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Abstract
Language-based isolation offers a cheap way to restrict
the privileges of untrusted code. Previous work proposes
a plethora of such techniques for isolating JavaScript code
on the client-side, enabling the creation of web mashups.
While these solutions are mostly out of fashion among prac-
titioners, there is a growing trend to use analogous tech-
niques for JavaScript code running outside of the browser,
e.g., for protecting against supply chain attacks on the server-
side. Irrespective of the use case, bugs in the implementa-
tion of language-based isolation can have devastating con-
sequences. Hence, we propose SANDDRILLER, the first dy-
namic analysis-based approach for detecting sandbox escape
vulnerabilities. Our core insight is to design testing oracles
based on two main objectives of language-based sandboxes:
Prevent writes outside the sandbox and restrict access to priv-
ileged operations. Using instrumentation, we interpose oracle
checks on all the references exchanged between the host and
the guest code to detect foreign references that allow the guest
code to escape the sandbox. If at run time, a foreign reference
is detected by an oracle, SANDDRILLER proceeds to synthe-
size an exploit for it. We apply our approach to six sandbox
systems and find eight unique zero-day sandbox breakout vul-
nerabilities and two crashes. We believe that SANDDRILLER
can be integrated in the development process of sandboxes to
detect security vulnerabilities in the pre-release phase.

1 Introduction

Lightweight, language-based isolation for JavaScript was pio-
neered by systems like Google Caja [3] and Douglas Crock-
ford’s ADsafe [1]. They allow code from different parties to
run in the same origin inside the browser, i.e., enabling the
creation of web mashups. However, due to the large number
of vulnerabilities in these systems and the increased adoption
of safer alternatives, e.g., iframe isolation with exchange of
post messages, these solutions are mostly abandoned today.
However, the core ideas advocated by these systems continue
to thrive in the modern JavaScript ecosystem.

1 const {VM} = require("vm2");
2 let sandbox = new VM();
3 let code = ‘
4 let res = eval("import(’./foo.js’);")
5 res.__proto__.__proto__.toString.constructor("

return this")().process.mainModule.require("
child_process").execSync("cat /etc/passwd");

6 ‘;
7 sandbox.run(code);

Figure 1: CVE-2021-23449, a critical sandbox breakout vul-
nerability found by SANDDRILLER. The exploit uses the
result of an import call to escape the vm2 sandbox and invoke
arbitrary operating system commands.

Emerging JavaScript use cases demand cheap sandboxing
that can run outside the browser. For example, Cloudflare [6]
uses it for efficient resource sharing, Tripadvisor [9] for server-
side rendering, Embark [4], and Agoric [8] for blockchain
applications, Moddable [7] for the IoT domain, and Box.js [2]
for malware analysis. Many popular JavaScript sandboxes
have language-based techniques at their core: vm2 - a package
with millions of weekly downloads, Agoric’s realms-shim
and ses - two implementations of early-stage ECMAScript
proposals, Salesforce’s near-membrane, and SandTrap [14] -
a sandbox for trigger-action IoT platforms. To understand the
threat model of these sandboxes, we first perform an empirical
study of their features and the assumptions they make about
the code they execute.

We find that many existing solutions use Node.js’ vm mod-
ule for base isolation and interpose additional security checks
through the Proxy API. Hence, they are incompatible with
older sandbox scrutiny techniques proposed before the adop-
tion of these APIs, e.g., Politz et al. [54].

Let us consider the example in Figure 1 to illustrate why
this is the case. The untrusted code depicted in lines 4-5 es-
capes the sandbox by traversing the prototype chain to the
root prototype and invoking the Function constructor be-
longing to the host code. This, in turn, gives access to the
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highly-privileged require function, which then allows ar-
bitrary command execution. The root cause of the problem
is that the reference assigned to res in line 4 has a root
prototype that points outside of the sandbox. We call these
references foreign references and we observe that most of the
sandboxes we consider aim to prevent at all costs that such
references reach inside the sandbox. For the presented ex-
ample, the maintainers of vm2 and SandTrap, two sandboxes
affected by this vulnerability, fixed their implementations in
response to our reports by disallowing import calls inside
the sandbox. These calls were recently introduced in the EC-
MAScript 2015 standard, and their usage triggers the creation
of a foreign reference inside Node.js’ vm module, a building
block of the aforementioned sandboxes.

The example above shows that security problems appear
when obscure, newly-introduced language features are used
inside real-world sandboxes. Hence, for state-of-the-art ap-
proaches like that of Politz et al. [54] to find such bugs, one
would need to consider the semantics of the entire JavaScript
language and its custom extensions introduced by Node.js.
We note that such an endeavor is beyond the capabilities of
existing static analyses for JavaScript. Moreover, the interpo-
sition through Proxy API used by modern sandboxes further
complicates the implementation of static analyses. Thus, we
propose a radically different way of hardening sandboxes
based on dynamic analysis.

Our idea is to draw inspiration from recent advances in
engine fuzzing [15, 30, 31, 37, 50, 53, 70] and apply it to sand-
box testing. However, prior work in JavaScript fuzzing mostly
uses naïve crash oracles that cannot capture subtle bugs in the
containment logic of language-based sandboxes. For testing
engines written in memory unsafe languages like C++, this
coarse grain approximation suffices to identify potential mem-
ory corruption vulnerabilities. For our case, though, since we
expect most of the bugs to be in the JavaScript code, a crash
oracle is not effective at identifying security violations. Thus,
we propose novel oracles that identify foreign references by
traversing the prototype chain.

SANDDRILLER is a black-box testing approach for
language-based sandboxes. It accepts a corpus of JavaScript
programs as input, and using instrumentation, it deploys rel-
evant oracle checks that search for foreign references. If a
problematic reference is identified, SANDDRILLER validates
the candidate security problem by attempting to write outside
the sandbox or to invoke privileged operations using the sus-
picious reference. If this succeeds, the instrumented program
is minimized using delta debugging, producing a condensed
proof-of-concept sandbox breakout. SANDDRILLER also cre-
ates variants of the seed programs by introducing ingredients
commonly seen in known sandbox breakout exploits.

We evaluate our approach using six sandboxes, three dif-
ferent Node.js versions, and two sources of seed programs:
The ECMAScript conformance test, also known as Test262,
and V8’s unit tests. In total, we run SANDDRILLER for 17.27

hours, performing more than three billion oracle checks. We
observe 115,085 security violations and 48 hard crashes, af-
fecting five out of the six considered sandboxes. However,
most of these issues are caused by a handful of root causes,
hence, after manual investigation and grouping, we report 13
distinct security problems in the analyzed sandboxes. At the
time of writing, eight of them were fixed, and one sandbox
was marked as deprecated in response to our reports.

In summary, our contributions are the following:

• We present a fully automated approach for testing
JavaScript sandboxes. To the best of our knowledge,
ours is the first dynamic analysis-based approach for
hardening language-based sandboxes.

• We present extensive empirical results: first, a study of
real-world JavaScript sandboxes and their objectives and
second, an evaluation of our automated testing approach
on six sandboxes, using 46,606 seed programs.

• We identify 12 confirmed zero-day security issues in
open-source projects. Most of them are sandbox break-
out vulnerabilities accompanied by a working exploit.
We were assigned eight security advisories for our find-
ings, most of them evaluated as having “critical” severity.

2 Study of isolation solutions for JavaScript

Instead of specifying a priori a list of security objectives
that JavaScript sandboxes must adhere to, we perform an
empirical study of the existing solutions in the ecosystem:
(i) we carefully read the documentation of the considered
sandboxes, (ii) we study in detail the previously reported
sandbox breakout vulnerabilities and their fixes, (iii) we set
up the sandboxes locally and run simple test programs to un-
derstand their capabilities, (iv) we audit the sandboxes’ source
code to identify potential flaws. We focus on general-purpose
sandboxes that claim to allow safe execution of untrusted
code. That is, we test critical components of the software
supply chain instead of full-fledged systems using them. We
do so because sandboxes are often available as open-source
software, they are easy to set up and test, e.g., no legal impli-
cations for attempting to escape a given sandbox locally, and
securing sandboxes can positively impact multiple clients at
once. Nonetheless, we observe that there are real systems that
can potentially benefit from securing the sandboxes above:
TripAdvisor and Screep use isolated-vm, Agoric and Lava-
moat use ses, NodeRED and Embark use vm2, and Salesforce
uses near-membrane.

