Large-Scale Computation Not at the Cost of Expressiveness

Sangjin Han and Sylvia Ratnasamy
University of California, Berkeley

Abstract

We present Celias, a new concurrent programming model
for data-intensive scalable computing. Celias supports
many virtues commonly found in existing distributed pro-
gramming frameworks, such as elastic scaling and fault
tolerance, without sacrificing expressiveness. The key de-
sign idea of Celias is the concept of a microtask, as a
scalable, fault-tolerant, and completely data-driven unit of
computation. By combining Tuplespace and microtasks,
Celias provides an intuitive yet powerful programming
abstraction for large and complex problems.

1 Introduction

The explosive growth in “big data” applications fueled re-
search on scalable, data-centric computing systems, with
MapReduce [18] as the most notable example. The allure
of MapReduce lies largely in its highly abstracted pro-
gramming model which shifts the responsibility for scal-
able and fault-tolerant distribution of computation from
the programmer to the execution engine, thus allowing a
programmer to focus on problem solving instead of the
inherently complex details of distributing computation.

Since a single MapReduce job simply does not fit many
classes of real-world problems, recent research projects
have proposed solutions based on iteration over MapRe-
duce jobs [10,21] or structured representations of embar-
rassingly parallel operations (e.g., map, filter, join, and
group-by) [5, 8, 14, 15, 19, 25, 30, 37, 43, 46]. All these
systems are designed for an application model based on
bulk transformation over immutable collections as noted
by Zaharia et al [45]. However, for certain classes of prob-
lems — especially where sparse operations over mutable
data sets gradually occur based on fine-grained, inter-data
dependencies — the coarse-grained building blocks of the
above systems fundamentally limit their efficiency at best
or applicability at worst [27,32,36].

As an illustrative example, consider breadth-first search
on a large graph with a series of MapReduce jobs. Each
iteration takes the entire graph and the nodes in the current
search horizon (queue) to compute the next horizon, and
this step repeats until the horizon is empty. This is unac-
ceptably inefficient, since each step processes the entire
graph although the “useful” computation only happens at
a small fraction of the graph. While there are frameworks
that efficiently support incremental computation for graph
algorithms [29,30], can we devise a general programming
model for non-graph algorithms?

In this work, we thus aim to answer the following ques-
tion: Can we design a programming model that is pow-
erful enough to represent algorithms with unpredictable,
fine-grained data access patterns and control flow, while
retaining the virtues of MapReduce, such as simplicity, au-
tomatic scaling, and fault tolerance? We revisit Linda [24]
as a promising starting point, as Linda offers the advan-
tages that we seek, such as the fine-grained interface to
mutable global state and expressivity with dynamic con-
trol flow. In order to solve a large, complex problem in a
distributed manner, Linda follows the oft-cited blackboard
metaphor [17].

“Imagine a group of human specialists seated next to a
large blackboard. The specialists are working cooper-
atively to solve a problem, using the blackboard as the
workplace for developing the solution.

Problem solving begins when the problem and initial
data are written onto the blackboard. The specialists
watch the blackboard, looking for an opportunity to ap-
ply their expertise to the developing solution. When a spe-
cialist finds sufficient information to make a contribution,
she records the contribution on the blackboard, hope-
fully enabling other specialists to apply their expertise.
This process of adding contributions to the blackboard
continues until the problem has been solved.”

Linda utilizes Tuplespace, a logically-shared associative
memory, as the “blackboard” to allow distributed processes
to collaborate. While the Linda model greatly simplifies
many complex aspects of distributed programming, it is
not, per se, an alternative to MapReduce since it is neither
automatically scalable nor inherently fault tolerant, due to
Linda’s process-oriented abstraction.

In this paper, we present the early design aspects of the
Celias programming model. Celias introduces the concept
of a microtask as the basic unit of computation. Microtasks
are triggered by data availability in the tuplespace, run
in their entirety as a transaction, and are characterized
by explicit input/output and side-effect free computation.
These properties give microtasks three important benefits:
task mobility, automatic scalability, and fault tolerance.

2 Reviving Tuplespace for Tomorrow

We briefly review Linda/Tuplespace (§2.1), discuss issues
that limit the applicability of Linda to datacenter con-
texts (§2.2), and finally introduce our Celias programming
model that aims to overcome these issues (§2.3).

