
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 31st USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

31st USENIX Security Symposium.
August 10–12, 2022 • Boston, MA, USA

978-1-939133-31-1

Open access to the Artifact Appendices
to the Proceedings of the 31st USENIX

Security Symposium is sponsored
by USENIX.

Might I Get Pwned: A Second Generation
Compromised Credential Checking Service

Bijeeta Pal, Cornell University; Mazharul Islam, University of Wisconsin–Madison;
Marina Sanusi Bohuk, Cornell University; Nick Sullivan, Luke Valenta,
Tara Whalen, and Christopher Wood, Cloudflare; Thomas Ristenpart,

Cornell Tech; Rahul Chatterjee, University of Wisconsin–Madison
https://www.usenix.org/conference/usenixsecurity22/presentation/pal

A Artifact Appendix

A.1 Abstract

MIGP (Might I Get Pwned) is a next-generation password
breach altering service to prevent users from picking pass-
words that are very similar to their prior leaked passwords;
such credentials are vulnerable to credential tweaking attacks.

In summary, we are providing guidlines to evaluate the
following results.

• [Figure 2]: Our proposed secure protocol for MIGP.

• Security simulation:

– [Figure 8]: Simulation of attacker’s success rate
for different query budgets compared to traditional
breach-altering service

– [Figure 9]: Comparison of attack success rate for
‘Das-R‘ and ‘wEdit‘ for different query budgets.

• Performance simulaiton:

– [Figure 12]: Average latency for different C3 ser-
vices.

• Similarity simulation

– [Figure 4]

– [Figure 5]

– [Figure 6]

A.2 Artifact check-list (meta-information)
• Data set: Since the files required to run the exper-

iments are sensitive password leaks from 2019, if you
need access to datasets please write to us. After down-
loading them, put the downloaded compressed file inside
path_to_MIGP/security_simulation/data_files folder
and then unzip it. For the models.zip file download it and put
it inside the similarity_simulation/artifact folder.

[Warning]. The zipped file is around 4.25 GB for the data files
and 5.84 GB for the model files.

• Software environment: We have provided the required pack-
ages in requirement.txt file. We encourage the reviewers to
use ‘conda‘ or ‘virtualenv‘ to create virtual environments and
use pip to install them. We have used Python version 3.8.

Before that, you will need to install the following three software
packages.

– petlib from here (For Figure 2, 12). Instructions are
already in the link on how to install it.

– Install argon2-cffi from here Installation - argon2-cffi
21.3.0 documentation.

– GO (version 1.15) to run the WR19 and WR20 protocols
in Figure 12. Make sure GOPATH variable points to
‘path_to_MIGP_folder/performance_simulation/WR-19-20‘.
To install GO version 1.15, we refer to the instructions
from this link How To Install Go 1.14 on CentOS 8 |
CentOS 7 | ComputingForGeeks. Additionally go the the
‘path_to_MIGP_folder/performance_simulation/WR-19-20/src/

pmt-go"

folder and run ‘go get github.com/willf/bloom‘.

• Hardware: Our experiments were run on an Intel Xeon Linux
machine with 56 cores and 125 GB of memory. You do not
need any special hardware. But some security simulations may
need large memory. Please let us know if you encounter such a
memory error. We already provide the trained models.

• Execution/compilation: We have provided bash scripts to
generate the figures. See section A.5.

• Security, privacy, and ethical concerns: Please DO NOT
share this Google Drive link of the datasets with others as
it contains leaked password datasets. Although these leaks
are “publicly available”, we request the reviewers to do so to
safeguard against any problem. We also share the minimum
version of the full leaked dataset that is required to evaluate
the artifact. Moreover we request to delete the downloaded
leaked dataset files after the evaluation is complete from the
permanent storage.

• How much disk space required: approximately ≤ 13 GB

A.3 Description
A.3.1 How to access

Available at https://github.com/islamazhar/MIGP_python/
releases/tag/artifact_eval. You can either clone or download
the zipped source code.

A.3.2 Hardware dependencies

The security simulation for Figure 8 may require large memory.
Please let us know if you encounter memory error while running
those experiments.

A.3.3 Software dependencies

Already specified in A.2 software environment paragraph.

A.3.4 Data sets

Since the files required to run the experiments are sensitive password
leaks from 2019, if you need access to datasets please write to us.
We can grant access to datasets after properly reviewing the request.

A.3.5 Models

Already provided in the Google Drive link above.

A.3.6 Security, privacy, and ethical concerns

Already mentioned in A.2 in the “Security, privacy, and ethical con-
cerns" paragraph.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 115

https://github.com/gdanezis/petlib
https://argon2-cffi.readthedocs.io/en/stable/installation.html
https://argon2-cffi.readthedocs.io/en/stable/installation.html
https://computingforgeeks.com/how-to-install-go-on-centos-centos-linux/
https://computingforgeeks.com/how-to-install-go-on-centos-centos-linux/
https://github.com/islamazhar/MIGP_python/releases/tag/artifact_eval
https://github.com/islamazhar/MIGP_python/releases/tag/artifact_eval

A.4 Installation
Follow the “Software environment" paragraph in A.2.