In Table 1, we compile a list of language-based isolation
techniques to be considered in the empirical study. While we
have no way to ensure that this list is comprehensive, over the
course of several months, we performed regular queries for the
keywords “isolation”, “sandbox”, “cage”, and “jail”, both on
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npm and in the scientific literature to identify JavaScript sand-
boxes in use. In the second column of the table, we show the
number of previously known security vulnerabilities for these
systems, obtained by mining public vulnerability databases
and by studying the issues in the sandboxes’ repositories. Ap-
pendix A further lists all the vulnerabilities we consider in
our study. We acknowledge that there are vast differences in
the popularity, maintenance, and implementation rigor of the
considered sandboxes. Nonetheless, we believe that this list
effectively captures both the relevant industrial systems and
the recent scientific ideas in this area.

As a result of our investigation, we compiled a list of four
security objectives that the existing JavaScript language-based
sandboxes aim to fulfill, which we present below.

2.1 Security objectives
The main use case for the considered sandboxes is enabling
safe execution of dangerous JavaScript code. We call the
trusted, first-party code, host code, and we assume it has all
the capabilities offered by the underlying JavaScript platform.
In contrast, the untrusted or guest code’s capabilities need to
be limited to prevent damage to the underlying system, e.g.,
removing important files from the disk.

We assume the guest code actively tries to bypass the secu-
rity control that aims to restrict its privileges. That is, in this
work, we assume an adversary with malicious intent. We also
note that there is an inherent tension between powerful iso-
lation and increased usability. Solutions that only allow data
sharing through copies, e.g., web workers, are inherently more
secure than the ones allowing shared references. However,
we observe that multiple use cases require tight integration
between host and untrusted code. For enabling these, many
popular JavaScript sandboxes rely on lightweight isolation
solutions. We now proceed to discuss the identified security
objectives.

Security objective 1 - SO1

The sandbox should prevent side effects in the runtime,
e.g., writing of values in the global scope.

Builtin objects in the global scope called intrinsics in
JavaScript can be modified at will by user code. Prototype
pollution [39], a vulnerability that received a lot of attention
recently, is also based on the code’s ability to compromise the
integrity of the runtime. It is known to lead to serious security
problems, e.g., remote code execution [57]. Hence, sandboxes
prevent such modifications by containing any change to the
runtime inside the sandbox.

Let us consider the following example:

1 import Realm from ’realms -shim’
2 let sandbox = Realm.makeRootRealm();
3 sandbox.evaluate(‘
4 delete JSON.parse;

5 // JSON.parse undefined inside the sandbox
6 ‘);
7 JSON.parse("{}"); // available outside

The untrusted code shown in lines 4-5 deletes the API for
parsing JSON. This modification is immediately effective
inside the sandbox, e.g., in line 5, but it does not affect the
host code, thus, the API can be safely invoked in line 7.

Security objective 2 - SO2

The sandbox should restrict access to privileged opera-
tions, e.g., to require API.

By default, all the considered sandboxes disable access to
powerful Node.js-specific intrinsics, e.g., the require API for
including additional code. However, users can specify a list
of endowments, i.e., shared references that will be available
inside the sandbox. Let us consider the example below where
the powerful process.kill() method is endowed inside the
sandbox with the name kill:

1 const ivm = require(’isolated -vm’);
2 let isolate = new ivm.Isolate();
3 let sandbox = isolate.createContextSync();
4 sandbox.global.setSync(’kill’, new ivm.Reference(

process.kill));
5
6 sandbox.evalSync(‘
7 // process.kill() not available in the sandbox
8 kill(0); // only through endowments
9 ‘);

Considering that users can share arbitrary references inside
the sandbox, the security of the sandbox is highly dependent
on the list of endowments.

Security objective 3 - SO3

The sandbox should prevent blocking the main loop of
the host process, e.g., by using infinite loops.

The Node.js runtime is a single-threaded environment that
relies on fair usage of the event loop. Thus, if the untrusted
code inside the sandbox attempts to run an endless compu-
tation, the sandbox should prevent that the host code is also
blocked, ideally by providing a timeout functionality. Let us
consider the following example using the notevil sandbox:

1 let sandbox = require(’notevil’)
2 try {
3 sandbox(’while (true);’)
4 } catch(e) {
5 // Infinite loop detected
6 }

The sandbox detects the endless computation performed
by the untrusted code, and stops execution. Hence, the host
code is not affected by this naive attack.
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Security objective 4 - SO4

The sandbox should prevent crashing the host process,
e.g., through memory exhaustion.

Hard crashes of the runtime are to be avoided at all costs in
JavaScript. This has to do with the evolution of the language:
in the browser, pieces of code from different origins should
be allowed to run in the same runtime, but they should not be
able to influence each other, e.g., crashing each other. Some
of the sandboxes we considered attempt to prevent this as
well. Let us consider an example using the jailed sandbox:

1 let sandbox = require(’jailed’);
2 new sandbox.DynamicPlugin("let a=[]; while(1) {a.

push(new Array (4294967295))}");
3 setTimeout(() => {
4 console.log("Successfully executed");
5 }, 60000)

The untrusted code attempts to exhaust the allocated mem-
ory and hence, crash the runtime. The sandbox, however, en-
sures that after the memory is exhausted and the guest code
crashes, the host can still execute the closure in lines 3-5.

We now proceed to see how two important classes of sand-
boxes address the security objectives introduced above.

2.2 Runtime-based sandboxes
The first category of sandboxes we identified use strong
primitives provided by the runtime for isolating untrusted
code. For example, BreakApp and jailed use processes for
isolation, TreeHouse and deno-vm use web workers, and
isolated-vm uses the Isolate interface provided by the
JavaScript engine. At the start of our project, we were con-
vinced that these tried and tested building blocks are robust
enough to prevent most attacks. As seen in the upper part
of Table 1, these sandboxes aim to address all four security
objectives. Moreover, we did not identify publicly-available
security advisories for any runtime-based sandboxes.

It is worth mentioning that we were surprised to see that
these systems are not the main choice of developers and that
the popular sandboxes we identified on npm, e.g., vm2 and
ses, were lighter language-based solutions. We believe this
has to do with the performance penalty incurred by runtime-
based systems and their inability to deal with complex shared
state. Most of these sandboxes do not allow shared references,
and advocate instead for a call-by-copy strategy, which may
be too heavy for certain use cases, e.g., run arbitrary third-
party libraries in a sandbox and interact with them.

Nonetheless, isolated-vm allows shared references be-
tween the host and the untrusted code. After studying the
documentation and the source code, we noticed that any such
reference allows arbitrary code execution in the host’s context.
The untrusted code in the example above that uses the kill
method can be modified to write arbitrary files on the disk:

1 kill.getSync(’constructor’).applySync(undefined , [
’process.mainModule.require(\"child_process\")
.execSync(\"touch success.txt\")’]).applySync(
undefined , []);

Using the legitimate API provided by the sandbox, we
request the constructor property of the shared reference and
use it to inject arbitrary code in the host context. Hence, the
untrusted code can access powerful intrinsics like process
and require. We call this problem a capability leak, in which
a granted endowment can be used for privileged escalation.

We reported this problem to the maintainers of
isolated-vm and their initial response was that users of the
library are aware of this known attack vector. After provid-
ing several vulnerable usages in the clients of isolated-vm,
the problem was fixed, and a security advisory was issued
for our bug report (CVE-2021-21413). To the best of our
knowledge, this is the first vulnerability report published for
a runtime-based JavaScript sandbox.

Another problem we discovered involves the jailed sand-
box. Even though this sandbox runs untrusted code in a sepa-
rate process, hence addressing objective SO1, the new process
fails to restrict access to the powerful builtins described ear-
lier, allowing privilege escalation. After reporting this issue,
CVE-2022-23923 was issued to warn about this danger.

These results show that while runtime-based sandboxes use
powerful isolation primitives, they can still be vulnerable due
to the way these primitives are used and exposed to users.