2.1 Tuplespace and Linda

In contrast to message-passing schemes, Linda processes,
distributed across a network, interact only with the tu-
plespace [12]. The tuplespace stores a collection of tuples
and offers the logical abstraction of a global associative
memory shared by all processes. Processes store/retrieve
tuples to/from the tuplespace in order to indirectly commu-
nicate with other processes.

The tuplespace stores a collection of ordered sequences,
called tuples. A tuple contains typed attributes, each of
which is a primitive (integer, string, etc.) or composite ob-
ject. Tuples can be used as either shared data or structured
messages between processes, depending on the semantics
imposed by the application. All tuplespace operations are
atomic, and partial updates on existing tuples are not al-
lowed. These properties avoid difficult concurrency issues
commonly seen in mutable stores, such as key-value tables.

Each Linda process runs a sequential program written in
a general-purpose language and performs tuple-related
operations in an arbitrary fashion. Linda defines three
primitive operations by which processes interact with a tu-
plespace: in(), rd(), and out (). in() fetches (consumes)
a tuple from the tuplespace, and rd() is its non-destructive
version. For both operations, a tuple can be referenced
either as a concrete instance (i.e., all attributes are bound
with specific values), or as a template with unbound vari-
ables. For example, a process may invoke in(’ employee’,
’Jane’, ?age, ’Manager’) to retrieve a tuple in an asso-
ciative manner, and the variable age will be bound accord-
ing to the value of the fetched tuple. out () adds a tuple to
the tuplespace.

2.2 Issues with Linda for Big-Data Applications

In Linda, the basic unit of scheduling is a process. We
discuss four main issues that stem from this process-based
granularity.

Programmability: The burden of spawning processes and
orchestrating them is left to programmers, not the frame-
work. Ideally, a programmer need only provide the com-
putation logic for the data, leaving all the coordination
aspects to the runtime.

Mobility: Linda processes, together with their internal
state, have unbounded lifetime. Given the significant per-
formance overhead of process migration, this limits pro-
cess mobility across servers. The lack of mobility in turn
limits the ability for long-running applications to adapt to
the constant change in the availability of the underlying
computing resources. In addition, poor mobility limits the
runtime’s ability to optimize for data locality by moving
computation rather than data.

Adaptive Scalability: In cluster computing, replicating
computation is crucial to achieving data parallelism. Un-
fortunately, Linda processes cannot be systematically repli-

cated without understanding the application’s semantics.
Instead, Linda programs must explicitly spawn new pro-
cesses to scale out, with limited information about the
degree of exploitable parallelism and resource availability.
While a Linda extension, Piranha [11], addresses this issue
by letting the scheduler (not processes) spawn workers
automatically, its applicability is limited to simple master/-
worker architectures.

Fault Tolerance: Linda programs are not fault tolerant,
even if we assume the underlying tuplespace is robust [44].
Process failures may leave the tuplespace in an inconsis-
tent state. Transactions [4] (atomic execution of multiple
Linda operations) can solve this integrity issue, but failure
recovery is still solely the programmer’s responsibility;
the lost internal state of the process, such as the program
counter and local variables, must be manually recovered.
While process checkpointing [26] can automate this fail-
ure recovery, it does so at the cost of runtime overhead.
Furthermore, both approaches rely on explicit annotations
carefully made by application programmers.

2.3 Celias Programming Model

In Celias, we address the above issues by introducing the
concept of a microtask. A microtask is an instance of a
user-specified function with well-defined input and output.
Unlike Linda processes, Celias microtasks interact with the
tuplespace in a more constrained manner: tuple retrieval
only happens at the beginning of the microtask, and tuple
store at the end. This well-defined behavior of microtasks
enables many benefits. First, microtasks are stateless and
location independent — this makes them highly mobile giv-
ing the scheduler significant freedom in where and how it
places data and computation. Second, the scheduler can
easily duplicate microtasks to scale out computation. Third,
fault tolerance is naturally achieved with the reliable tu-
plespace implementation, which is always in a consistent
state due to the transactional nature of microtasks.

