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Unix and Linux are powering modern IT

• Android (1 bn shipments / year)

• Google, Facebook, Amazon, X technology stacks

• macOS

• 60% of the top one million web servers,

• 75% of major cloud providers' instances,

• 97% of embedded systems,

• All of the world's top-500 supercomputers
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github.com/dspinellis/unix-history-repo/
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Lessons from the Unix 
Architecture Evolution



Write small programs.





PDP-7 [Unix] (1970)



… and I once heard an old-timer growl at a 
young programmer:

“I've written boot loaders that were shorter 
than your variable names!”

— Stephen C. Johnson



Build modular code through 
partitioning, composition, and 
layering.



Layering and Partitioning

adm.s  cat.s    dskio.s   init.s    s6.s

ald.s  check.s  dskres.s  lcase.b   s7.s

apr.s  chmod.s  dsksav.s  maksys.s  s8.s

as.s   chown.s  ds.s      s1.s      s9.s

bc.s   chrm.s   dsw.s     s2.s      scope.v

bi.s   cp.s     ed1.s     s3.s      sop.s

bl.s   db.s     ed2.s     s4.s      trysys.s

cas.s  dmabs.s  ind.b     s5.s



Value developer time over 
machine time.



Separation of
File Metadata from File Naming



Devices as Files



File I/O API

• open

• read

• write

• seek

• tell

• close



File System API

• creat

• rename

• link

• unlink



Interpreter



Prototype software before 
polishing it.





First Research Edition (Nov 1971)



First Edition — 1972 FreeBSD 11.1 — 2018

0       i386    restart_syscall
1       i386    exit           
2       i386    fork           
3       i386    read           
4       i386    write          
5       i386    open           
6       i386    close          
7       i386    waitpid        
8       i386    creat          
9       i386    link           
10     i386    unlink 

Linux 6.10 — 2024



Make each program do one thing 
well.







Avoid captive interfaces.



The Shell as a User Program



Write extensible programs and 
protocols.



Abstraction of Standard I/O



User-Contributed Tools and Games



ai-cli-lib





Write programs that work 
together as filters that process 
text streams.



Third Research Edition (Feb 1973)



Pipes and Filters





Write maintainable programs.



Fourth Research Edition (Nov 1973)



Structured Programming

• Kernel implemented in “New B”

– 6373 lines New B

– 768 lines PDP-11 assembly

• Improvement:

– First Ed.: 248 global symbols

– Fourth Ed.: 105 functions, 50 assembly symbols



Language-Independent API



Data Structure Definition & Reuse

buf.h   filsys.h  proc.h   text.h

conf.h  inode.h   reg.h    tty.h

file.h  param.h   systm.h  user.h



Avoid unnecessary output and 
make failures easy to diagnose.









“After phototypesetting, you had to take a long wide strip of 
paper and feed it carefully into a smelly, icky machine which 
eventually (several minutes later) spat out the paper with 
the printing visible.”

“One afternoon several of us had the same experience — 
typesetting something, feeding the paper through the 
developer, only to find a single, beautifully typeset line: 
"cannot open file foobar" The grumbles were loud enough 
and in the presence of the right people, and a couple of 
days later the standard error file was born...”

— Stephen C. Johnson
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Use shell scripts to increase 
leverage and portability.



Fifth Research Edition (Jun 1974)
• Command Files
chdir /usr/source/s3

cc -c ctime.c

ar r /lib/liba.a ctime.o

rm ctime.o

chdir /usr/source/s1

cc -s -n date.c

cp a.out /bin/date

cc -s -n dump.c

cp a.out /bin/dump

cc -s -n ls.c

cp a.out /bin/ls

rm a.out



Choose appropriately powerful 
abstractions.



Sixth Research Edition (May 1975)



Portable C Library

alloc.c   clenf.c   makbuf.c  scan1.c
calloc.c  copen.c   maktab.c  scan2.c
cclose.c  cputc.c   nexch.c   scan3.c
ceof.c    cwrd.c    nodig.c   system.c
cerror.c  dummy.s   printf.c  tmpnam.c
cexit.c   ftoa.c    putch.c   unget.c
cflush.c  getch.c   puts.c    unprnt.s
cfree.c   gets.c    relvec.c  wdleng.c
cgetc.c   getvec.c  revput.c
ciodec.c  iehzap.c  run



Seventh Research Edition (Jan 1979)



Unix as a Virtual Machine

Also, about this time [1973] I had a fateful discussion 
with Dennis, in which he said:

“I think it may be easier to port Unix to a new piece of 
hardware than to port a complex application from Unix 
to a new OS”

— Steve Johnson



Separate mechanisms from 
policy.



Dynamic User Memory Allocation

• malloc(3), free(3)

– Used by 26 programs: awk cc col cron dc dcheck diff ed eqn expr 
graph icheck learn ls m4 neqn nm quot ratfor spline struct tar tsort 
uucp xsend quiz

• stdio(3), mp(3)
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Environment Variables

• KEY=value

• Kernel

• Shell

• C Library



Filesystem Directory Hierarchy





Write abstract programs that 
generate code instead of writing 
code by hand.



Language Development Tools
• lex(1)
• yacc(1)
• 12 clients: 

– awk 
– bc 
– cpp 
– egrep 
– eqn 
– lex 
– m4 
– make 
– pcc 
– neqn 
– struct



Raise abstraction through DSLs.



Domain-Specific Languages

• sh

• awk

• sed

• find

• expr

• egrep

• m4

• make



Architectural innovations are 
sticky and face increasing 
resistance.





Regular Expression Library: regex(3)

– 5 implementations: awk, sed, ed, grep, expr

– 1 client: more(1)

– 2 more by 4.3: dbx(1), rdist(1)

– 4 replacements in FreeBSD: ed, grep, sed, expr



4.3BSD Net/2 (Jun 1991)

• Stream I/O Functions

– funopen(3)

– GNU funopencookie(3) added in FreeBSD 11



Many core architecture decisions are taken at the 
beginning of the system's lifetime



Most architecture decisions survive
over the system lifetime



New architecture decisions are continuously made, 
further fueling architecture evolution



The rate of architecture decisions declines over the 
system's lifetime







Package managers grow 
ecosystems and communities.





386BSD Patch Kit (1992-1993)

• Patch metadata

– title

– author

– description

– prerequisites

• Organized Community Contributions

– From open-source software …

– … to an open-source project





FreeBSD 1.1 (May 1994)

• Package Manager

– Patch

– Compile

– Install

– Uninstall

– Handling of dependencies



Package 
ecosystems

• GNU/Linux: Debian, Fedora, Ubuntu, …

• FreeBSD, NetBSD, OpenBSD

Operating system

• Maven / mvn, Gradle

• PyPI / pip

• NPM  / npm, yarn

• CRAN

• RubyGems / gem

Package repository / manager

• Data science (Python Anaconda)

Activity



Thank you!

www.spinellis.gr
@CoolSWEng
@CoolSWEng@mastodon.acm.org
dds@aueb.gr 



Free open edX course (MOOC):
Unix Tools:

Data, Software and Production 
Engineering

Grow from being a Unix novice to Unix wizard status! 
Process big data, analyze software code, run DevOps 
tasks and excel in your everyday job through the 
amazing power of the Unix shell and command-line 
tools.

https://www.spinellis.gr/unix

https://www.spinellis.gr/unix?ecsa2020
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Data Sources
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