
RI
O

T
GA

M
ES

Evolution of observability
Riot Games

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA About us

Erick Moreira
Senior Software
Engineer
LiveOps Organisation

Kirill Mikhailov
Senior Software
Engineer
LiveOps Organisation

WhiskeyLorenzo, il Magnifico,
& Luigi
Junior food eaters

RI
O

T
GA

M
ES

Problems with our last
approach
Why we wanted to change

04

New approach
Tech and process behind the migration05

Challenges and Key results
What we learned and what we achieved06

What is Riot Games
Brief history of Riot Games01

What makes observability
different at Riot
What makes observability different at Riot

02

History of observability at
Riot
Our previous approaches

03

RI
O

T
GA

M
ES

What is Riot
Games01

SR
Ec

on
24

 E
M

EA

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Riot Games

2006

Founded
Riot Games was
founded in 2006

What is Riot Games

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Riot Games

2006

Founded
Riot Games was
founded in 2006

2009

League of Legends
released

One of the
most-played PC

games in the world

What is Riot Games

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Riot Games

2006

Founded
Riot Games was
founded in 2006

2009

League of Legends
released

One of the
most-played PC

games in the world

~

League of Legends
becomes a global
leader in esports

What is Riot Games

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Riot Games

2006

Founded
Riot Games was
founded in 2006

2009

League of Legends
released

One of the
most-played PC

games in the world

~

League of Legends
becomes a global
leader in esports

2019

Teamfight Tactics
released

Put the S in Riot
Games

What is Riot Games

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Riot Games

2006

Founded
Riot Games was
founded in 2006

2009

League of Legends
released

One of the
most-played PC

games in the world

~

League of Legends
becomes a global
leader in esports

2019

2020

Release of Valorant,
Wildrift and Legends of

Runeterra

Teamfight Tactics
released

Put the S in Riot
Games

What is Riot Games

RI
O

T
GA

M
ES

What makes
observability
different at Riot02

SR
Ec

on
24

 E
M

EA

RI
O

T
GA

M
ES

Diverse landscape of technologies

Game engines and platforms

Riot operates multiple game engines, from

the alikes of giants of the industry such as

Unreal and Unity to our own in-house

grown. We also deploy to different

platforms such as Windows, Mac, iOS,

Android, PS5, XBOX, and browsers.

Esports events and streaming

Riot is responsible for delivering many of

the biggest eSports tournaments out

there, and as such, they need different

SLAs; they have different monitoring

points and separate infrastructure.

Outposts and networking infrastructure

While Riot is actively working on

decommissioning most of its own physical

infrastructure around the world, we still

collaborate with our cloud partners to

provide the best network and routing

infrastructure for our players.

Highly distributed and fragmented

applications

We operate more than 1000 traditional

backend services, written in Python, Java,

Golang, JavaScript, and C#, running on

Kubernetes using databases, queues, load

balancers, and so on.

SR
Ec

on
24

 E
M

EA
What makes observability different at Riot

RI
O

T
GA

M
ES

Latency and packet loss measurements are
essential

Latency is crucial

100ms spikes during an online game of

Valorant feel much worse than magnitudes

higher latency on the regular web page. We

take active measurements both on the client

side and game servers to detect and react to

any possible issue. ISP issues, ocean cable

cuts, and other issues have a significant

impact on our operations.

Data volume limitations

Due to the high volume of individual data

points from the game server and game

clients, we have to work on pre-aggregation,

throttling, and filtering. The pipeline should

be robust and have a high variety of

instruments to work with the data.

SR
Ec

on
24

 E
M

EA
What makes observability different at Riot

RI
O

T
GA

M
ES

Example of peeking in game with a different
ping

SR
Ec

on
24

 E
M

EA

Source: https://technology.riotgames.com/news/peeking-valorants-netcode

Image shows how far a player who starts fully

behind cover is able to peek around a corner

before their opponent sees the movement.

What makes observability different at Riot

https://technology.riotgames.com/news/peeking-valorants-netcode

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA

100 clusters
Only counting Kubernetes
clusters

30 regions
Including both Cloud regions and
self-managed outposts

Publishers
We distribute our games to some
regions through publishers

Due to the number of regions we operate, it presents
a lot of challenges. Players login mostly at night and
weekends in their regions. Rollouts can take days due
to A/B testing, canary releases, and more. Since we
have to interact with game publishers, it also presents
unique challenges on how we expose service
telemetry to be consumed.

We run our
games close to
our players

What makes observability different at Riot

RI
O

T
GA

M
ES

History of
observability
in Riot
Games

03

SR
Ec

on
24

 E
M

EA

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA History of observability
Early Days

Characterised by team-specific observability stacks

Teams were building and supporting observability pipelines by themselves.

And others

History of observability in Riot Games

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA History of observability
First attempts to build a centralised solution

Zabbix was selected as the main monitoring solution.

Multiple Zabbix instances were scattered throughout the infrastructure.