Figure 1 illustrates the Celias programming model. A
Celias application defines a set of functions, akin to how a
MapReduce job consists of a map() function and a reduce()
function. Each function is defined with an input signature,
which specifies one or more tuple templates. When all of
the specified tuples are available, the scheduler triggers
a microtask for the function. The microtask performs its
computation and returns output tuples which are added to
the tuplespace. These newly-added output tuples, perhaps
together with pre-existing tuples, may in turn satisfy the
input signatures for some other microtasks which are then
triggered for execution. To allow flexible, data-dependent
control flow, the output tuples that Celias microtasks pro-
duce can be arbitrary in number, type, and value.

A Celias function is represented as an input signature
and a portion of code. The code performs computation
with input tuples and, upon completion, may emit tuples

Tuplespace

Input
Function Signature

f A,B
g C,C
h D

— Input

----3 Output Microtasks

Figure 1: Overview of Celias programming model

back to the tuplespace as output. Celias expects functions
to resemble pure mathematical functions; the computation
should be deterministic and side-effect free so that the out-
put of a function is always the same given the same input.
Functions may be written in many different programming
languages, to expose a trade-off between productivity and
performance for programmers.

An input signature declares one or more tuples, each of
which could be either a concrete instance or a template, as
in Linda. The scheduler is responsible for finding tuples
that satisfy the signature of a function and for launching a
microtask with those input tuples. We show how signatures
can be utilized to specify constraints for input tuples in
§3. If multiple and distinct candidate tuple sets exist, the
scheduler may initiate multiple microtasks concurrently in
order to exploit data/task parallelism.

Throughout the lifetime of a microtask, all the opera-
tions (fetching input tuples, performing computation, and
returning output tuples back to the tuplespace) are per-
formed atomically. In other words, the execution of a mi-
crotask appears to be instantaneous, and the tuplespace
always remains “consistent” by not exposing an interme-
diate state at any given time. This atomic execution of
microtasks greatly simplifies failure recovery. Upon a node
failure, we can simply regard microtasks that were run-
ning on the node as aborted transactions, and retry those
microtasks on other nodes.

A Celias “job” thus proceeds as follows. Before the job
begins, the tuplespace is empty. A client provides input
tuples (as a seed) to the tuplespace and initiates a job by
providing a set of functions. The scheduler launches micro-
tasks, possibly with chain reactions if the job is designed
for such behavior, until no matching signature remains. The
client then retrieves the remaining tuples in the tuplespace
as the output of the job.

3 Celias with Examples

In this section, we walk through some simple applications
to understand the early design details of signature specifi-
cation and how Celias can be used to implement common
parallel programming patterns. Here we follow the conven-
tion of using a human-readable string for the first attribute
of tuples for the sake of readability.

Parallel Reduction: The following example performs par-
allel reduction over some given input numbers. We assume

that the input tuples (seed) in the form of ("'number’, value)
are provided by the client before the job begins.

Seed input:

(’number’, value) values to add up

func sum: (’number’, ?vl),
emit (’number’, vl + v2)

(’number’, ?v2)

The signature of function sum specifies that two tuples
will be used as input for the microtask. The ? preceding
variables v1 and v2 specifies that any values will match the
unbound variable, so the scheduler can arbitrarily choose
two tuples whose first attribute is the string number. The
function sum adds two values from the matched tuples and
emits a new tuple with the sum as its output. The job runs
until there are no tuples that match the function’s signature.
For this application, the scheduler will stop when there is
only one tuple left, which is the final output (total sum).

Note that exploiting data parallelism is solely handled
by the Celias scheduler, not the application. Assuming
there are an infinite number of processors available, the
job will take log, n parallel steps, if the scheduling is
done in lockstep. At the other extreme, the execution on a
uniprocessor would be sequential in an arbitrary order.

Vector Addition: In this example we introduce the concept
of common variables as a simple way of instructing the
scheduler on how it should relate multiple tuples within
a signature. We illustrate common variables through the
following example for simple vector addition c; = a; + b;.

(a’,
Cb’,

index, value) vector a

index, value) vector b

func vadd: (’a’, ?i, ?v1), (Cb’, ?i,
emit (’c’, i, vl + v2)

?v2)

The function vadd takes two tuples, both of which have
i as a common variable. The scheduler chooses two tuples
with the same index for each microtask to perform pairwise
addition.

