
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 31st USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

31st USENIX Security Symposium.
August 10–12, 2022 • Boston, MA, USA

978-1-939133-31-1

Open access to the Artifact Appendices
to the Proceedings of the 31st USENIX

Security Symposium is sponsored
by USENIX.

Regulator: Dynamic Analysis to Detect ReDoS
Robert McLaughlin, Fabio Pagani, Noah Spahn, Christopher Kruegel,

and Giovanni Vigna, University of California, Santa Barbara
https://www.usenix.org/conference/usenixsecurity22/presentation/mclaughlin

A Artifact Appendix

A.1 Abstract
Our artifact includes the regexps processed in this paper, a
record of the NPM packages analyzed, the REGULATOR work-
flow and source code, the results produced by both our tool
and those used for comparison, and software for computing
values and figures found in this paper.

We provide a x86-64 docker container with all prerequisites
necessary to compile REGULATOR. A pre-compiled version
is also included.

Our results can be validated by re-running the tool to detect
and verify ReDoS-vulnerable regexps.

A.2 Artifact check-list (meta-information)
• Data set: We use two different datasets in our paper. The

first (called Base Dataset in our paper) was sourced from three
different collections used in previous ReDoS research (known
as Corpus, RegexLib and Snort). The second (called NPM
dataset) was instead created during our research, by scraping
and extracting the regular expression used in the 10,000 most
popular NPM packages. Both datasets are included in the docker
container under /artifacts/data/regex.csv.

• Run-time environment: The software is evaluated using
Python 3.8, NodeJS 10.19.0, Postgresql 12, and gcc 9.3.0, run-
ning on Ubuntu 20.04 in Docker 20.10.7.

• Run-time state: Regulator is based on fuzzing, so results
might slightly differ between each run.

• Execution: Since Regulator fuzzes each regular expression
for a given amount of time, we recommend to run the tool on a
machine with no significant background tasks.

• Metrics: Each tool evaluated in our paper reports whether a
regular expression is vulnerable to ReDoS. Our artifact reports
the following metrics: true positives, false positive and false
negatives of each tools (Table 3 and Table 4 of our paper).

• Output: For each regular expression, a record is produced
of the fuzz witness, the classified growth-function (if super-
linear), whether it was verified to cause significant slow-down,
and the minimum string-length length required to achieve that
slow-down.

• Experiments: Included are setups for these experiments: run-
ning REGULATOR against regular expressions, and running
the comparison tools REGULATOR-PerfFuzz, ReScue, NFAA,
Revealer, RXXR2, and Rexploiter against regular expressions.

• How much disk space required (approximately)?: Approx-
imately 10 GB of disk space is required.

• How much time is needed to prepare workflow (approxi-
mately)?: About 30 minutes is required to laod the docker
container, start services, and queue regexps in the workflow.

• How much time is needed to complete experiments (ap-
proximately)?: The experiments require approximately
10,000 CPU-hours. The workflow can be configured to make
use of multiple CPU cores at once, to reduce the wall-clock
time required.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: MIT

• Archived (provide DOI)?: 10.5281/zenodo.5669243

A.3 Description
A.3.1 How to access

The docker container where all artifacts are
stored can be downloaded at the following url:
https://doi.org/10.5281/zenodo.5669243

A.3.2 Hardware dependencies

Regulator does not have any particular hardware dependency
(the docker container was tested on a x86-64 Linux system),
but we recommend to using a server with a substantial number
of CPU cores.

A.3.3 Software dependencies

The only software dependency is docker (tested on version
20.10.7), plus a gzip decompression utility.

A.4 Installation
The artifact contains a docker container. After downloading
the compressed image regulator_artifacts.tar.gz, de-
compress it using a decompression tool. For example, on most
Linux systems: gzip -d regulator_artifacts.tar.gz
to produce the file regulator_artifacts.tar. It can
be loaded into docker with the following command
docker load < regulator_artifacts.tar. Then,
the container can be started with docker run -it
regulator_artifacts /bin/bash.

A.5 Experiment workflow
The core results from our paper can be reproduced by run-
ning REGULATOR and previous research tools against the
Base and NPM dataset. The previous tools tested in this paper
are: RXXR2, Rexploiter, NFAA, ReScue, PerfFuzz, Revealer.
The first four tools were packaged by Davis Jamie in the
vuln-regex-detector project 1. In the following sections
we therefore present 4 different workflows to run REGULA-
TOR, PerfFuzz, Revealer, and vuln-regex-detector.

REGULATOR. The experiment workflow
to run REGULATOR is documented in
/artifacts/detectors/regulator/README.md. Be-
fore running our tool, the regular expressions must be loaded
inside a postgres database using the add_to_queue.py
script.

REGULATOR has then three phases:
1https://github.com/davisjam/vuln-regex-detector

USENIX Association 31st USENIX Security Symposium 281

https://doi.org/10.5281/zenodo.5669243
https://github.com/davisjam/vuln-regex-detector

1. Fuzzing Stage: the target regular expression is fuzzed.
The output of this step is a witness string, i.e. the
string that has the highest number of executed byte-
code instructions. This step is implemented in the
fuzz_from_queue.py script.

2. Pumping Stage: the witness string is translated in a pump
formula. This step is implemented in the pump_all.py
script.

3. Dynamic Validation: the pump formula is tested against
the irregexp engine. If the formula causes a slowdown
of more than 10 seconds then the target regular expres-
sion is marked as vulnerable to ReDoS. This step is
implemented in the binsearch_pump.py script.

PerfFuzz. The workflow to run PerfFuzz is quite similar to
REGULATOR’s, and more instructions can be found under
/artifacts/detectors/regulator/README.md.

Revealer. The workflow to run Revealer is documented in
/artifacts/detectors/revealer/README.regulator.md.
To run this tool, invoke the script run_with_timeout.py.

vuln-regex-detector. The workflow to run ReScue,
RXXR2, NFAA, and Rexploiter. This is documented in
/artifacts/detectors/davis-detectors/README.md.

A.6 Evaluation and expected results
In this paper we show that REGULATOR outperforms previous
ReDoS detectors. This is the core result of this research, and is
shown in Table 3 and Table 4 of the paper. Rerunning the tool
should show more true positive detections than prior work.

There are two ways to reproduce these results. The first
is to re-use the output of our experiments (stored under
artifacts/data/, the second is to run the workflows dis-
cussed in the previous section and copy these newly gener-
ated results into /artifacts/data. See the README for each
workflow for more details.

In both cases, the script
/artifacts/scripts/analyze_results.py will summa-
rize the results and produce the numbers contained in Table 3
and Table 4.

If running the entire workflow requires too many resources,
REGULATOR can be more quickly evaluated by running the
workflow for a random subset of regexps which were reported
as vulnerable in this work. We expect a high percentage (at
least 80%) to be reproducible.

282 31st USENIX Security Symposium USENIX Association

