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A Artifact Appendix

A.1 Abstract
This appendix describes the software artifact that implements
and evaluates all algorithms proposed in this paper. Specifi-
cally, it provides Java implementations for the Greedy, Sort-
Greedy and Hungarian algorithms for anonymization by both
ℓ-diversity and β-likeness; it also contains implementations
of the algorithms we compare against, namely NH (in C++),
BuReL (in Java) and PrivBayes (in C++), as obtained by their
authors and properly enhanced to record the same metrics.

No specialized hardware is required to reproduce the results
of the paper; however, the anonymization of the largest dataset
requires at least 64GB of RAM. We provide instructions
on how to install the artifact, execute the experiments, and
validate the results in the form of a README document that
describes the process step by step. This is intended to help
the reader reproduce the results presented in the paper. The
artifact is available as a GitHub repository.

A.2 Artifact check-list (meta-information)
• Algorithm: We present three novel algorithms for disclo-

sure control through syntactic anonymization based on the
notion of heterogeneous generalization. These algorithms are
(i) Greedy, denoted as GR, which employs an O(n2) heuris-
tic for assignment extraction, (ii) SortGreedy, denoted as SG,
which employs an O(n2 logn) heuristic for tuple matching
and (iii) Hungarian, denoted as HG, which utilizes the O(n3)
Hungarian algorithm to build assignments. These algorithms
are customized to both ℓ-diversity and β-likeness.

• Data set: We use real and synthetic datasets of up to 500k
tuples and 8 dimensions. All data are included in the repository.

• Run-time environment: Our artifact is not OS-specific. How-
ever, all experiments have been performed on an Ubuntu 16.04
LTS server with jre 1.8.0_11. Perl scripts are provided for
batch experiment submission (perl v5.20.2). No root access is
required.

• Hardware: No special hardware is required. However the
anonymization of the largest dataset (500k tuples) requires at
least 64GB of RAM.

• Execution: The anonymization of the largest dataset (500k)
may take 3-4 days to complete. Most of the experiments are
performed with the default dataset of 10k tuples and each of
them lasts up to a couple of minutes.

• Security, privacy, and ethical concerns: Since only synthetic
as well as open and publicly available datasets have been used,
there are no security, privacy, or ethical implications in running
the experiments.

• Metrics: The evaluation metrics include execution time, infor-
mation loss incurred by the anonymization, accuracy of queries
and attacks on the anonymized dataset.

• Output: The output is printed in text (.txt) files, following a
specific format.

• Experiments: All experiments can be replicated and results re-
produced simply by cloning the repo, compiling the code (C++
for NH and PrivBayes, and Java for all the rest) and running
the perl scripts provided - one for each of the experiments -
following the instructions in the README file.

• How much disk space required (approximately)?: In the
order of MB.

• How much time is needed to prepare workflow (approxi-
mately)?: A few minutes.

• How much time is needed to complete experiments (approx-
imately)?: 4-5 days.

• Publicly available (explicitly provide evolving version ref-
erence)?: Our artifact, excluding the source code of the NH,
BuReL and PrivBayes algorithms that we compare against, are
publicly available under an open source license.

• Code licenses (if publicly available)?: Apache Licence 2.0.

• Archived (explicitly provide DOI or stable reference)?:
(https://github.com/discont/disclosurecontrol/
releases/tag/artifact-evaluation).

A.3 Description

A.3.1 How to access

The artifact is publicly available and hosted by GitHub here:
https://github.com/discont/disclosurecontrol

To download the latest version, clone the repository using the
command

git clone https://github.com/discont/disclosurecontrol.git

A.3.2 Hardware dependencies

No specific hardware features are required to evaluate the
artifact. To be able to execute our algorithms using the largest
input dataset at least 64GB of RAM are required. For the de-
fault dataset of 10k tuples, used in the majority of experiments,
8GB of RAM will suffice. As for disk space, our artifact has
minimal requirements of a few MB.

A.3.3 Software dependencies

All experiments ran on an Ubuntu 16.04 LTS server. Java
code has been compiled with jdk1.8.9_291. Perl scripts were
used for batch experiment submission (perl v5.20.2).

A.3.4 Data sets

We use real data drawn form the CENSUS and the COIL 2000
datasets, which are publicly available. Additionally, we gen-
erate synthetic datasets of up to 500K tuples and 8 attributes
based on the CENSUS data, varying the bias of the sensitive
value distribution. All datasets are included in the repository.
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A.4 Installation
First, clone the relevant GitHub repository. Compile the
source code using plain javac or your favorite Java IDE. Place
the .class files in a folder within the local directory where
the GitHub repo has been cloned, named bin. To reproduce
the experiments, use the provided perl scripts, along with the
input datasets. The README file offers a step-by-step guide.

A.5 Experiment workflow
All experiments can be executed by invoking the relevant perl
scripts as described in the accompanying README file.

A.6 Evaluation and expected results
Our experiments start by evaluating the application of our
algorithms on the achievement of ℓ-diversity. Our findings
show that our methods outperform the state-of-the-art NH in
utility under various values of the privacy parameter ℓ, the
number of QI dimensions d, the dataset size n and the skew-
ness of the data distribution (Figures 2, 3, 4a, 4c, 5a and 5c).
Our schemes can be applied on partitions of the input dataset
in a data-parallel environment, slightly sacrificing utility for
the sake of scalability (Figures 4a, 4b, 5a and 5b).

Then, we adapt our algorithms to achieve β-likeness. The
experiments demonstrate that our methods offer better util-
ity than the state-of-the-art β-likeness algorithm, BuReL, re-
gardless of the β value and the distribution of tuple values

(Figure 6). The utility gain of our schemes compared to
BuReL grows with data size (Figure 7a) but shrinks with the
skewness of dataset values (Figure 7c). In all cases, at least
one of our methods outperforms BuReL in terms of utility.
Moreover, our algorithms provide anonymized datasets that
can serve range and prefix queries of various selectivities with
significantly better accuracy — in terms of median query rel-
ative error — compared to BuReL and PrivBayes (Figures 8
and 9). Last, our schemes provide stronger resistance than
state-of-the-art differential privacy schemes (PrivBayes) to
learning-based attacks under our adversary model on real-
world data (Figure 11).

Each of the aforementioned results can be reproduced by
simply running automated perl scripts accompanying the code.
The scripts execute the provided code with the necessary
parameters and record the metrics of interest. The README
file walks the user through this process.

Due to the intentional introduction of randomness in the tu-
ple assignment extraction stage, information loss results may
slightly differ in each run. The same applies to the accuracy
of range and prefix queries, which are randomly generated at
run time. Query accuracy may exhibit larger deviations, thus
we suggest to execute relevant experiments multiple times
and adopt the median value.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.
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