Quicksort: Celias can also emulate the general fork/join
scheme to support recursive algorithms with dynamic par-
allelism. In the following example, we utilize the stack
variable to combine the result of “forked” subroutines.

(’list’, list, []) the entire unsorted list

func sort: (’list’, ?list,

if list is small enough:
list = sorted(list)
emit (’sorted’, list,

else:
pivot =
left = filter(<,
right = filter(>=, list[1:])
emit(’pivot’, pivot, [stack])
emit(’list’, left, [’1’ | stack])
emit(’list’, right, ['r’ | stack])

[?stack]),

[’1” | ?stack]),
[’r’ | ?stack])

?stack)

stack)

list[0]
list[1:1)

func combine: (’pivot’,
(’sorted’, ?left,
(’sorted’, ?right,
list = left + [pivot] + right
emit(’sorted’, list, stack)

?pivot,

Note that this simple code is not meant to be an efficient
implementation, as the partitioning is not done in parallel.

MapReduce: In the MapReduce programming model, an
application specifies map: (key, value) — list(key, value)
and reduce: (key, list(value)) — list(key, value) functions.
The following example shows how we can mimic the map-
shuffle-reduce phases of the MapReduce model in Celias.

(Cinput’, k, v) key value pairs

func map: (’input’, ?k, ?v)
Perform the mapper function.

Emit tuples (’intermediate’, key, value).
func shufflel: (’intermediate’, ?k, ?v),
! (’bucket’, ?k, _)
list = [v]
emit (’bucket’, ?k, list)
func shuffle2: (’intermediate’, ?k, ?v),
(’bucket’, ?k, ?list)
list = [v | list]
emit (’bucket’, ?k, list)
func reduce: (’bucket’, ?k, ?list),
I'(’intermediate’, ?k, _),
!'C’input’, _,)

Perform the reducer function over the list.
Emit output tuples (’output’, key, value).

The shuffle phase is done with two functions. shufflel
creates a bucket for each intermediate key; this bucket
will subsequently collect all values for that key. The prefix
“1” for the second tuple of the signature indicates that the
specified tuple should not exist in the tuplespace. The “_”
attribute means that any value can match and it is not
bound to a variable. Once shufflel creates the bucket for
a keyl, the shuffle2 function collects the intermediate
values for that key into the bucket. When a key’s bucket
settles (i.e. no intermediate values remain for the key and
the entire map phase is complete), reduce performs the
reducer operation for the bucket. The two negated tuples
in the reduce signature express these conditions.

If we have a series of MapReduce “jobs” expressed
in a single Celias application, the scheduler can feed the
output key-value pairs of a job to its next job, allowing
pipelining between jobs [16]. Also, if the reducer only
performs simple aggregation, such as max, count, and sum,
we can also achieve pipelining within a MapReduce job by
modifying the code above to perform online aggregation.
Celias can exploit fine-grained task parallelism without
any artificial barriers.

Shortest Path: In this example, we show how to imple-
ment a shortest path algorithm in Celias. The following
code resembles the algorithm demonstrated in Pregel [30].
While this algorithm constructs a single-source shortest
path tree, we can find multi-source shortest paths in a simi-
lar way.

'We assume that the scheduler enforces once-and-only-once execu-
tion when the signature matching involves negation. For example, the
scheduler may hold a lock for (shufflel, ‘bucket’, k) to avoid accidentally
having multiple buckets for the same key under race conditions.

(’outneigh’, u,
(’distance’, u, v,
(’updated’,
(’mindist’,
(’mindist’, u,

neighbors) vu € V

dist) V(u, v) € E

src) for source vertex src

src, 0, NIL) for source vertex src
oo, NIL) Vu € V-{src}

H* W W KW

func signal: (’updated’, ?u),
=(’mindist’, ?u, ?mindist, _),
=(’outneigh’, ?u, ?neighbors)

foreach v in neighbors:
emit (’signal’, u, v, mindist)

func update: (’signal’, ?u, ?v, ?new),
("mindist’, ?v, ?o0ld, ?from),
=(’distance’, ?u, ?v, ?dist)

if new + dist < old:
emit(’updated’, v)
emit (’mindist’, v,

else:
emit(’'mindist’, v,

new + dist, u)

old, from)

_9

The tuples with the prefix indicate that they are not
removed when the signature matches. This behavior is
similar to rd() in Linda. This read-only operation is useful
when some tuples need to be read repeatedly.

