
Diomidis Spinellis

www.spinellis.gr

@CoolSWEng
@CoolSWEng@mastodon.acm.org 

Lessons from Unix History

Department of Software Technology
Delft University of Technology

Department of Management Science and Technology
Athens University of Economics and Business





Unix and Linux are powering modern IT

• Android (1 bn shipments / year)

• Google, Facebook, Amazon, X technology stacks

• macOS

• 60% of the top one million web servers,

• 75% of major cloud providers' instances,

• 97% of embedded systems,

• All of the world's top-500 supercomputers



H
is

to
ry





































F
a
c
e

s
 o

f O
p

e
n

 S
o

u
rc

e
 / P

e
te

r A
d

a
m

s







D
at

a 
So

u
rc

e
s



github.com/dspinellis/unix-history-repo/





















dspinellis.github.io/unix-history-man







U
n

ix
A

rc
h

it
e

ct
u

re
 E

vo
lu

ti
o

n



Lessons from the Unix 
Architecture Evolution



Write small programs.





PDP-7 [Unix] (1970)



… and I once heard an old-timer growl at a 
young programmer:

“I've written boot loaders that were shorter 
than your variable names!”

— Stephen C. Johnson



Build modular code through 
partitioning, composition, and 
layering.



Layering and Partitioning

adm.s  cat.s    dskio.s   init.s    s6.s

ald.s  check.s  dskres.s  lcase.b   s7.s

apr.s  chmod.s  dsksav.s  maksys.s  s8.s

as.s   chown.s  ds.s      s1.s      s9.s

bc.s   chrm.s   dsw.s     s2.s      scope.v

bi.s   cp.s     ed1.s     s3.s      sop.s

bl.s   db.s     ed2.s     s4.s      trysys.s

cas.s  dmabs.s  ind.b     s5.s



Value developer time over 
machine time.



Separation of
File Metadata from File Naming



Devices as Files



File I/O API

• open

• read

• write

• seek

• tell

• close



File System API

• creat

• rename

• link

• unlink



Interpreter



Prototype software before 
polishing it.





First Research Edition (Nov 1971)



First Edition — 1972 FreeBSD 11.1 — 2018

0       i386    restart_syscall
1       i386    exit           
2       i386    fork           
3       i386    read           
4       i386    write          
5       i386    open           
6       i386    close          
7       i386    waitpid        
8       i386    creat          
9       i386    link           
10     i386    unlink 

Linux 6.10 — 2024



Make each program do one thing 
well.







Avoid captive interfaces.



The Shell as a User Program



Write extensible programs and 
protocols.



Abstraction of Standard I/O



User-Contributed Tools and Games



ai-cli-lib





Write programs that work 
together as filters that process 
text streams.



Third Research Edition (Feb 1973)



Pipes and Filters





Write maintainable programs.



Fourth Research Edition (Nov 1973)



Structured Programming

• Kernel implemented in “New B”

– 6373 lines New B

– 768 lines PDP-11 assembly

• Improvement:

– First Ed.: 248 global symbols

– Fourth Ed.: 105 functions, 50 assembly symbols



Language-Independent API



Data Structure Definition & Reuse

buf.h   filsys.h  proc.h   text.h

conf.h  inode.h   reg.h    tty.h

file.h  param.h   systm.h  user.h



Avoid unnecessary output and 
make failures easy to diagnose.









“After phototypesetting, you had to take a long wide strip of 
paper and feed it carefully into a smelly, icky machine which 
eventually (several minutes later) spat out the paper with 
the printing visible.”

“One afternoon several of us had the same experience — 
typesetting something, feeding the paper through the 
developer, only to find a single, beautifully typeset line: 
"cannot open file foobar" The grumbles were loud enough 
and in the presence of the right people, and a couple of 
days later the standard error file was born...”

— Stephen C. Johnson

F
a
c
e

s
 o

f O
p

e
n

 S
o

u
rc

e
 / P

e
te

r A
d

a
m

s



Use shell scripts to increase 
leverage and portability.



Fifth Research Edition (Jun 1974)
• Command Files
chdir /usr/source/s3

cc -c ctime.c

ar r /lib/liba.a ctime.o

rm ctime.o

chdir /usr/source/s1

cc -s -n date.c

cp a.out /bin/date

cc -s -n dump.c

cp a.out /bin/dump

cc -s -n ls.c

cp a.out /bin/ls

rm a.out



Choose appropriately powerful 
abstractions.