2.3 Language-based sandboxes
When considering lighter isolation alternatives in Table 1, we
were surprised to see that most of them do not address SO3
and SO4. Even when they do, we identify ways to bypass the
protection. For example, the protection on the maximum num-
ber of iterations in notevil can be side-stepped by traversing
large arrays using higher-order functions.

Considering that two of the considered language-based
sandboxes, i.e., realms-shim and ses, correspond to early-
stage ECMAScript proposals, we contacted their authors to
better understand their threat models. They confirmed that
these two sandboxes do not consider SO3 and SO4 and stated
that it is the responsibility of their users to build additional
defenses against such attacks, e.g., by running each sandbox
in a separate UNIX process.

To address SO1, all the considered sandboxes attempt to
hide the global scope using different strategies: Node.js’
vm module (SandTrap, realms-shim, near-membrane,
safe-eval), interpose proxies1 using the with statement
(ses), disallowing access to global variables during inter-
pretation (notevil), or shadowing them using redeclaration
(MIR). Additionally, ses also proposes freezing the intrinsics
to prevent any attempts at tampering with the global objects.

1https://developer.mozilla.org/en-US/docs/Web/JavaScrip
t/Reference/Global_Objects/Proxy
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Sandbox Type Vulns. SO1 SO2 SO3 SO4 Sandboxing strategy Downloads
R

un
tim

e-
ba

se
d TreeHouse [32] C 0 / 0 worker threads with post messages n/a

BreakApp [65] S 0 / 0 OS processes with IPC n/a
jailed C+S 0 / 0 OS processes with IPC 62
deno-vm S 0 / 0 worker threads with Deno 173
isolated-vm S 0 / 0 expose V8’s Isolate API 12,097

L
an

gu
ag

e-
ba

se
d

vm2 S 0 / 15 vm module and membranes 3,547,348
realms-shim C+S 0 / 2 vm module and membranes 405
ses C+S 0 / 0 membranes and frozen primordials 17,550
safe-eval S 3 / 7 vm module and mutating the context 37,090
notevil C+S 0 / 3 meta-circular interpreter 4,387
SandTrap [14] S 0 / 0 vm module and membranes n/a
MIR [66] C+S 0 / 0 shadow builtins with wrappers 6
near-membrane C+S 0 / 0 vm module and membranes 42
AdSafe C 0 / 3 static checks and wrappers n/a
Caja C 0 / 2 code rewrite and frozen primordials n/a

Table 1: Overview of our study of JavaScript sandboxes. C stands for client-side, and S for server-side. The vulnerabilities
column shows the number of unfixed issues out of the total number of known breakouts. means that the sandbox does not
target the given security objective (SOi), that the sandbox addresses the objective in a way that prevents all our attempts to
jeopardize it, and that the sandbox aims to address the objective but that we could find ways of bypassing the implemented
security control. The last column depicts the number of weekly downloads on npm as of 9th of October 2022.

Since the vm module2 plays such a central role in many of
the considered sandboxes, it is worth discussing its security
assumptions in more detail. According to its documentation,
it allows guest code to run with a ”different global object than
the invoking code“, but at the same time, the documentation
mentions: ”the vm module is not a security mechanism. Do
not use it to run untrusted code“. Let us consider the following
example to illustrate why running untrusted code directly in
the vm module is a bad idea:

1 const vm = require("vm");
2 vm.runInNewContext(‘
3 obj.__proto__.foo = 23
4 this.__proto__.bar = 23
5 ‘, {obj: {}});

In this example, we create a context containing a single
empty object called obj. Unfortunately, the object is shared
inside the new context by direct reference, allowing modifi-
cations of the host code’s context by traversing the prototype
chain, as seen in line 3. Moreover, this attack also works in
empty contexts, because this can be traversed in a similar
way, as seen in line 4. Thus, the vm module suffers from a ca-
pability leak, allowing such references to be used for reaching
any Node.js’ builtin.

However, it is generally accepted knowledge3 [14, 34] that
by interposing membranes for all exchanged objects, such
attacks can be prevented. In Section 4.2, we discuss why

2https://nodejs.org/api/vm.html
3https://github.com/nodejs/node/issues/40718#issuecommen

t-960383644

this is extremely hard to achieve in practice. However, many
packages in our study adopt this strategy, including vm2 - a
package with millions of weekly downloads at the time of
writing. As seen in Table 1, this sandbox also has the highest
number of known security vulnerabilities, possibly due to its
popularity. We collect proof-of-concept breakouts for all the
past vulnerabilities of this sandbox and study them in detail,
together with the source code of the sandbox.

Most of the 15 breakouts are due to bugs in the implemen-
tation of the membrane, and all of them are caused by foreign
references, i.e., references that can be used to reach builtins
of the host code. Let us consider the example below:

1 const {NodeVM} = require(’vm2’);
2 let nvm = new NodeVM()
3 nvm.run(‘
4 try {
5 this.process.removeListener();
6 }
7 catch (e) {
8 e.__proto__.__proto__.__proto__.__proto__.x=23;
9 }

10 ‘);
11 // x is 23 in the host object’s context

The vm2 module is selectively endowing some part of
the process builtin object to allow the usage of listeners
inside the sandbox. However, if an error is triggered in
removeListener, the exception that is generated is a for-
eign reference, allowing modifications of the host object’s
builtins. During the study, we identified a different method in
the process object that is vulnerable to the same attack. We
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reported the problem, and the package’s maintainers promptly
deployed a fix for it. Additionally, we found a capability leak
in realms-shim and a prototype pollution in notevil.

We observe that some of the vulnerabilities and exploits are
specific to a given Node.js version. While the proof of concept
above works in Node.js version 14.15, it does not work with
newer versions, e.g., Node.js 16.12. Thus, one should consider
various versions when testing language-based sandboxes.

Considering the findings in this section, we conclude that
language-based sandboxes are less robust than their runtime-
based counterparts. Thus, there is potential for automated
approaches for finding sandbox breakout vulnerabilities.

3 Sandbox testing with SANDDRILLER

We observe that some of the patterns used in previous exploits
appear benign, as seen in the code examples presented in the
previous section. Thus, we hypothesize that one can use an
existing code corpus to perform security testing for language-
based sandboxes. Naturally, this corpus should cover as much
of the language as possible, under the assumption that some
bugs occur in obscure, less-tested parts of the language. At run
time, we propose inspecting every reference r that could come
from outside the sandbox and checking all the references in
its transitive closure for signs that they may (i) be a foreign
reference, (ii) point to an unprivileged operation, (iii) contain
the value of a global flag we set. If any of the conditions are
met, we proceed to confirm the hypothesis by attempting a
sandbox breakout. If the attack is successful, the exploit is
further minimized and manually analyzed.

We show our sandbox testing pipeline in Figure 2. Each
code fragment in the corpus is first instrumented to include
checks on relevant references, together with exploitation at-
tempts using these references. The instrumented code is then
executed on the target sandbox while a set of oracles observe
security-relevant outcomes. Finally, in case of success, an an-
alyst minimizes the exploit and identifies the root cause of the
problem. Optionally, SANDDRILLER produces variations of
the initial code sample by integrating ingredients from known
breakouts. Recombining parts of prior exploits with benign
code yields an effective way of fuzzing language engines [31],
so we assume it might be useful in our case as well. Below,
we discuss in detail each building block of our approach.

3.1 Instrumentor
We remind the reader that our goal is to intercept all references
inside the sandbox that may point to privileged objects or
methods outside the sandbox. To do so, we need to consider
all the code constructs that have the potential to introduce
new references in the sandbox.

When the sandbox is initialized, the only points of interac-
tion between the untrusted and the host code are the already
present references inside the sandbox: (a) endowments, i.e.,

white-listed APIs granted by users, and (b) global builtins, e.g.,
JSON.parse. These references can be used to invoke methods
outside of the sandbox. Drawing from our experience with
existing vulnerabilities, these external method invocations can
introduce problematic references through (i) return values,
(ii) thrown exceptions, and (iii) arguments of callbacks. Thus,
we propose instrumenting the following code constructs:

1 // replace every function call foo() with
2 (let temp = foo() & checkReference(temp) & foo);
3
4 // replace every try-catch with
5 try {
6 } catch(e) {
7 checkReference(e);
8 }
9

10 // replace every function definition with
11 function foo() {
12 checkReference(arguments);
13 checkReference(this);
14 }

At each instrumentation site, SANDDRILLER inserts checks
on the newly introduced reference in that scope, e.g., a func-
tion’s argument. While we do not provide any guarantees that
these transformations are semantics-preserving, we note that
this is not in line with our goal anyway, e.g., code with slightly
different semantics can still be useful for finding bugs, as we
discuss in Section 3.3. Moreover, tools like Jalangi [56] use
similar transformations for implementing dynamic analysis.