4 Celias in Context

Many parallel programming systems, such as Clustera [19],
Dryad [25], Hyracks [8], Nephele/PACTs [5], Scope [14],
and Spark [46], represent a data flow with connections
between parallel operations. Other systems using MapRe-
duce jobs as building blocks (e.g., Pig [37], Hive [43], and
FlumelJava [15]) also follow this approach.

There are two fundamental issues in these systems. First,
the building blocks assume bulk transformation over im-
mutable data collections. This coarse-grained unit of com-
putation is not efficient for algorithms that require sparse
and incremental computation with fine-grained, inter-data
dependencies (e.g., recursive queries in SQL:1999 [20]).
Second, the static dataflow systems cannot support dy-
namic algorithms with irregular parallelism, whose control
path is data-dependent and thus must evolve with the com-
putation itself (e.g., Quicksort in §3).

Incremental/Differential Processing: There is a growing
body of work to address the granularity issues of the afore-
mentioned systems. For example, CBP [28], Incoop [6],
REX [33], and Naiad [32] support incremental computa-
tion over growing data and/or differential processing over
iterations. Celias shares the same goals with those systems,
but we also aim to support dynamic control flow in Celias.

CIEL: Unlike static dataflow systems, CIEL can modify
the control flow at runtime to formulate algorithms with
irregular parallelism [36]. CIEL is based on the classic
fork/join scheme to build an explicit DAG of rasks, while
the scheduling is completely driven by data in Celias.

We note two implications of the task-based dynamic
dataflow systems. First, as the basic scheduling unit is a
task, not data, such systems do not automatically capture
data parallelism; instead applications must explicitly parti-

tion data across tasks and iterate within that data split. Sec-
ond, the centralized scheduler must keep track of the task
DAG for scheduling and fault tolerance purposes. This en-
forces coarse-grained parallelism on applications, as fine-
grained data splits in combination with complex control
flow may overload the scheduler with both computation
and space overheads [36,42].

Logic Programming: The sinature matching scheme of
Celias closely resembles the Datalog query language and
its variants [13], except that Celias allows microtasks to
perform any computations on input tuples to produce arbi-
trary output, rather than predefined output with no compu-
tation.

Bloom extends Datalog with the explicit notion of muta-
ble state and asynchronous message passing to support
distributed programming on purely declarative founda-
tions [2,3]. In Celias, we intentionally ruled out the concept
of communication (done via location specifiers and chan-
nels in Bloom) to make microtasks completely stateless
and location indepdendent.

Trigger-Based Systems: Celias has parallels to Percola-
tor [40] and Oolong [34], in that they are based on fine-
grained updates to mutable shared memory for incremen-
tal/asynchronous computation with triggers. Those systems
activate triggers when a key-value entry is updated, in a
similar sense to traditional database triggers [39].

In theory, the signature scheme of Celias provides a
more expressive means to specify conditions to activate
microtasks. Also, unlike triggers in those systems — which
permit arbitrary access to the key-value table during exe-
cution — Celias microtasks are completely side-effect free.
This allows simple replay of microtasks to suffice for fail-
ure recovery in Celias, instead of explicit transactions (Per-
colator) or checkpointing (Oolong). However, the inherent
complexity of signature matching in Celias leaves the fea-
sibility of its efficient implementation as an open question,
as discussed in the next section.

5 Design and Implementation Challenges

This section briefly discusses design aspects that are still
open-ended and the many challenges that remain in achiev-
ing a robust, efficient implementation of Celias.

Design Challenges: Celias’s expressiveness greatly de-
pends on the flexibility of signatures. It is unclear whether
our current features (common variables, negatation, and
read-only tuples) are powerful enough to express complex
algorithms. However, adopting advanced features such as
range queries may compromise the feasibility of an effi-
cient implementation. We continue to weigh options to
strike the right balance.