Sixth Research Edition (May 1975)



Portable C Library

alloc.c   clenf.c   makbuf.c  scan1.c
calloc.c  copen.c   maktab.c  scan2.c
cclose.c  cputc.c   nexch.c   scan3.c
ceof.c    cwrd.c    nodig.c   system.c
cerror.c  dummy.s   printf.c  tmpnam.c
cexit.c   ftoa.c    putch.c   unget.c
cflush.c  getch.c   puts.c    unprnt.s
cfree.c   gets.c    relvec.c  wdleng.c
cgetc.c   getvec.c  revput.c
ciodec.c  iehzap.c  run



Seventh Research Edition (Jan 1979)



Unix as a Virtual Machine

Also, about this time [1973] I had a fateful discussion 
with Dennis, in which he said:

“I think it may be easier to port Unix to a new piece of 
hardware than to port a complex application from Unix 
to a new OS”

— Steve Johnson



Separate mechanisms from 
policy.



Dynamic User Memory Allocation

• malloc(3), free(3)

– Used by 26 programs: awk cc col cron dc dcheck diff ed eqn expr 
graph icheck learn ls m4 neqn nm quot ratfor spline struct tar tsort 
uucp xsend quiz

• stdio(3), mp(3)



@
C

o
o

lSW
En

g

Static Analysis



Environment Variables

• KEY=value

• Kernel

• Shell

• C Library



Filesystem Directory Hierarchy





Write abstract programs that 
generate code instead of writing 
code by hand.



Language Development Tools
• lex(1)
• yacc(1)
• 12 clients: 

– awk 
– bc 
– cpp 
– egrep 
– eqn 
– lex 
– m4 
– make 
– pcc 
– neqn 
– struct



Raise abstraction through DSLs.



Domain-Specific Languages

• sh

• awk

• sed

• find

• expr

• egrep

• m4

• make



Architectural innovations are 
sticky and face increasing 
resistance.





Regular Expression Library: regex(3)

– 5 implementations: awk, sed, ed, grep, expr

– 1 client: more(1)

– 2 more by 4.3: dbx(1), rdist(1)

– 4 replacements in FreeBSD: ed, grep, sed, expr



4.3BSD Net/2 (Jun 1991)

• Stream I/O Functions

– funopen(3)

– GNU funopencookie(3) added in FreeBSD 11



Many core architecture decisions are taken at the 
beginning of the system's lifetime



Most architecture decisions survive
over the system lifetime



New architecture decisions are continuously made, 
further fueling architecture evolution



The rate of architecture decisions declines over the 
system's lifetime







Package managers grow 
ecosystems and communities.





386BSD Patch Kit (1992-1993)

• Patch metadata

– title

– author

– description

– prerequisites

• Organized Community Contributions

– From open-source software …

– … to an open-source project





FreeBSD 1.1 (May 1994)

• Package Manager

– Patch

– Compile

– Install

– Uninstall

– Handling of dependencies



Package 
ecosystems

• GNU/Linux: Debian, Fedora, Ubuntu, …

• FreeBSD, NetBSD, OpenBSD

Operating system

• Maven / mvn, Gradle

• PyPI / pip

• NPM  / npm, yarn

• CRAN

• RubyGems / gem

Package repository / manager

• Data science (Python Anaconda)

Activity



Thank you!

www.spinellis.gr
@CoolSWEng
@CoolSWEng@mastodon.acm.org
dds@aueb.gr 



Free open edX course (MOOC):
Unix Tools:

Data, Software and Production 
Engineering

Grow from being a Unix novice to Unix wizard status! 
Process big data, analyze software code, run DevOps 
tasks and excel in your everyday job through the 
amazing power of the Unix shell and command-line 
tools.

https://www.spinellis.gr/unix

https://www.spinellis.gr/unix?ecsa2020


Image Credits

• Faces of Open Source / Peter Adams

• Data: Joshua Sortino

• Hackers at Junction 2015: Vmuru

• ASR-33 Teletype: Rama & Musée 
Bolo

• VT100: Jason Scott

• PDP 11/20: Image courtesy of 
Computer History Museum

(Creative commons licenses)

• PDP11/40: Stefan_Kögl, CC BY-SA 
3.0

• Digital VAX 11/780: Emiliano Russo, 
PD

• Numbers: Nick Hillier

• Building construction: chuttersnap

• Technical Debt: Jacob Duck Die 
Pfändung

• Twisted skyscraper: Mitya Ivanov

• SPARCstation, Mike Chapman, PD

https://commons.wikimedia.org/w/index.php?title=User:Vmuru&action=edit&redlink=1
https://commons.wikimedia.org/wiki/File:Teletype-IMG_7287.jpg
https://commons.wikimedia.org/wiki/User:Rama
https://commons.wikimedia.org/wiki/File:DEC_VT100_terminal.jpg
https://www.flickr.com/people/54568729@N00
http://www.computerhistory.org/revolution/minicomputers/11/366/1946


Funding Credit

The research described has been partially carried out as part of 
the CROSSMINER Project, which has received funding from the 

European Union’s Horizon 2020 Research and Innovation 
Programme under grant agreement No. 732223.



