@ Grafana Labs

From PIDs to Pods: the life cycle
of an eBPF-autoinstrumented
application

M Marc Tuduri
_I# Senior Software Engineer

About me

e \Working as Software Engineer at
Grafana Labs on Beyla project

e Prometheus contributor and
OpenTelemetry member

e Currently based in Berlin

e Focused on drumming (but also
ex-guitarist and home brewer)

Overview

e Auto-instrumentation with eBPF

e What's eBPF?

e Instrumenting Kubernetes Applications with eBPF
e The Journey from a PID to a Pod

e Demo

e Future

e Conclusions

Avuto-instrumentation
with eBPF

Context: agent-based instrumentation

S 40
(o]
| 4

]
. 0’)\’&
Collector

Runtime (JVM,
.NET...)

Agent-based/manual instrumentation: what if...?

e ... my runtime is too old?

e ...t0oo much instrumentation overhead?
e ... my application is a compiled binary?
e ...l don't want to mess my up code?

e ...l just want instant visibility?

Beyla native eBPF auto-instrumentation

Metrics & traces

N
T 4 OTEL Collector , °

| Runtime & ibs _ Tl > Prometheus

"
—y
—
—
—y
-_—
—y
—

b Grafana Cloud @

E...B...P... what?

eBPF
+—bxtended BerkeleyPacketFHiter
o Virtual Machine built into the Linux Kernel
o Event-driven programming: "hook"” programs into kernel
functions and user space programs.
e It requires how the memory is laid out (low-level)

o Function call arguments
o Local variables and return values

Example: track a new client TCP connection

fd *uservaddr...

User space

Your application

A “probe”
program

ey

(C/Rust*)

Monitor program
(C, C++, Go, Rust,
Python, etc...)

https://elixir.bootlin.com/linux/latest/C/ident/sock
https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect

Example: track a new client TCP connection

fd *uservaddr...

User space

Your application

. Monitor

program

https://elixir.bootlin.com/linux/latest/C/ident/sock
https://elixir.bootlin.com/linux/latest/C/ident/tcp_connect

eBPF Pros and Cons

e Pros
o Fast, JIT compiled probe programs.
o Safe, all programs are verified at load time by the Kernel.
o Easy cleanup, once the monitor terminates, all resources are automatically
deallocated.
e Cons
o Hard to debug and write.
o Architecture dependent.
o Depending on the used eBPF functions, it requires elevated permissions.

Instrumenting
Kubernetes
Applications with
eBPF

Basic Idea

h="/users", method="GET"} 200ms

http_request_duration{pat

Kubernetes cluster architecture

Kubernetes control plane

privileged: true
hostPid: true

Kubelet kubeproxy Kubelet kube

———| CRI |

What Beyla directly sees

Command name
Process ID (e.g. 12145)
Host Name

Process Process
Process Process

Library

Linux Kernel

What users actually need

B B container
container container
COhtainer Container

container

Pod name & metadata

Node name
Deployment/DaemonSet/ReplicaSet name
Kubernetes Namespace

The Journey froma
PID to a Pod

Matching processes with Kubernetes metadata

eBPF
probes Application-level

runtime metrics

/proc FS —-— Kube API

OS-level process
metadata &
runtime metrics

A No direct mapping
between host:pid and
K8s metadata

Pods metadata

Playing in god mode: PID namespaces

Same process,
different PIDs

PID: 1 depending on the
Pod POV
PIDNS: Y

Container PID: 1245
Runtime -] Process
PID NS: X

PID: 23945 l
PID NS: 1

Matching all together

Pods
PIDs

(2] container id
(2] local_pid_namespace pod_name

container_id pod_namespace
node name
*owner

other metadata...

Beyla user-space Application span
process discovery [?] pid_namespace?? Kubernetes API

/proc/<pid> protocol eBPF Informers
/proc/<pid>/ns/pid

: client probes
/proc/<pid>/cgroup
server

method
response

size

Getting the PID as seen by Beyla

e u64 bpf_get_current_pid_tgid()
o Returns the PID as seen from the Kernel (Namespace: 1) != PID as seen from Beyla
e struct task_struct* bpf_get_current_task()

pid_namespace

uint level
struct ns_common ns

task_struct struct pid_namespa

u32 tgid
struct nsproxy *nsproxy
struct task_struct

*group_leader
struct pid *thread_pid

(o] EYTII L
1 —
struct upid numbers][] W nr: 234 -

/
[1eve1) INENEZE N Y-

The journey of an application trace

service
request

host_pid
user_pid
user_pid_ns
prototype
request method
request response
request URL
etc...

K8s
metadata
decorator

host_pid
user_pid
user_pid_ns
prototype
request method
request response
request URL
server hostname
k8s_pod_name
k8s_owner_name
k8s_namespace
etc..

OTEL
metrics
export

Prom
metrics
export

Demo Time

Config (values.yml)

config:
data:
attributes:
kubernetes:
enable: true
prometheus_export:
port: 9090
path: /metrics
discovery:
services:
- k8s_namespace: default
k8s_deployment_name:
- k8s_namespace: default
5 k8s_daemonset_name:

enTelemetry demo

Frontend

Checkout Service

T Shipping Service

Cache Product Catalog Service
(redis)

JavaScript m TypeScript

(near) Future

(near) Future

e Reduce privileges required to run Beyla
o Currently depending on BPFS to mount maps
o Working on required only few capabilities
e |Improve performance of Kubernetes informers
o Currently fetches all metadata all Pods in the node
o Working on a centralised cache of objects
metadata

Conclusions

Conclusions

e cBPF is a powerful tool
e But at same time hard to master
e Challenges to match Kubernetes abstractions

e Future work

Questions