For each reference check, SANDDRILLER first computes
the transitive closure of that particular reference, i.e., it tra-
verses all the reachable references by iterating through its
properties recursively until a fixed point is reached.

For each entry in the transitive closure of the checked refer-
ence, SANDDRILLER performs three types of runtime checks:

• Read secret flag: checks whether the entry contains the
value of a high-entropy variable defined in the global
scope of the host code. This check verifies if the global
scope of the host process is included in the transitive
closure of the reference, hence the high-entropy value
can be accessed directly.

• Access the require method: checks whether the en-
try’s constructor is used to get a pointer to the require
method. This check is inspired by some of the exploits
we observe in Section 2: when invoking the constructor
of a foreign reference, sometimes this binds to a global
object that contains a reference to the require method.

• Different root prototype: checks whether the reference
has a different root prototype than the root prototype
of the sandbox. This final check is a heuristic we use
to identify foreign references. While this check has the
potential to be noisy, in the next section, we discuss how
we validate that a reference flagged by this check can
indeed be used to escape the sandbox.
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Figure 2: SANDDRILLER, a fully automated approach for testing language-based JavaScript sandboxes. The arrows show how
code samples from the corpus are processed through the testing pipeline.

3.2 Sandbox runner

The sandbox runner uses a pool of processes, each process
running a separate test. It also allocates a time budget for
each test, after which the corresponding process is killed. In
such cases, or when the test process crashes on its own, a new
process is spawned to keep the pool’s size constant.

To be able to run a piece of code from the corpus inside the
sandbox, we need to make sure it has the right endowment,
e.g., the builtin console object. We note that ensuring all
programs in the corpus correctly run inside the sandboxes
is an extremely hard problem, which is out of the scope for
this work. Moreover, by providing an extensive list of endow-
ments, in case a sandbox under test suffers from a capability
leak, as discussed in Section 2, SANDDRILLER will produce
a violation for each usage of the endowed API. Hence, we
decide to be conservative and only endow two APIs: a surro-
gate for the require method that is responsible for bringing
additional helper code inside the sandbox, a method called
leak for sending results back outside the sandbox, e.g., notify
the host code that the private flag was successfully read.

At the start of each test, a global flag is set in the global
scope of the host code. The test code is then executed inside
the sandbox while monitoring invocations of the leak method
for any unprivileged read that occurred in the sandbox, in
which case a security error is logged. If the ”different root
prototype“ check for a reference inside the sandbox succeeds,
the instrumented code attempts to use that reference to set a
flag on the root prototype of the host code. At the end of the
test’s execution, the runner verifies if this flag is present on
the root prototype and logs a security error if that is the case.

For client-side sandboxes, the process runner runs each in-
strumented test in a fresh browser window. The leak method
transmits the outcome of the test outside of the browser to
the process runner, which further logs it. Nonetheless, the
check for polluted root prototypes is performed inside the
browser since we do not expect our tests to be able to break
out from inside the browser into the Node.js space. Also, the
performance measurements are performed inside the browser
to measure only the execution of the test, not also the time

spent for initializing the browser.
For detecting possible memory violations, we first use a

coarse-grained oracle that logs any possible crash. In addition,
we also use a finer-grained oracle: we compile Node.js with
memory error monitoring and log any invalid memory ac-
cesses. After any such violation, SANDDRILLER replenishes
the process pool to keep the number of workers constant.

Upon completion, SANDDRILLER logs seven possible out-
comes for a test: (1) run without errors, (2) run with runtime
error, (3) instrumentation error, (4) security error, (5) timeout,
(6) hard crash of the process, (7) memory violation. It also
logs the number of oracle checks performed during execution
and the time it takes to execute the test.

3.3 Variant generator
We noticed that nine out of 27 known exploits in Section 2
use the following pattern:

1 try{
2 ...
3 throw x=>x.constructor("return process")();
4 }catch(e){
5 process = e(()=>{});
6 }

From a nested calling context, a custom closure function is
thrown for encapsulating the scope in which the exception was
thrown. In the catch clause, the closure is invoked to obtain a
reference to a global object of the host code. Considering the
prevalence of this pattern, we hypothesize that it captures an
important challenge of building language-based sandboxes:
handling complex nested scopes.

Thus, we propose creating variants of the tests in the corpus
by wrapping their code in a try-catch block and throwing
an exception on the first line of every function definition, i.e.,
a coarse-grained approximation for a new scope. For example,
for a test file with four function definitions, SANDDRILLER
produces four variants. Each variant consists of the original
code wrapped in a try-catch block and a throw statement
in one of the functions. The catch clause invokes the thrown
closure, like in the listing above.
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We note that, as opposed to other fuzzing techniques, the
proposed way of augmenting the original code corpus is en-
tirely deterministic. For each test, we create a fixed number of
variants that is the same across multiple executions. One may
argue that the presented variant generator overfits to the stud-
ied vulnerabilities, and this may indeed be the case. However,
we aim to explore the feasibility of recombining known ex-
ploit fragments with benign code corpora as a way of boosting
the effectiveness of testing language-based sandboxes.

3.4 Checking outcome of tests
In the last step of the pipeline, we manually study interesting
tests that exhibit either security violations, memory corrup-
tions, or hard crashes. The way SANDDRILLER constructs
instrumented test cases guarantees that every flagged test trig-
gers a security-relevant operation, e.g., prototype pollution.
That is, our testing methodology has no false positives be-
cause each instrumented test is a proof of vulnerability. SAND-
DRILLER only flags tests for which it observes a read or write
outside of the sandbox, a crash of the runtime, or a memory
violation. Nonetheless, it can happen that the security-relevant
outcome is not directly caused by the instrumented test alone,
but by complex interactions with SANDDRILLER’s code base
or with the code fragments introduced by the variant generator.
Thus, the first step in analyzing an offending test case is to
run it in a minimal setup, i.e., a sandbox with no endowments.

Nonetheless, the instrumented test case in this step is rather
complex, so it is not feasible to use it for reporting secu-
rity bugs or for understanding the root cause of the problem.
Hence, we propose using delta debugging [72] for minimiz-
ing the instrumented sample. While preserving the security-
relevant outcome as invariant, e.g., the code should still pollute
the global scope after minimization, we reduce the size of the
code as much as possible. Once minimized, we store each
sample for further grouping with similar tests or for reporting
it to the maintainers of the sandboxes. We also study whether
the minimized exploit is portable across all the considered
Node.js versions. For grouping the exploits, we use our best
judgement, mostly by analyzing the employed language fea-
tures. For example, we group two tests using infinite recursion
wrapped in a try-catch block as likely being produced by
the same bug, even if the concrete syntax used for producing
the recursion is different in the two tests.

3.5 Implementation
We implement SANDDRILLER in about 2,000 lines of
JavaScript code, using esprima parser 4 for instrumentation
and for generating variants. We use deltajs 5 for exploit
minimization, but often observe cases in which it gets stuck,
and need to complement it with manual delta debugging. For

4https://esprima.org/
5https://github.com/wala/jsdelta

testing client-side sandboxes, we employ Puppeteer 6, an or-
chestration framework for headless Chrome browser, to spawn
a browser instance for each test. We use Address Sanitizer 7

as our memory violation oracle.

4 Evaluation

To illustrate the effectiveness of SANDDRILLER, we present
an empirical study involving multiple sandboxes, showing that
our approach is able to find vulnerabilities in most of them.
We start by discussing our empirical setup, then we present the
quantitative results of our study in Section 4.1 and showcase
the most important vulnerabilities found by SANDDRILLERin
Section 4.2. Finally, we discuss our findings in Section 4.3.

Setup. In our study, we consider six language-based sand-
boxes from Section 2 that we could easily set up with
our testing infrastructure: vm2, realms-shim, safe-eval,
near-membrane, AdSafe, and ses. Thus, we exclude sand-
boxes that require us to specify security policies, e.g.,
SandTrap or MIR. Due to Caja being discontinued since early
2022 and the lack of documentation about its isolation compo-
nent, we conclude that Caja is incompatible with our setup.

