
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 31st USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

31st USENIX Security Symposium.
August 10–12, 2022 • Boston, MA, USA

978-1-939133-31-1

Open access to the Artifact Appendices
to the Proceedings of the 31st USENIX

Security Symposium is sponsored
by USENIX.

Constant-weight PIR: Single-round Keyword PIR
via Constant-weight Equality Operators

Rasoul Akhavan Mahdavi and Florian Kerschbaum, University of Waterloo
https://www.usenix.org/conference/usenixsecurity22/presentation/mahdavi

A Artifact Appendix

A.1 Abstract
Our artifact contains the implementation of constant-weight
PIR as proposed in the paper titled “Constant-weight PIR:
Single-round Keyword PIR via Constant-weight Equality Op-
erators".

We use this implementation to compare constant-weight
PIR with other PIR protocols. We provide an implementation
of folklore PIR for comparison. We provide scripts that use
this implementation to generate the tables shown in the paper.

Aside from PIR, we provide scripts that benchmark the
proposed equality operators and compare them with existing
ones in terms of runtime.

A.2 Artifact check-list (meta-information)
• Compilation: The GNU GCC compiler (version >= 6.0) is

required which supports OpenMP for parallelization. This com-
piler is publicly available.

• Binary: Binaries are not included but can be easily build using
the steps outlined in the README. Two executables should be
generated: main to experiment with PIR and benchmark_eq
to benchmark the proposed equality operators.

• Run-time environment: Our code has been tested for Ubuntu
20.04. Besides the specified compiler, it requires the Microsoft
SEAL library 1 to be installed.

• Hardware: Some runtimes in the paper are parallelized over
64 and 114 threads. To achieve the same results, it is required
to have hardware with similar specs. The precise specs of the
hardware are noted in the paper in each section.

• Metrics: In our PIR implementation, we measure the runtime
of each step and the total runtime as well. We also measure the
upload and download communication. In the benchmarks of
equality operators, we measure the runtime.

• Output: The specified metrics are written to file (the name of
the file is generated randomly) in the directory specified in the
command line.

• Experiments: Scripts are provided to reproduce the results in
the paper. These scripts run experiments and write the results
to the ‘results’ directory.

• How much disk space required (approximately)?: All exper-
iments are done in memory so not much disk space is required.
However, the largest experiments use more than 100 GB of
memory.

• How much time is needed to prepare workflow (approxi-
mately)?: Assuming all the prerequisites need to be installed,
the installation time should not take more than 30 mins.

• How much time is needed to complete experiments (ap-
proximately)?: To reproduce all the results, the experiments
take over a two weeks to run on a single machine. However,
the number of runs can be reduced in all the provided scripts

1https://github.com/microsoft/SEAL

to reduce this to a couple days. Currently, the experiments are
run 10 times.

• Publicly available: Our artifact is publicly avail-
able on Github at https://github.com/RasoulAM/
constant-weight-pir

• Code licenses: The code is published under a BSD-3 license.

• Archived (explicitly provide DOI or stable reference):
https://github.com/RasoulAM/constant-weight-pir/
releases/tag/artifact-accepted

A.3 Description

A.3.1 How to access

The artifact is publicly available on Github at https:
//github.com/RasoulAM/constant-weight-pir/
releases/tag/artifact-accepted.

A.3.2 Hardware dependencies

Some runtimes in the paper are parallelized over 64 and 114
threads. To achieve the same results, it is required to have
hardware with similar specs. The precise specs of the hard-
ware are noted in the paper in each section.

A.3.3 Software dependencies

This artifact runs on Ubuntu 20.04. It requires GNU GCC
compiler (version >= 6.0) as the C++ compiler and the Mi-
crosoft SEAL library 2 to be installed. Instructions to install
SEAL can be found in their repository.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

The instructions to build the repository are provided in the
main README. The prerequisites such as the gcc compiler
are specified in the README. Instructions on how to install
the other dependencies such as SEAL and googletest are also
specified.

2https://github.com/microsoft/SEAL

USENIX Association 31st USENIX Security Symposium 111

https://github.com/RasoulAM/constant-weight-pir
https://github.com/RasoulAM/constant-weight-pir
https://github.com/RasoulAM/constant-weight-pir/releases/tag/artifact-accepted
https://github.com/RasoulAM/constant-weight-pir/releases/tag/artifact-accepted
https://github.com/RasoulAM/constant-weight-pir/releases/tag/artifact-accepted
https://github.com/RasoulAM/constant-weight-pir/releases/tag/artifact-accepted
https://github.com/RasoulAM/constant-weight-pir/releases/tag/artifact-accepted

A.5 Experiment workflow
We provide scripts to run the experiments outlined in the
paper. These scripts are provided in the src/build/scripts
directory. Details regarding these scripts and instructions on
how to run them are given in src/build/README.md

To interpret the result of the experiments, we provide scripts
in src/build/interpret-results.ipynb

A.6 Evaluation and expected results
We use this artifact to generate the tables shown in the paper,
specifically Table 4, 5, 7 and 9 (and Table 12 and 13 in the
appendix) . Instructions on which script to use to generate
each table is given in src/build/README.md

A.7 Experiment customization
We provide a command line interface to experiment with
different PIR protocols. Particularly, the user can experiment
with folklore PIR and constant-weight PIR. All parameters
can be assigned via the command-line. Instructions on what
these parameters are and how to set them are given in the
README. All results can be written to file and printed to the
standard output.

Our scripts are not customizable (except for the number of
runs) and are only used to automatically produce the results
shown in the paper.

A.8 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

112 31st USENIX Security Symposium USENIX Association

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version