A.5 Experiment workflow
A.5.1 Figure 2

• Expected time: 2-3 mins after installing the required software
• Required packages: petlib, argon2, all packages in require-

ments.txt
• Compilation: Go to ‘performance_simulation‘ folder and run

the following commands.

– In one terminal run the server using ‘python3
MIGP_server.py‘.

– In another terminal run the query the server us-
ing ‘python3.8 post_client_MIGP.py -username
<username> -password <password>‘

• How to evaluate: If you issue the following comands the ex-
pected outcome will be the following.

python3.8 MIGP_client.py --username Alice --
↪→ password 123456 #will give exact
↪→ password matching.

python3.8 MIGP_client.py --username Alice --
↪→ password 123456$ # will give
↪→ similar password matching

python3.8 MIGP_client.py--username Alice --
↪→ password deercrossing # or any
↪→ other password, will give not
↪→ present in the leak

A.5.2 Figure 8

• Expected time: for budget qc = 10,100‘. It takes less time but
for qc= 103 expect 1-2 hours for n= 10 and 3-4 hours n= 100
depending on the memory and number of threads being run.

• Required packages: all packages in requirements.txt
• Compilation: We simulate the security simulation in three

steps.

– ‘bash script_step_1.sh‘. // This will create pass-
word variations. You can skip this one as we already
provide the variations file inside ‘data_files‘ folder

– ‘bash script_step_2.sh‘. // This create the top 103

guess ranks. We have also generated the guess ranks and
balls of each password in the ‘data_files‘ folder. [skip if
you want]

– Finally, run “bash script_step_3.sh <n> <qc>" to
generate the row corresponding to row with value ‘n‘
and ‘qc‘ in Figure 8. The results will be saved in ‘re-
sults/security_sumulation.tsv‘ file. This part may long
time as for n =100 and qc = 103 it took us 12 hours to
complete the simulation.

• How to evaluate: The results of each run will be saved at
‘results/security_simulation.tsv‘. Run ‘python3.8 Figure_9.py‘
to generate the Figure 8. If some values for ‘n‘ and ‘qc‘ the
values has not been generated it will show blank.

A.5.3 Figure 9

• Expected time: 2-3 minutes

• Required packages: None

• Compilation: : Go to ‘security_simulation/Figure_9
and run ‘python3.8 Figure 9.py‘

• How to evaluate: Inspect the generated ‘Figure_9.jpg‘ it should
correspond to the paper presented in the paper (was just drawn
using pgfplot for our paper)

A.5.4 Figure 12

We run the experiments on two EC2 instances as mentioned in
the paper. But they can be tested on localhost as well. Make
sure go (version 1.15) is installed and ‘GOPATH‘ points to
path_to_MIGP_folder/performance_simulation/WR-19-20‘.

• Expected time: 1-2 hours. Basically, WR-19 and WR-20 take
a lot of time.

• Required packages: specified in ‘requirements.txt‘ file

• Compilation:

– In one terminal run the servers using ‘bash
script_run_server.sh‘ and wait for some time for
the servers to finish the precomputation.

– On another terminal run ‘bash script.sh‘ and you will see
the Figure on the terminal.

• How to evaluate: Since it is running on localhost the values
may NOT exactly correspond to the values reported in the
paper. But should follow a similar trend shown reported on the
paper. Such As ‘IDB‘ protocols are the fastest ones. WR-19
and WR-20 are very expensive. MIGP_Hybrid should have
low latency.

A.5.5 Figure 4,5,6

• Required packages: Training the Pass2Path models is compu-
tationally expensive. Therefore, we train these models in GPU
and generated the prediction files for required test_files, to run
the experiments fast. The code for training the Pass2Path mod-
els is in https://github.com/Bijeeta/credtweak/tree/
master/credTweakAttack/. We also stored the sorted list of
rules for Das-R and EDR models, ranked based on the breached
dataset. Also make sure to install the packages mentioned in
‘requirements.txt‘

• Compilation: Go to “artifact” folder. Download the models.zip
and copy the “models” folder here. Go to “artifact/src” and

– For Fig-4, run "bash fig4.sh"

– For Fig-5, run "bash fig5.sh"

– For Fig-6, run "bash fig6.sh"

• How to evaluate: The values should match the ones in the
figure.

A.6 Evaluation and expected results
Expected results are already mentioned for each of the Figures in
A.5 section.

116 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/Bijeeta/credtweak/tree/master/credTweakAttack/
https://github.com/Bijeeta/credtweak/tree/master/credTweakAttack/

A.7 Notes
Please contact us via hotcrp if you face any problems or have any
questions. Thanks for reviewing our artifact.

A.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 117

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Figure 2
	Figure 8
	Figure 9
	Figure 12
	Figure 4,5,6

	Evaluation and expected results
	Notes
	Version