We run SANDDRILLER against the latest version of each
sandbox, on three different Node.js versions: 14.15, 15.12, and
16.12. Node.js uses parallel releases, so at any given moment,
there are multiple recent releases, all having a different feature
set. At the time of developing our prototype, 15.12 and 16.12
were two “current” releases from 2021, and 14.15 was a “long
term support (LTS)” release from the same year8. As code cor-
pus we use ECMAScript conformance tests (ECMA) and V8
unit tests (V8), containing 41,034 and 5,572 tests, respectively.
We create at most five variants of each program in the corpus
using the approach described in Section 3.3. Finally, we use a
process pool of size 16, and a timeout of 10 seconds for each
test. We use our infrastructure to run SANDDRILLER against
the above-mentioned sandboxes. We run our experiments on
a server with 64 Intel Xeon E5-4650L@2.60GHz CPU cores,
768GB of memory, running on Debian GNU/Linux 10.

As a sanity check for our approach, we run SANDDRILLER
on all the exploits for known vulnerabilities collected in Sec-
tion 2 and show that it can detect foreign references in all of
them. However, we note that this is a poor proxy for showing
the success of our technique, as these exploits were written by
humans. While certain parts of these exploits may be available
in the considered corpus, most of them are overfitted to the
identified bug, so SANDDRILLER could not synthesize them
using the benign samples. Nonetheless, in Section 4.2 we
show previously-unknown vulnerabilities for which SAND-
DRILLER can automatically synthesize an exploit.

6https://github.com/puppeteer/puppeteer
7https://github.com/google/sanitizers/wiki/AddressSanit

izer
8https://nodejs.org/en/blog/year-2021/
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4.1 Quantitative analysis
In this section, we discuss the high-level results of our test-
ing, deferring the presentation of the security findings to the
following section.

Table 2 shows the test outcomes across all the experiments
we performed, on all the selected Node.js versions, including
both the test cases from the original corpus and their variants.
SANDDRILLER finds at least one security error in four out of
five considered sandboxes, and hard crashes in three of them.
ses is the only sandbox for which our tool could not find
a breakout. On the contrary, ses has the highest number of
runtime errors and timeouts of all the sandboxes in our evalu-
ation. This suggests that freezing the intrinsics, a technique
only used by ses in our evaluation, might provide better isola-
tion at the price of preventing some legitimate user code from
executing. ADSafe, near-membrane and safe-eval have by
far the highest number of security errors in our study. After
manual inspection, we conclude that this is because these
three sandboxes fail to prevent some trivial ways of escaping
the sandbox, e.g., using this as a foreign reference. We be-
lieve that for ADSafe this is because this sandbox relies on
JSLint9 to enforce certain static transformations, e.g., remov-
ing direct accesses to the prototype objects. Recent versions
of JSLint do not perform such transformations, hence, break-
ing the invariant of the sandbox. The number of hard crashes
is small overall, but this is to be expected in a language like
JavaScript that adopts a no-crash policy. Similarly, the mem-
ory corruption oracle produces few violations for a handful
of tests in our corpora, e.g., allocation-limit.js from ECMA.
These tests attempt to allocate a very large ArrayBuffer,
which causes Address Sanitizer to stop the execution of the
program with the message “requested allocation size exceeds
maximum supported size”. This shows that such oracles are
too coarse-grained for our testing problem, as they fail to
capture security bugs that occur in upper layers.

Considering that the tests in our corpus run without a prob-
lem outside of the sandbox, but many of them fail to run in
our setup, we inspect some of the failures to see why that is
the case. Most of the cases we analyzed are due to missing
objects in the global scope, but we also found cases in which
the sandbox did not support certain language features, e.g.,
mutating the root prototype when running inside ses. Thus,
we conclude that the number of errors can be further reduced
by extending the list of endowments, but that SANDDRILLER
finds a significant number of security errors, despite the high
number of tests that fail to run with our testing pipeline.

In Table 3, we present the security-relevant outcomes
grouped by Node.js version, data set, and the use of our vari-
ant generator. We do not include AdSafe in this table be-
cause it is a client-side sandbox that we run inside a headless
browser, hence we do not observe any variations across dif-
ferent Node.js versions. We find that the number of security

9https://www.jslint.com/

violations and hard crashes increases when using the variant
generator. However, we warn the reader that this increase is
partially an artifact of our variant generator, i.e., if the original
test triggers a security error, most of its variants probably do
so too. Nonetheless, this should at most magnify the number
of violations with a factor of 5 (the number of variants), but
we see cases like vm2 on Node.js 16.12 where this increase
is larger. We also note that both data sets in our corpus can
find security bugs in the affected sandboxes. Hence, while the
diversity of the corpus’ code plays a critical role in the success
of SANDDRILLER, we conclude that our approach is generic
enough to work with various sources of input code samples.
Finally, we observe that there are important differences across
Node.js versions, validating our observation from Section 2
that some exploits only work on a specific version of the
runtime.

Oracle checks. Figure 3 shows the number of oracle checks
against the selected sandboxes, using both ECMA and V8 data
sets in our corpus, on a specific Node.js version 16.12. In all
sandboxes used in our evaluation, we find that the peak of all
distributions on both data sets is located close to zero oracle
checks. This is probably due to the large number of runtime
errors we report in the previous section. Moreover, there is a
significant number of tests with approximately 20,000 oracle
checks. We hypothesize that this is due to test cases in which
SANDDRILLER recursively checks the transitive closure of
the global object. This object contains references to all the
intrinsics, and thus, recursively traversing all their properties
triggers a lot of oracle checks. Nonetheless, the list of intrin-
sics enabled by default inside the sandbox is much larger
in vm2, near-membrane, and safe-eval than in ses and
realms-shim. For example, SharedArrayBuffer is avail-
able by default in the first three sandboxes but not in the last
two. Finally, even though the number of oracle checks ap-
pears low in realms-shim, in the following section, we show
that SANDDRILLER finds important security breakouts in this
sandbox, so the number of oracle checks is a poor proxy for
effectiveness.

Performance. To understand the total time it takes for
SANDDRILLER to run the tests in the corpus, Figure 4 shows
the distribution of testing time for a specific Node.js version
16.12. These results show that most of the test cases finish
in less than 200 ms, independent of the sandbox they are run
on. This is not entirely unexpected, as the two data sets we
consider contain mostly simple unit test programs that are
expected to run very fast. It is interesting to observe that
the three sandboxes with a large number of oracle checks in
Figure 3 are also the slowest ones. This suggests that oracle
checking is a non-negligible slowdown factor introduced dur-
ing instrumentation. Nonetheless, one can run thousands of
test cases with SANDDRILLER in a few minutes, showing its
potential to be used in production.
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Sandbox Data set Without errors Runtime error Timeout Security error Hard crash Memory corruption

vm2 ECMA 111742 117315 35311 26 18 6
V8 15515 14904 6323 56 4 0

realms-shim ECMA 115750 119408 45008 60 0 6
V8 15085 15030 9710 55 0 0

ECMA 89521 115106 38426 27482 18 6safe-eval V8 8043 14749 7398 8054 4 0

ses ECMA 113834 119364 47759 0 0 6
V8 15173 14986 9740 0 0 0

ECMA 85410 112964 37414 29926 0 6near-membrane V8 8053 14706 7064 9644 4 0

ADSafe ECMA 1999 20219 4419 44441 0 0
V8 516 7536 6589 846 0 0

Table 2: The outcome of running the programs in the corpus inside the considered sandboxes. We note that the numbers also
include variants of the programs in the corpus generated using the approach described in Section 3.3. The last three columns of
the table depict the security-relevant results detected by SANDDRILLER. We highlight sandboxes with known vulnerabilities or
for which maintainers responded that the project is a prototype.
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Figure 3: Distribution of the number of oracle checks per test
in different sandboxes. We show results for the two data sets
considered in our corpus: ECMA and V8.

