanix Rust EDP SDK.
This is proven by the experiment (E1) described in Sec-
tion 6 whose results are reported in Table 2 in our paper.

(C2:) SGXRACER has been used in detecting controlled
data race vulnerabilities in eight widely used SGX Appli-
cations: mbedtls-SGX, intel-sgx-ssl, TaLoS, LibSEAL,
SGX_SQLite, stealthdb, SGXDeep, and hot-calls. This
is proven by the experiment (E2) described in Section 6
whose results are reported in Table 3 in our paper.

A.4.2 Experiments

(E1): SGX SDK Data Race Detection [60 human-minutes +
20 compute-hour + 5GB disk]:
How to: Run the commands in README.md file eval-
uation part 1: To detect data races in SGX SDKs.
Results: Each command will generate three files similar
to the ones in basic test:
xxx_sdk_results.txt
xxx_sdk_resultsl.txt
xxxX_sdk_stdout

The content of these files should match our cor-
responding same name result files in the folder
results/sdk_results. xxx_sdk_results.txt is de-
tailed detection results. xxx_sdk_resultsl.txt is con-
cise version detection results. xxx_sdk_stdout is de-
tection statistics.

Table 2 Variables Part: Please refer to the detection
statistics file xxx_sdk_stdout.
Example: In file intel_sgx_sdk_stdout:
sv_r_count: 317
sv_w_count: 119
sv_rw_count: 6
len(info.gv_reverse_map): 143

sv_r_count is # Shared Var. Access (R). sv_w_count
is # Shared Var. Access (W). sv_rw_count is # Shared
Var. Access (R&W). len (info.gv_reverse_map) is #
Uniq. Shared Var..
Example: In file intel_sgx_sdk_stdout:

mutex_count: 7

spin_count: 53

once_count: 0

unique_locks: 9

mutex_count is # Lock Var. Access (Mutex).
spin_count is # Lock Var. Access (Spinlock).
once_count is # Lock Var. Access (Others).
unique_locks is # Uniq. Lock Var..

Table 2 Lockset and Acquisition History Part:
Please refer to the data race detection statistics file
xxx_sdk_stdout.

Example: In file intel_sgx_sdk_stdout:
max_lockset_size: 2

min_lockset_size: 0

average_lockset_size: 0.46113479324725687
max_history_size: 8

min_history_size: 0

average_history_size: 3.3398070205136885

max_lockset_size is Ins. Lockset Size (Max.).
min_lockset_size is Ins. Lockset Size (Min.).
average_lockset_size is Ins. Lockset Size (Ave.).
max_history_size is Acquisition History Size (Max.).
min_history_size is Acquisition History Size (Min.).
average_history_size is Acquisition History Size
(Ave.).

Table 2 Var. and Func. Distribution (On table right):
The variable and function distribution are identified
by manually inspecting SDK source code, which
are in folder enclave_source. The result of
variable and function distribution can be find in
results/result_cal.xlsx file corresponding tab:
xxx_sdk_1lib_distribution.

Table 2 Performance Part: Please refer to the con-
cise detection results file xxx_sdk_resultsl.txt and
statistics file xxx_sdk_stdout.

Example: In file intel_sgx_sdk_results1.txt:

ULx86_64_init_done*_ULx86_64_init*unw_init_local_common

Each line is a detected data race, which is separated by
* into three parts: The first part is the shared variable
name in the race, the second part is the function name in
the first thread, and the third part is the function name
in the second thread. By counting the number of lines in
this file and checking the unique shared varaible names,
we can get # Shared Variables and # Data Races.
The false positives are identified by manually inspecting
SDK source code, which is in folder enclave_source.
The result of our false positive analysis can be find
in results/result_cal.xlsx file corresponding tab:
xxx_sdk_£fp (false positives highlighted).