Another issue we are investigating is non-determinism.
We expect functions to be deterministic for the sake of fault
tolerance, yet there are many non-deterministic aspects to

scheduling in Celias, e.g., which microtasks are chosen
first and which combination of tuples match a signature.
Improperly designed programs may suffer the curse of
non-determinism but, on the other hand, non-deterministic
parallelism creates new opportunities [35].

In contrast to static dataflow systems, the execution of a
Celias job is unbound; an application may never terminate
if its microtasks cause a continuous chain reaction without
reaching a “fixpoint”. For example, many machine learn-
ing algorithms run iteratiely towards convergence, but the
required number of iterations is unknown in advance. Sim-
ilarly, combinatorial optimization algorithms can explode
the tuplespace with exponential growth of state. We plan
to devise work-bounding mechanisms, from the in-band
(e.g., function priority) and out-of-band (e.g., allowing ex-
ternal clients to observe and control the execution of a job)
perspectives.

Implementation Challenges: An obvious concern with
the Celias programming model is that it might be too diffi-
cult to implement efficiently: that microtasks are too fine-
grained to schedule efficiently or that signature matching
is too expensive. However, we see cause for optimism. A
lesson we learn from MapReduce is that the granularity
of computation (key-value pairs) can be orthogonal to the
granularity of scheduling (block splits). We can adopt this
idea by scheduling a collection of microtasks in a batch to
minimize the per-microtask overhead.

For signature matching, we are witnessing the emer-
gence of many parallel logic query systems [7,9,23,31]
based on Datalog. We believe that an efficient implementa-
tion is feasible since Celias’s signature mathching is sim-
pler than Datalog (e.g., no inductive/recursive inference)
though we also see that the online aspects of Celias bring
another implementation challenge.

The efficiency of the system will depend greatly on our
ability to exploit data locality thus minimizing communi-
cation cost. The original Tuplespace abstraction imposes
high communication cost as the exchange of tuples hap-
pens between processes, most likely running on separate
machines. Since tasks are location independent in Celias,
the scheduler can make a trade-off between moving data
and moving computation. We can also allow programmers
to use annotations that give Celias scheduling hints, e.g.,
regarding where data should be stored [18,41] or which
function will take output tuples as input next.

The fault tolerance of Celias relies on a robust imple-
mentation of tuplespace with microtask transaction sup-
port. Since the abstraction of Sinfonia minitransactions [1]
is conceptually similar to microtasks, we believe that its
scalable transaction implementation is also applicable to
Celias. We are also currently evaluating the approaches
proposed by RAMCloud [38] and HyperDex [22], to imple-
ment a high-performance, scalable, and reliable tuplespace
tailored to the Celias programming model.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

AGUILERA, M. K., MERCHANT, A., SHAH, M.,
VEITCH, A., AND KARAMANOLIS, C. Sinfonia:
A New Paradigm for Building Scalable Distributed
Systems. In Proceedings of ACM SOSP (2007).

ALVARO, P., CONWAY, N., HELLERSTEIN, J. M.,
AND MARCZAK, W. R. Consistency Analysis in
Bloom: a CALM and Collected Approach. In Pro-
ceedings of CIDR (2011).

ALVARO, P., MARCZAK, W. R., CONWAY, N.,
HELLERSTEIN, J. M., MAIER, D., AND SEARS, R.
Dedalus: Datalog in Time and Space. In Proceedings
of Datalog 2.0 Workshop (2011).

BAKKEN, D., AND SCHLICHTING, R. Supporting
Fault-Tolerant Parallel Programming in Linda. IEEE
Transactions on Parallel and Distributed Systems 6,
3 (1995), 287-302.

BATTRE, D., EWEN, S., HUESKE, F., Kao, O.,
MARKL, V., AND WARNEKE, D. Nephele/PACTs:
A Programming Model and Execution Framework
for Web-Scale Analytical Processing. In Proceedings
of ACM SoCC (2010).

BHATOTIA, P., WIEDER, A., RODRIGUES, R.,
ACAR, U. A., AND PASQUIN, R. Incoop: MapRe-
duce for Incremental Computations. In Proceedings
of ACM SoCC (2011).