4.2 Qualitative analysis

As mentioned earlier, manually grouping the identified sand-
box breakouts based on the root cause is a tedious, error-prone
process. Considering the large effort required to maintain an
open-source project, we decided to be selective when report-
ing vulnerabilities and avoid overloading maintainers with all
the reports at once. We describe below our experience with
vulnerability disclosure and present the most important sand-
box breakouts. We warn the reader that a single advisory for
a given sandbox may correspond to multiple reported attack
vectors. In Table 4, we depict the confirmed vulnerabilities we
reported, and their time of reporting and fixing, if applicable.
In the last column, we list the concrete payload we reported.
As observed, some security advisories correspond to multi-
ple payloads since the sandbox maintainers handled them as
a batch. We now proceed by describing a bug we found in

Figure 4: Cumulative distribution function for the execution
time of tests. The data corresponds to Node.js version 16.12.

Node.js’ vm module, which affects most of the considered
sandboxes.

Node.js. During our manual inspection, we find a recurring,
hard-to-explain pattern in many of our exploits. We show a
distilled version of this pattern in Figure 5. The code triggers
an infinite recursion exception, which acts as a foreign refer-
ence for sandbox breakout. The intriguing part of this example
is line 8, which is an essential ingredient for the exploit to
work. This unused line creates an exception and accesses its
stack property. After carefully debugging this code, we report
that if this line is not present, the try-catch block executes only
once, but if the line is present, the block executes 498 times
in our setup. We traced this bug to a commit from 201910,

10https://github.com/nodejs/node/commit/6f7005465a
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Original corpus Variants

Node.js version Sandbox Data set Security error Hard crash Security error Hard crash

14.15

vm2 ECMA 1 2 6 4
V8 7 1 11 1

realms-shim ECMA 4 0 8 0
V8 12 0 4 0

ECMA 3154 2 6214 4safe-eval V8 812 1 2079 1

ses ECMA 0 0 0 0
V8 0 0 0 0

ECMA 2873 0 6877 0near-membrane V8 793 1 2476 1

15.12

vm2 ECMA 1 2 4 4
V8 7 1 12 1

realms-shim ECMA 4 0 12 0
V8 12 0 4 0

ECMA 3142 2 5484 4safe-eval V8 738 1 2071 1

ses ECMA 0 0 0 0
V8 0 0 0 0

ECMA 3075 0 6360 0near-membrane V8 793 1 2476 1

16.12

vm2 ECMA 1 2 13 4
V8 8 0 12 0

realms-shim ECMA 17 0 15 0
V8 18 0 5 0

ECMA 3957 2 5531 4safe-eval V8 475 0 1879 0

ses ECMA 0 0 0 0
V8 0 0 0 0

ECMA 3581 0 7160 0near-membrane V8 626 0 2374 0

Table 3: Violations reported by SANDDRILLER in the three considered Node.js versions, using the corpus and its variants. We
highlight sandboxes with known vulnerabilities or for which maintainers responded that the project is a prototype.

in which error stack traces were refactored. Our hypothesis
is that when preparing the stack trace, the C++ code invokes
a ReThrow() function, which spawns additional unwrapped
exceptions inside the vm module, acting as foreign references.
This potential bug breaks the assumption that lies at the core
of most sandboxes we consider: augmenting the vm module
with membranes yields a secure sandbox. That is because
membranes are deployed at the interface between guest and
host code, but in the example above, the exception is spawned
as a result of invoking custom functions defined inside the
sandbox. Hence, no proxy is deployed in line 6 to mediate
accesses on the problematic exception. We warn the reader
about the semantic gap between the source of the bug (low-
level C++ code inside Node.js internals) and the entity under
test (sandbox’s code implemented in JavaScript). This gap

makes writing and maintaining language-based sandboxes an
extremely difficult task, requiring developers to account for
the unpredictable behavior in the lower level.

We reported this bug to the Node.js team and described it
as a security problem with significant impact in the ecosystem.
We were very surprised by the response we got from them:
“This looks like a vulnerability on those sandboxes and not the
vm module itself as it is clearly marked as not being security
sandbox. We clearly do not provide any security guarantee on
the behavior of vm.”. This means that the affected sandboxes
must patch their implementations in a very cumbersome and
error-prone way: preventing access to all methods that prepare
a stack trace for an exception. Deploying such a fix has serious
side-effects on the usability of these sandboxes as well: benign
code that is willing to use this API is suddenly prevented

USENIX Association 32nd USENIX Security Symposium    3467



Sandbox Vulnerability Date of reporting Date of fixing Details about the payloads

isolated-vm CVE-2021-21413 8th of February 2021 12th of February 2021 • capability leak

vm2 CVE-2021-23449 15th of September 2021 12th of October 2021 • import keyword

• custom stack traces

vm2 CVE-2021-23555 25th of November 2021 8th of February 2022 • vm’s stack property issue

vm2 Issue #285 29th of April 2020 29th of April 2020 • custom toString()
method on listener objects

realms-shim CVE-2021-23594 10th of December 2021 n/a • custom stack trace

realms-shim CVE-2021-23543 10th of December 2021 n/a • vm’s stack property issue

SandTrap GHSA-xx7r-mw56-3q2h 22nd of September 2021 11th of November 2021 • import keyword

• vm’s stack property issue

• custom stack traces

jailed CVE-2022-23923 4th of January 2022 n/a • direct access to powerful
builtins

notevil CVE-2021-23771 4th of January 2022 n/a • bypass restriction on prop-
erty names

Table 4: Confirmed vulnerabilities in response to our findings. Each item point in the last column represents a sandbox breakout
payload that we reported to the maintainers of the sandboxes.

1 const vm = require("vm");
2 vm.runInNewContext(‘
3 function test() {
4 try {
5 test();
6 } catch (e) {
7 e.__proto__.__proto__.__proto__.polluted = 23;
8 new Error().stack;
9 }

10 }
11 test();‘);

Figure 5: A non-trivial escape from the vm module, caused by
a bug in Node.js. If we remove the highlighted line, which
appears superfluous at first, the escape stops working. The
bug is present in all three Node.js versions.

from executing inside the sandbox. We believe that this is a
very unfortunate development and that the community should
be aware of this state of affairs. Thus, we worked with the
Node.js team to improve the documentation and send this
message more explicitly11.

Before describing additional findings in the individual sand-
boxes, it is worth reflecting on this important empirical result.
We conclude that language-based sandboxes are only as ef-
fective as their building blocks, i.e., if one of these blocks
misbehaves and there is no obvious way of fixing it, one must
either replace that block or expand the existing assumptions

11https://github.com/nodejs/node/commit/86fba23b1f752488
9205a1c02e8f9010ad61998e

1 const {VM} = require("vm2");
2 let vmInstance = new VM();
3 vmInstance.run(‘
4 try {
5 Object.defineProperty(
6 RegExp.prototype ,
7 Symbol.match , {
8 get: function () {
9 new Error().stack;

10 "x".match(/a/)
11 }
12 })
13 "x".match(/a/);
14 } catch (e) {
15 e.__proto__.__proto__.__proto__.polluted = 23;
16 }‘);

Figure 6: A sandbox breakout vulnerability in vm2 found by
SANDDRILLER. It is a variation of the exploit in Figure 5 that
only runs in Node.js 16.12 and 15.12, but not in 14.15.

to accommodate the misbehavior. In our case, this means
augmenting the membrane-based solution with additional re-
strictions on the code running inside the sandbox.

Vm2. We reported a total of four sandbox breakout vulner-
abilities for this sandbox, one already discussed in Figure 1.
Initially, we faced very slow response times from the maintain-
ers, and we were even offered to take over the maintainer role
for this package. Considering that this is a package with al-
most 500 dependents and three million weekly downloads, we
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1 const {VM} = require("vm2");
2 let vmInstance = new VM();
3 vmInstance.run(‘
4 Object.prototype.get = 0;
5 Object.getOwnPropertyDescriptor(this , "VMError")

[’get ’];
6 ‘);

Figure 7: A hard crash in vm2 found by SANDDRILLER. It
works in all the considered Node.js versions.

