
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 31st USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

31st USENIX Security Symposium.
August 10–12, 2022 • Boston, MA, USA

978-1-939133-31-1

Open access to the Artifact Appendices
to the Proceedings of the 31st USENIX

Security Symposium is sponsored
by USENIX.

Playing Without Paying:
Detecting Vulnerable Payment Verification
in Native Binaries of Unity Mobile Games

Chaoshun Zuo and Zhiqiang Lin, The Ohio State University
https://www.usenix.org/conference/usenixsecurity22/presentation/zuo

A Artifact Appendix

A.1 Abstract
Obligatory. Briefly describe your artifact including minimal
hardware and software requirements, how it supports your
paper, how it can be validated, and what is the expected result.
At submission time, it will also be used to select appropri-
ate reviewers. It will also help readers understand what was
evaluated and how.

The artifact is the source code of the tool (i.e., Pay-
mentScope) we proposed in the paper. It can detect payment
bypass vulnerability in Unity mobile games. It is implemented
atop Ghidra. To evaluate PaymentScope, we have attached
15 games in which 10 of them are vulnerable. PaymentScope
can detect that 10 of them are vulnerable and it can tell the
vulnerability type (i.e., local-verification or no-verification).
To run PaymentScope, we have prepared a VirtualBox VM in
which all the requirements have been setup. The VM needs 2
cores CPU and 8GB memory (mostly required by Ghidra)

A.2 Artifact check-list (meta-information)
Obligatory. Fill in whatever is applicable with some keywords
and remove unrelated items.

• Program: the source code of PaymentScope

• Run-time environment: VirtualBox VM with 2 cores CPU
and 8GB memory

• Security, privacy, and ethical concerns: please don’t use the
tool to attack any real games.

• Output: identify 5 local-verification and 5 no-verification
games

• Experiments: run /home/paymentscope/Desktop/
runPaymentScopeOnTestData.py in the VM

• How much disk space required (approximately)?: 30GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour depending on the Internet bandwidth

• How much time is needed to complete experiments (approx-
imately)?: less than 1 hour

A.3 Description
Obligatory. For inapplicable subsections (e.g., the “How to access”
subsection when not applying for the “Artifacts Available” badge),
please specify ’N/A’.

A.3.1 How to access

N/A

A.3.2 Hardware dependencies

2 cores CPU and 8GB memory

A.3.3 Software dependencies

VirtualBox

A.3.4 Data sets

15 games. Among them, 10 are vulnerable. In particular, 5 are local-
verification and 5 are no-verification games.

A.3.5 Security, privacy, and ethical concerns

Please don’t use the tool to attack any real games.

A.4 Installation
Obligatory. Describe the setup procedures for your artifact targeting
novice users (even if you use a VM image or access to a remote
machine).

• Read the README.md file for the source code in Source Code
folder

• Read the README.md file for the Virtual Machine in Virtual
Machine folder

• Install the VirtualBox

A.5 Experiment workflow
Describe the high-level view of your experimental workflow and how
it is implemented, invoked and customized (if needed), i.e. some OS
scripts, IPython/Jupyter notebook, portable CK workflow, etc. This
subsection is optional as long as the experiment workflow can be
easily embedded in the next subsection.

• Login to VM

• Run /home/paymentscope/Desktop/
runPaymentScopeOnTestData.py to conduct the ex-
periments

• For each output folder, find the isVulnerable field in
analysisRes.json file. The field indicates whether the game
is vulnerable and the vulnerability type.

A.6 Evaluation and expected results
Obligatory. Start by listing the main claims in your paper. Next, list
your key results and detail how they each support the main claims.
Finally, detail all the steps to reproduce each of the key results in your
paper by running the artifacts. Describe the expected results and the
maximum variation of empirical results (particularly important for
performance numbers).

Main claim: PaymentScope can detect payment bypass vulnera-
bility in Unity mobile games. It is implemented by the guidance of
the Algorithm 1 in the paper.

To support the claim, we have attached a PDF in the source
code to map our implementation to the Algorithm 1. In addi-
tion, we have attached 15 games for testing, in which 5 are local-
verification and 5 are no-verification games. We have manually
verified the 10 games and they are indeed vulnerable. The games and
the vulnerability types is explained in file PaymenScope/Virtual
Machine/README.md.

USENIX Association 31st USENIX Security Symposium 205

After run runPaymentScopeOnTestData.py, the vulnerability
type can be found in isVulnerable field in analysisRes.json
file which is located in the output folder. 5 of them should be no-
verification, 5 of them should be local-verification and the rest should
be ‘secure’.

A.7 Experiment customization

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

206 31st USENIX Security Symposium USENIX Association

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