Example: In file intel_sgx_sdk_stdout:

potential racing pairs: 1567

phase 1 time:
0.16607975959777832
phase 2 time:
19.74062967300415

potential racing pairs is Shared Variable Access
Pairs. phase 1 time is Variable Analysis Time (m).
phase 2 time is Data Race Detection Time (m). The

242 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association



sum of phase 1 time and phase 2 time is Total Time
(m). Note the phase 1 and phase 2 are using cached file
in our repository thus may not reflect the real analysis
time. Also note that time may vary due to different soft-
ware and hardware configuration and work load on the
machine.

Heap variables (reported in Section 6.1.2): The heap
variable allocations are identified by manually inspect-
ing SDK source code and find out unique heap al-
location sites, which are in folder enclave_source.
The result of heap variable allocations can be find
in results/result_cal.xlsx file corresponding tab:
xxx_sdk_heap.

(E2): SGX Application Data Race Detection [60 human-

minutes + 10 compute-hour + 5GB disk]:
How to: Run the commands in README.md file eval-
uation part 2: To detect data races in SGX applications.
Results: Each command will generate three files similar
to the ones in basic test:

xxx_results.txt

XxX_resultsl.txt

xxX_stdout

The content of these files should match our cor-
responding same name result files in the folder
results/app_results. xxx_results.txt is detailed
detection results. xxx_resultsl.txt is concise version
detection results. xxx_stdout is detection statistics.
Table 3 Detected Data Races Part: Please refer to the
concise detection results file xxx_resultsl.txt and
statistics file xxx_stdout.
Example:
In file 001_mbedtls-SGX_results1.txt:
add_count*ecp_add_mixed*ecp_add_mixed

Each line is similarly divided by * as in SDK cases. By
counting the number of lines in this file and checking
the unique shared varaible names, we can get the num-
ber of shared variables in the detected data races Var.
and the number of detected data races Races. The false
positives are identified by manually inspecting applica-
tion source code, which are in folder enclave_source.
The result of our false positive analysis can be find
in results/result_cal.xlsx file corresponding tab:
xxx_fp (false positives highlighted).
Example: In file 001_mbedtls-SGX_stdout:

potential racing pairs: 7817

potential racing interleavings: 15317

potential racing pairsisAcc. Pairs.
potential racing interleavings is # Total Inter..

Table 3 Variables Part: Please refer to the detection

statistics file xxx_stdout.

Example: In file 001_mbedtls-SGX_stdout:
Sv_r_count: 234

sv_w_count: 138
sv_rw_count: 0
len(info.gv_reverse_map): 84

sv_r_count is count of shared variable accesses (R).
sv_w_count is count of shared variable accesses (W).
sv_rw_count is count of accesses (R&W).
The sum of these three numbers is # Shared Var. Access.
len(info.gv_reverse_map) is the number of unique
shared variables, i.e., # Var.
Example: In file intel_sgx_sdk_stdout:

mutex_count: 2

spin_count: 66

once_count: 0

unique_locks: 3

mutex_count is count of lock variable accesses (mutex).
spin_count is count of accesses (spinlock).
once_count is count of lock variable accesses (others).
The sum of these three numbers is # Lock Var. Access.
unique_locks is the number of unique lock variables,
i.e., # Lock Var.

Example: In file intel_sgx_sdk_stdout:
average_lockset_size: 0.1978053439017108

average_history_size: 9.270506565018288e-05

average_lockset_size is Ave. Lockset.
average_history_size is Ave. Acq. History.
Table 3 Performance Part: Please refer to statistics
file xxx_stdout.
Example: In file 001_mbedtls-SGX_stdout:

phase 1 time:

0.27547693252563477

phase 2 time:

307.8826234340668

phase 1 time is Variable Ana. (m). phase 2 timeis
Race Det. (m). The sum of phase 1 time and phase 2
time is Total Time (m). Note the phase 1 and phase 2 is
using cached file in our repository thus may not reflect
the real analysis time. Also note that time may vary due
to different software and hardware configuration and
work load on the machine.

Heap variables (reported in Section 6.1.2): The heap
variable allocations are identified by manually inspect-
ing application source code and find out unique heap
allocation sites, which are in folder enclave_source.
The result of heap variable allocations can be find
in results/result_cal.xlsx file corresponding tab:
xxx_heap.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association

Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 243


https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