1 import Realm from ’realms -shim’
2
3 let realm = Realm.makeRootRealm();
4 try {
5 realm.evaluate(‘
6 Error.prepareStackTrace = function (e, st) {
7 st.__proto__.__proto__.polluted = ’success’
8 };
9 x;‘);

10 } catch(e) {
11 // we do not even need to print e
12 }

Figure 8: CVE-2021-23543, a sandbox breakout vulnerability
in realms-shim found by SANDDRILLER. The exploit uses
a custom stack trace method to escape the sandbox.

found this attitude distressing, especially when considering
the recent supply chain attacks. After contacting a company
specialized in disclosing security vulnerabilities, a fix was
deployed, and a CVE was issued to warn the users about the
potential security risks. At the time of writing, all breakouts
are already fixed. We draw the reader’s attention to the bug
in Figure 6, for which the authors deployed a cumbersome
fix consisting of heavy refactoring of the sandbox’s code12.
While this bug is caused by the vm module’s erratic behavior,
there are a couple of important differences compared to the
exploit discussed before. First, this latter one only works on
two out of three considered Node.js versions, showing the
importance of testing against different versions of the runtime.
We notice that the spurious line with the stack access is in
a different position, and if one attempts to move it after the
recursive call in line 10 or into the catch block in lines 14-16,
the exploit stops working. The deployed fix for the bug is to
tightly control access to stack traces from inside the sandbox
and to add a similarly spurious call to the stack property inside
the sandbox’s code13. In Figure 7, we show a hard crash of
Node.js caused by untrusted code running inside the vm2 sand-
box. The exploit first defines an invalid getter function on the
root prototype, and then it retrieves a property descriptor of
the VMError object, a custom intrinsic defined by the sandbox.

12https://github.com/patriksimek/vm2/commit/2353ce60351c
50379b8d1daab05812c4db634162

13https://github.com/patriksimek/vm2/blob/392f126b18d5f6
e1ea9300a2176707fc852da863/lib/setup-sandbox.js#L183

When the get property of the descriptor is accessed, Node.js
unexpectedly crashes with ”Invalid property descriptor“. It
is worth mentioning that the same code, when run outside
the sandbox or inside another sandbox, does not crash the
runtime. Hard crashes are rare in JavaScript, and they can be
used to perform powerful denial-of-service attacks. However,
our initial motivation was to look for crashes as a symptom
of memory corruption. After manually analyzing the reported
crashes, we conclude that all of them are caused by assertions
in the C++ code and not by illegal memory accesses.

Realms-shim. We initially exchanged several emails with
the maintainers of realms-shim to better understand their
threat model. A significant part of the discussion of security
objectives in Section 2 developed during these interactions.
The maintainers of this sandbox told us that they shifted their
interest towards ses, but realms-shim was still quite active
at the time. We thus considered both ses and realms-shim in
our study. After reporting several vulnerabilities we identified,
they decided to stop maintaining that package and mark it as
deprecated. Moreover, Snyk issued two CVEs for our findings
in this package to send an even stronger message about the
dangers of using it. In Figure 8, we show one of the two
breakouts SANDDRILLER found. It declares a custom stack
trace method and then triggers a runtime error by referring to
a non-existent variable x. Though the stack trace of the error
is never explicitly printed, the payload for polluting the global
object in line 7 is triggered by the sandbox’s internals.

Near-membrane. Even though we find multiple vulnera-
bilities for the server-side version of this sandbox, we only
reported one to first understand developers’ assumptions. The
maintainers replied that they are aware of the problem, but
“this is not a library that is used internally nor do we have any
customers externally using this library”. We believe that the
documentation of the package should make these assumptions
more clear, e.g., communicating that the project is a prototype
and nobody should use it in practice.

SandTrap. While we did not test this sandbox directly in
our study, we checked if any of the exploits we found for the
other sandboxes work against SandTrap. Initially, we had a
hard time setting up the tool, but after getting in touch with
the authors, they assisted us by creating a sample policy and
clarifying the threat model. Three of the exploits identified for
other sandboxes worked against SandTrap as well, showing
that developers of independent projects tend to make the same
mistakes or overlook the same important assumptions about
the underlying infrastructure. The authors promptly fixed two
of the breakouts and issued a security advisory (GHSA-xx7r-
mw56-3q2h). For the last one, they are still searching ways
of mitigating the unpredictable behavior of the vm module.
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4.3 Discussion

Our results show that SANDDRILLER can detect non-trivial
bugs in multiple sandboxes, with modest testing effort. Most
critical vulnerabilities we discovered are sandbox breakouts
that violate the objectives (SO1, SO2). We find that language-
based sandboxes often fail to deliver on their promise because
of intricate corner cases involving obscure parts of the lan-
guage or poorly documented behavior of the runtime. Con-
sidering the identified issue in the C++ implementation of
Node.js’ vm module, we speculate that SANDDRILLER may
also be applicable to runtime-based sandboxes that allow
foreign references, which are an essential part of our method-
ology. We believe that sandbox developers should consider
integrating SANDDRILLER in their development process to
detect vulnerabilities automatically early on in the release
life cycle. The practitioners we interacted with were often
intrigued that we found the bugs automatically, wanting to
hear more about our tool. This shows that there is a real need
for an approach like ours.

While SANDDRILLER has no false positives by construc-
tion, i.e., every alert corresponds to code that breaks a security
invariant, it cannot guarantee the absence of false negatives,
a limitation inherent to testing. That is, SANDDRILLER can
only show the presence of sandbox breakouts, not their ab-
sence. Thus, our approach is not a way to certify a given
release, but a sanity check that the sandbox can deal with real-
world code, employing a variety of language constructs. We
note that this is in stark contrast with the objectives of prior
work that aims to verify the code of sandboxes [43,44,54,62].

Our work targets supply chain components in isolation,
not entire systems. Nonetheless, the identified vulnerabilities
allow complete breakout of popular sandboxes, which are
often used in real-world systems. Since we are not aware of
an ethical way of verifying the vulnerability of live systems
to our payloads, we recommend users of these sandboxes
to migrate to the latest version as soon as possible. More-
over, considering the inability of language-based sandboxes
to defend against denial-of-service attack vectors (SO3, SO4),
we recommend sandbox users to follow the defense-in-depth
paradigm and to deploy additional security controls. For ex-
ample, the maintainers of ses told us that they recommend
deploying an additional layer of security similar to the one
advocated by TreeHouse [32] and BreakApp [65] where the
untrusted code is run in a separate thread or process to prevent
resource exhaustion attacks. Thus, by combining language-
with runtime-based isolation, one can achieve both satisfac-
tory security guarantees and fine-grained access to resources.

Moreover, we find important similarities between testing
sandboxes and testing language engines. Future work should
explore more sophisticated ideas from this adjacent research
area. For example, one could define more complex mutations
that reuse a larger part of known exploits [31] and add a feed-
back loop carrying runtime information about the sandbox

under test to inform the mutation selection. The used corpora
can also be partitioned across language features to ensure
uniform coverage of the grammar [15] or to prioritize new
language features through space reduction. Nonetheless, it is
essential that such ideas are combined with our novel domain-
specific oracles to produce actionable sandbox breakouts.

Our approach is extensible in multiple ways. First, to sup-
port new language features, the input corpus should simply
be augmented with code containing these features. Second,
to consider new oracles, SANDDRILLER only needs a direct
communication channel with the oracle to collect possible
violations. Third, one can also extend the list of security ob-
jectives and perform an additional study of sandboxes with
respect to the new objective. However, we expect objectives
to rarely change, only after paradigm changes like the recent
one involving microarchitectural side-channels [35]. Thus,
to include this new assumption, one should first study the
resilience of the sandboxes to a simple speculative execu-
tion attack (SO5) and add a new column in Table 1. Then,
using a feedback channel from CPU-level, one should de-
fine an additional oracle to detect out-of-order executions.
SANDDRILLER can then test sandboxes that claim to pre-
vent speculative execution attacks to find new attack vectors
against them. The discussed scenario is hypothetical, since
none of the considered sandboxes prevent such side channels.

5 Related Work

In this section, we survey closely-related work on building and
verifying JavaScript isolation techniques, fuzzing JavaScript
engines, and server-side JavaScript security.