BORKAR, V., BU, Y., CAREY, M., ROSEN, J.,
PoLyzoTIs, N., CONDIE, T., WEIMER, M., RA-
MAKRISHNAN, R., DROR, G., KOENIGSTEIN, N.,
ET AL. Declarative Systems for Large-Scale Ma-
chine Learning. Bulletin of the Technical Committee
on Data Engineering 35, 2 (2012), 24-32.

BORKAR, V., CAREY, M., GROVER, R., ONOSE,
N., AND VERNICA, R. Hyracks: A Flexible and
Extensible Foundation for Data-Intensive Computing.
In Proceedings of IEEE ICDE (2011).

Bu, Y., BORKAR, V., CAREY, M., ROSEN, J.,
PoLyzorTis, N., CONDIE, T., WEIMER, M., AND
RAMAKRISHNAN, R. Scaling Datalog for Machine
Learning on Big Data. arXiv:1203.0160 [cs.DB]
(2012).

Bu, Y., HOWE, B., BALAZINSKA, M., AND ERNST,
M. Haloop: Efficient Iterative Data Processing on
Large Clusters. PVLDB 3, 1 (2010), 285-296.

CARRIERO, N., FREEMAN, E., GELERNTER, D.,
AND KAMINSKY, D. Adaptive Parallelism and Pi-
ranha. IEEE Computer 28, 1 (1995), 40-49.

[12]

[13]

(14

[}

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

CARRIERO, N., GELERNTER, D., MATTSON, T.,
AND SHERMAN, A. The Linda alternative to
message-passing systems. Parallel Computing 20, 4
(1994), 633-655.

CERI, S., GOTTLOB, G., AND TANCA, L. What You
Always Wanted to Know About Datalog (And Never
Dared to Ask). IEEE Transactions on Knowledge
and Data Engineering 1, 1 (1989), 146-166.

CHAIKEN, R., JENKINS, B., LARSON, P.-A., RAM-
SEY, B., SHAKIB, D., WEAVER, S., AND ZHOU,
J. SCOPE: Easy and Efficient Parallel Processing of
Massive Data Sets. PVLDB 1, 2 (2008), 1265-1276.

CHAMBERS, C., RANIWALA, A., PERRY, F,
ADAMS, S., HENRY, R., BRADSHAW, R., AND
WEIZENBAUM, N. FlumeJava: Easy, Efficient Data-
Parallel Pipelines. In Proceedings of ACM PLDI
(2010).

CONDIE, T., CONWAY, N., ALVARO, P., HELLER-
STEIN, J., ELMELEEGY, K., AND SEARS, R.
MapReduce Online. In Proceedings of USENIX NSDI
(2010).

CORKILL, D. Blackboard systems. Al Expert 6,9
(1991), 40-47.

DEAN, J., AND GHEMAWAT, S. MapReduce: Sim-
plified Data Processing on Large Clusters. In Pro-
ceedings of USENIX OSDI (2004).

DEWITT, D. J., PAULSON, E., ROBINSON, E.,
NAUGHTON, J. F., ROYALTY, J., SHANKAR, S.,
AND KRIOUKOV, A. Clustera: An Integrated Com-
putation And Data Management System. PVLDB 1,
1 (2008), 28-41.

EISENBERG, A., AND MELTON, J. SQL: 1999,
formerly known as SQL3. SIGMOD Record 28, 1
(1999), 131-138.

EKANAYAKE, J., L1, H., ZHANG, B., GU-
NARATHNE, T., BAE, S., Qr1u, J., AND FoOX, G.
Twister: A Runtime for Iterative MapReduce. In
Proceedings of ACM HPDC (2010).

ESCRIVA, R., WONG, B., AND SIRER, E. Hyper-
Dex: A Distributed, Searchable Key-Value Store. In
Proceedings of ACM SIGCOMM (2012).

GANGULY, S., SILBERSCHATZ, A., AND TSUR, S.
A Framework for the Parallel Processing of Datalog
Queries. SIGMOD Record 19, 2 (1990), 143-152.

GELERNTER, D. Generative Communication in
Linda. ACM Transactions on Programming Lan-
guages and Systems 7, 1 (1985), 80-112.

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

ISARD, M., BuDIU, M., YU, Y., BIRRELL, A., AND
FETTERLY, D. Dryad: Distributed Data-Parallel Pro-
grams from Sequential Building Blocks. In Proceed-
ings of ACM EuroSys (2007).