Diomidis Spinellis and Paris Avgeriou. Evolution 
of the Unix system architecture: An exploratory 
case study. IEEE Transactions on Software 
Engineering, 47:1134–1163, June 2021. 
doi:10.1109/TSE.2019.2892149

https://dx.doi.org/10.1109/TSE.2019.2892149


Diomidis Spinellis. A repository of Unix History 
and evolution. Empirical Software Engineering, 
22(3):1372–1404, 2017. doi:10.1007/s10664-
016-9445-5

https://dx.doi.org/10.1007/s10664-016-9445-5
https://dx.doi.org/10.1007/s10664-016-9445-5


Diomidis Spinellis. Documented Unix facilities 
over 48 years. In MSR '18: Proceedings of the 
15th Conference on Mining Software 
Repositories, pages 58–61, New York, NY, USA, 
May 2018. Association for Computing 
Machinery. doi:10.1145/3196398.3196476

https://dx.doi.org/10.1145/3196398.3196476


Data Sources


	Slide 1: Lessons from Unix History
	Slide 2
	Slide 3: Unix and Linux are powering modern IT
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: dspinellis.github.io/unix-history-man
	Slide 37
	Slide 38
	Slide 39: Unix Architecture Evolution
	Slide 40: Lessons from the Unix Architecture Evolution
	Slide 41: Write small programs.
	Slide 42
	Slide 43: PDP-7 [Unix] (1970)
	Slide 44
	Slide 45: Build modular code through partitioning, composition, and layering.
	Slide 46: Layering and Partitioning
	Slide 47: Value developer time over machine time.
	Slide 48: Separation of File Metadata from File Naming
	Slide 49: Devices as Files
	Slide 50: File I/O API
	Slide 51: File System API
	Slide 52: Interpreter
	Slide 53: Prototype software before polishing it.
	Slide 54
	Slide 55: First Research Edition (Nov 1971)
	Slide 56
	Slide 57: Make each program do one thing well.
	Slide 58
	Slide 59
	Slide 60: Avoid captive interfaces.
	Slide 61: The Shell as a User Program
	Slide 62: Write extensible programs and protocols.
	Slide 63: Abstraction of Standard I/O
	Slide 64: User-Contributed Tools and Games
	Slide 65: ai-cli-lib
	Slide 66
	Slide 67: Write programs that work together as filters that process text streams.
	Slide 68: Third Research Edition (Feb 1973)
	Slide 69: Pipes and Filters
	Slide 70
	Slide 71: Write maintainable programs.
	Slide 72: Fourth Research Edition (Nov 1973)
	Slide 73: Structured Programming
	Slide 74: Language-Independent API
	Slide 75: Data Structure Definition & Reuse
	Slide 76: Avoid unnecessary output and make failures easy to diagnose.
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Use shell scripts to increase leverage and portability.
	Slide 82: Fifth Research Edition (Jun 1974)
	Slide 83: Choose appropriately powerful abstractions.
	Slide 84: Sixth Research Edition (May 1975)
	Slide 85: Portable C Library
	Slide 86: Seventh Research Edition (Jan 1979)
	Slide 87: Unix as a Virtual Machine
	Slide 88: Separate mechanisms from policy.
	Slide 89: Dynamic User Memory Allocation
	Slide 90: Static Analysis
	Slide 91: Environment Variables
	Slide 92: Filesystem Directory Hierarchy
	Slide 93
	Slide 94: Write abstract programs that generate code instead of writing code by hand.
	Slide 95: Language Development Tools
	Slide 96: Raise abstraction through DSLs.
	Slide 97: Domain-Specific Languages
	Slide 98: Architectural innovations are sticky and face increasing resistance.
	Slide 99
	Slide 100: Regular Expression Library: regex(3)
	Slide 101: 4.3BSD Net/2 (Jun 1991)
	Slide 102: Many core architecture decisions are taken at the beginning of the system's lifetime
	Slide 103: Most architecture decisions survive over the system lifetime
	Slide 104: New architecture decisions are continuously made, further fueling architecture evolution
	Slide 105: The rate of architecture decisions declines over the system's lifetime
	Slide 106
	Slide 107
	Slide 108: Package managers grow ecosystems and communities. 
	Slide 109
	Slide 110: 386BSD Patch Kit (1992-1993)
	Slide 111
	Slide 112: FreeBSD 1.1 (May 1994)
	Slide 113: Package ecosystems
	Slide 114: Thank you!
	Slide 115: Free open edX course (MOOC): Unix Tools: Data, Software and Production Engineering
	Slide 116: Image Credits
	Slide 117: Funding Credit
	Slide 118
	Slide 119
	Slide 120
	Slide 121: Data Sources