Verifying JavaScript Isolation. Politz et al. [54] propose
a type-based static analysis for identifying bugs in JavaScript
sandboxes. They show that it can detect multiple types of
bugs in ADSafe, one of the first language-based sandboxes
for JavaScript. Taly et al. [62] propose a slightly different
approach by providing a rigorous definition for the reference-
monitoring functionality of a sandbox. By analyzing the oper-
ations performed by the sandbox using JavaScript’s seman-
tics and the presented definition, the authors could identify
multiple bugs in the analyzed sandboxes. Similarly, Maf-
feis et al. [45] show how verifying isolation on a subset of
the language can be used to detect bugs in real-world sand-
boxes. Also, Maffeis et al. [44] introduce authority safety, an
objective that language-based sandboxes should achieve to
provide sound isolation. Finifter et al. [25] show how state-
of-the-art sandboxes fail to prevent access to methods de-
fined on the root prototype. We are the first to present a dy-
namic analysis-based approach for testing language-based
sandboxes. There are also approaches for verifying the con-
finement of JavaScript code after it is compiled by the just-in-
time (JIT) compiler. Maisuradze et al. [46] propose a fuzzing
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approach for finding non-blinded user constants in the code
produced by the JIT. Park et al. [51] present sophisticated
attacks that are enabled by unsafe handling of user’s code
inside the JIT. While such bugs can compromise the security
of language-based sandboxes, we consider them out of scope.

JavaScript Isolation. There are many proposed techniques
for isolating JavaScript code deployed in various levels of
the software stack. Language-based sandboxes often rely
on two important building blocks: proxies [19] and mem-
branes [47], which are popular ways of implementing refer-
ence monitoring in JavaScript. JSand [13] uses membranes
and server-side maintained policies to enable the creation of
web mashups. NodeSentry [29] and DecentJS [33] propose
using membranes and security policies for reducing the ca-
pabilities of JavaScript code. JaTE [63] heavily relies on the
semantics of the with statement. More recently, MIR [66]
advocates for interposition using reference monitors deployed
in the local scope to shadow global builtins. Similarly, Fer-
reira et al. [24] propose a permission system enforced using
program rewriting, i.e., it inserts runtime checks at program
locations that use relevant property names. Ahmadpanah et
al. [14] propose augmenting Node.js’ vm module with mem-
branes. Ko et al. [34] introduce the SecureJS compiler for
enforcing memory isolation in JavaScript runtimes that do
not offer this feature. There are also coarser-grained tech-
niques for JavaScript isolation: AdSentry [22] advocates for
using additional instances of the runtime, Treehouse relies
on web workers [32], while BreakApp uses operating sys-
tem processes [65]. JSISOLATE [73] proposes modifying the
browser to intercept relevant operations performed by the un-
trusted code. Isolation of JavaScript code can also be done at
lower levels: sandboxing the browser with Native Client [71],
parts of the browser using RLBox [48] to prevent dynamic
compromise [11], or even adding hardware support for isola-
tion using EIRM [64], IMIX [26], or Enclosure [28]. Recently,
Wyss et al. [68] proposed using system call filtering to reduce
the capabilities of install-time hooks, which are extensively
used in supply chain attacks. We note that many of the tech-
niques above offer robust isolation of JavaScript code, but
practitioners rely instead on cheaper solutions that allow sand-
box breakout through foreign references. SANDDRILLER is
thus a pragmatic approach for a real-world problem identified
in the open-source ecosystem. Bhargavan et al. [16] study the
dual problem of protecting guest code from untrusted hosts.
They propose DefensiveJS, a subset of the language that guar-
antees the integrity of the JavaScript code. SANDDRILLER
is not directly applicable to this case, but we believe that a
similar solution based on foreign reference oracles can detect
unexpected references that can be mutated by the host, e.g.,
toString builtin method.

Fuzzing JavaScript Engines. There is a growing interest
in testing JavaScript engines using fuzzing techniques. Holler

et al. [31] use the language’s grammar and code fragments
from previous exploits to identify unknown bugs. Park et
al. [50] propose a more sophisticated way of recombining
fragments from known exploits, using aspect-perceiving muta-
tion. Aschermann et al. [15] augment grammar-based fuzzing
with coverage information, while Lee et al. [37] use machine
learning-based language models to generate new test cases.
Patra et al. [53] infer probabilistic, generative models from
input JavaScript corpora. Similarly, Ye et al. [70] train a deep
learning model on the specification of the language and further
use this model to generate tests. It further uses these models
for generating code that is syntactically similar to the one in
the corpus. Han et al. [30] enforce semantic constraints on
the variants produced during fuzzing to minimize the number
of invalid programs generated. Veggalam et al. [67] use evo-
lutionary algorithms to increase the performance of grammar-
based fuzzers. As discussed in Section 4.3, testing language-
based sandboxes has many similarities to engine fuzzing, and
thus, many of these ideas can be used to extend our work.

Security of Server-Side JavaScript. Running JavaScript
outside the browser is an important recent trend, with Node.js
and its ecosystem npm at the center of this movement. Zim-
mermann et al. [74] study the two main risks associated with
npm packages: depending on vulnerable code and supply
chain attacks. They show that the average npm package re-
lies on 79 other packages and on 39 maintainers. There is an
increasing body of work studying important classes of vulner-
abilities in Node.js libraries: injection vulnerabilities [27, 59],
ReDoS [20,21,42,58], supply chain attacks [23,24,52,68,74],
prototype pollution [40, 41, 57], hidden property abuse [69],
low-level code [18, 61], code bloat [12, 36]. Another emer-
gent threat is the reliance of these libraries on WebAssem-
bly, which has the potential to introduce new vulnerabili-
ties [38] and to reduce the performance of existing security
tools [55]. Li et al. [40, 41] propose using object dependency
graphs, a novel representation of JavaScript code, for statically
detecting vulnerabilities. Koishybayev et al. [36] advocate
for debloating npm packages using static fine-grained call
graph analysis. Nielsen et al. [49] use call graphs for more
effective software composition analysis. Duan et al. [23]
detect malicious packages using a multi-stage hybrid pro-
gram analysis. Staicu et al. [60] propose TASER, a tech-
nique for extracting security specifications for npm libraries,
which are further used to increase the recall of static analysis.
Davis et al. [21] augment the Node.js runtime with a defense
against CPU-based denial-of-service attacks. In Chapter 2,
we discuss three recently-proposed isolation techniques for
server-side JavaScript and analyze their security objectives:
BreakApp [65], MIR [66], and SandTrap [14]. None of the
works above tests popular sandboxes available in the npm
ecosystem. Recently, Bhuiyan et al. [17] proposed an exten-
sive benchmark suite of known vulnerabilities in server-side
JavaScript, including several vulnerabilities identified by us.
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6 Conclusion

In this paper, we present SANDDRILLER, a dynamic analysis
technique for testing language-based JavaScript sandboxes.
We show that it is effective at finding bugs in real-world
code by uncovering 12 sandbox breakouts in open-source
sandboxes, corresponding to eight high-severity advisories.
Our solution is lightweight and, thus, easy to integrate into
existing development processes to detect sandbox breakout
vulnerabilities before each software release. Additionally, we
identify an unusual dynamic between Node.js’ maintainers
and the sandbox creators: there is a mismatch between the
latter’s expectations and the former’s disponibility towards
fixing bugs in the runtime to harden widely-used sandboxes.
It is crucial to clear up this dispute and make expectations
clear on both sides, to protect millions of users relying on
these sandboxes.
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Sandbox Vulnerability

vm2 Issues 179
vm2 Issues 186
vm2 Issue 197
vm2 Issue 199
vm2 Issue 224
vm2 Issue 225
vm2 Issue 241
vm2 Issue 268
vm2 Issue 276
vm2 Issue 187
vm2 Issue 185
vm2 Issue 184
vm2 Issue 177
vm2 Issue 175
vm2 Issue 138

realms-shim Advisory GHSA-7cg8-pq9v-x98q
realms-shim Advisory GHSA-6jg8-7333-554w
safe-eval Issue 19
safe-eval Issue 18
safe-eval Issue 16
safe-eval Issue 24
safe-eval Issue 7
safe-eval Issue 5
ADSafe Politz et al. [54]
Caja Michał Bentkowski’s blog post [10]
Caja PortSwigger blog post [5]

Table 5: Complete list of vulnerabilities depicted in Table 1.

A Complete list of studied vulnerabilities

To allow further analysis and/or replication of our empirical
study, we present in Table 5 the complete list of vulnerabilities
considered in Table 1.
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