JEONG, K., AND SHASHA, D. PLinda 2.0: A Trans-
actional/Checkpointing Approach to Fault Tolerant
Linda. In JEEE SRDS (1994).

LiN, J. MapReduce is Good Enough? If All You
Have is a Hammer, Throw Away Everything That’s
Not a Nail! Big Data 1, 1 (2013), 28-37.

LOGOTHETIS, D., OLSTON, C., REED, B., WEBB,
K. C., AND YocuM, K. Stateful Bulk Processing
for Incremental Analytics. In Proceedings of ACM
SoCC (2010).

Low, Y., BICKSON, D., GONZALEZ, J., GUESTRIN,
C., KYROLA, A., AND HELLERSTEIN, J. M. Dis-
tributed GraphLab: A Framework for Machine Learn-
ing and Data Mining in the Cloud. PVLDB 5, 8
(2012), 716-7217.

MALEWICZ, G., AUSTERN, M., BIK, A., DEHN-
ERT, J., HORN, I., LEISER, N., AND CZAJKOWSKI,
G. Pregel: A System for Large-Scale Graph Process-
ing. In Proceedings of ACM SIGMOD (2010).

MARZ, N. Cascalog. http://cascalog.org.

MCSHERRY, F., MURRAY, D. G., ISAACS, R., AND
ISARD, M. Differential dataflow. In Proceedings of
CIDR (2013).

MIHAYLOV, S. R., IVES, Z. G., AND GUHA, S. Rex:
Recursive, Delta-Based Data-Centric Computation.
PVLDB 5, 11 (2012), 1280-1291.

MITCHELL, C., POWER, R., AND LI, J. Oolong:
Asynchronous Distributed Applications Made Easy.
In Proceedings of APSys (2012).

MURRAY, D., AND HAND, S. Non-deterministic

parallelism considered useful. In Proceedings of
USENIX HotOS (2011).

MURRAY, D., SCHWARZKOPF, M., SMOWTON, C.,
SMITH, S., MADHAVAPEDDY, A., AND HAND, S.
CIEL: a universal execution engine for distributed
data-flow computing. In Proceedings of USENIX
NSDI (2011).

(37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45

—_

[46]

OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR,
R., AND TOMKINS, A. Pig Latin: a not-so-foreign
Language for Data Processing. In Proceedings of
ACM SIGMOD (2008).

ONGARO, D., RUMBLE, S., STUTSMAN, R.,
OUSTERHOUT, J., AND ROSENBLUM, M. Fast
Crash Recovery in RAMCloud. In Proceedings of
ACM SOSP (2011).

PATON, N. W., AND DiAz, O. Active Database
Systems. ACM Computing Surveys 31, 1 (1999),
63-103.

PENG, D., AND DABEK, F. Large-scale Incremental
Processing Using Distributed Transactions and Noti-
fications. In Proceedings of USENIX OSDI (2010).

POWER, R., AND L1, J. Piccolo: Building Fast, Dis-
tributed Programs with Partitioned Tables. In Pro-
ceedings of USENIX OSDI (2010).

QIAN, Z., CHEN, X., KANG, N., CHEN, M., YU,
Y., MOSCIBRODA, T., AND ZHANG, Z. MadLINQ:
Large-Scale Distributed Matrix Computation for the
Cloud. In Proceedings of ACM EuroSys (2012).

THUSOO, A., SARMA, J., JAIN, N., SHAO, Z.,
CHAKKA, P., ANTHONY, S., L1U, H., WYCKOFF,
P., AND MURTHY, R. Hive - A Warehousing Solu-
tion Over a Map-Reduce Framework. PVLDB 2, 2
(2009), 1626-1629.

XU, A., AND LiskovV, B. A Design for a Fault-
Tolerant, Distributed Implementation of Linda. In
Proceedings of IEEE FTCS (1989).

ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE,
A., MA, J., MCCAULEY, M., FRANKLIN, M.,
SHENKER, S., AND STOICA, I. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing. In Proceedings of
USENIX NSDI (2011).

ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M.,
SHENKER, S., AND STOICA, I. Spark: Cluster Com-
puting with Working Sets. In Proceedings of USENIX
HotCloud (2010).