History of observability in Riot Games

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA History of observability
First attempts to build a centralised solution

Along the way, a custom API to query multiple Zabbix
instances was developed.

Custom
API

History of observability in Riot Games

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA History of observability
First attempts to build a centralised solution

And Grafana was chosen as a main visualisation tool
for the pipeline.

Custom
API

History of observability in Riot Games

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA History of observability
In-house centralized ELK solution

ELK stack was introduced as a centralised solution.

Custom API supported both Zabbix and ELK stack.

Custom
API

History of observability in Riot Games

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA History of observability
In-house centralized ELK solution

Zabbix was omitted
Services were pushing data through the collector to ELK
stack

Custom
API Collector Services

History of observability in Riot Games

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA History of observability
Vendored solution

Collector was switched to use new observability solution
from one of the SaaS Vendors

Vendor Collector Services

Users

History of observability in Riot Games

RI
O

T
GA

M
ES

Problems
with the last
approach04

SR
Ec

on
24

 E
M

EA

RI
O

T
GA

M
ES

02
Slow to adapt
● Small team with burden to develop and

load test internal service.

● Low time to keep up with the latest

standards, such as eBPF and other

emerging technologies.

● No clear ownership on vetting

technologies and distributing/enforcing

standards.

03
Governance was difficult
● Accounts were separate, and API keys

were easy to access.

● There were no clear standards or

guidance on usage of technology and

functionality from the vendor.

● With no control over metric names, it

was hard to pinpoint common offenders.

01
Hard to integrate
● Mainly integrated with internal

frameworks

● If you were using Python, Lambdas, or

anything else, you were out of luck.

● Changes took ages to propagate as they

were delivered with framework changes.

● Lack of unified documentation on

observability and telemetry

Hard to integrate, slow to adapt, governance problems
SR

Ec
on

24
 E

M
EA

Problems with the last approach

RI
O

T
GA

M
ES

Fragmentation on observability

SR
Ec

on
24

 E
M

EA

Standards
Each team had a different

set of metric names, tags,

and service catalogue

setup. A lot of teams were

relying on synthetics and

logs instead of metrics.

Tracing
No unified approach for

tracing. Difficulties with the

triaging experience.

Access control
Each team was responsible

for managing its own

account. Querying across

multiple accounts was

hard.

Code access
Each team managed their

own repository for their

infrastructure as code and

had their own CICD

pipeline for monitors,

dashboards, etc.

Problems with the last approach

RI
O

T
GA

M
ES

150TB never queried
A single metric accounted for 150TB/month ingest
and was never queried

1PB in a weekend
A single load test generated over a petabyte of
logs in a single weekend

Tags and name mix
With tags being appended to metric names, it
was hard to pin down sources of wastage

During the service development lifecycle, it is
easy to add a few log lines here and there. To
add extra metrics that are forgotten. With
fragmentation on account management and not
a single point for telemetry ingestion, it was easy
for teams to explore but hard for us to control
and turn off the tap.

Wastage was
hard to control

SR
Ec

on
24

 E
M

EA

RI
O

T
GA

M
ES

Logs and metrics ingested/monthly by Riot.

SR
Ec

on
24

 E
M

EA

3.5 petabytes

What makes observability different at Riot

RI
O

T
GA

M
ES

New
approach05

SR
Ec

on
24

 E
M

EA

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA

We changed
vendors

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Tech approach

In-house
Developed
Collector

● Good set of sources,sinks and transformations including
OpenTel, deduping, throttling, sampling, buffering and
more.

● Good performance. During the load tests we observed almost
3x performance compared to our previous collector

● Open source with mature community and documentation.

● Easy to develop and has great built-in tools such as
querying api, auto-reloading, tapping, graphing, testing and
more.

Single telemetry ingestion with Vector

New approach

RI
O

T
GA

M
ES

New approach

Riot internal tooling for Vector

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Tech approach

● It extracts all infrastructure metrics, such as CPU,
memory and so on. Uses eBPF to extract all network
metrics.

● With network metrics and information it provides us
the ability to visualize all our service map and
monitor all http requests with 0 changes.

● It can scrape prometheus metrics endpoints, collect
traces and push it to Vector.

● It support all environments we have, such as K8s,
Mesos, EC2, Fargates and lambdas.

Agent
(daemonset)

Deployed agent in our environments

New approach

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Tech approach
● Inject annotation, attributes and vendor specific

configuration with mostly 0 effort from service
owners.

● It allow us to create our own interface of annotations
and configuration for K8s resources. Allow us to
swap the tech implementation and version behind the
scenes

● It is able to intercept and modify pods to enable
injection of vendor and open source APMs. Traces
everywhere!

Webhook
service

Admission
Webhook

Pod
spec

Modified
Pod

Spec

Admission Webhook to stay vendor agnostic

New approach

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Log and traces sampling

● We introduced default aggressive sampling for logs
and traces. For example, WARN logs 10%, INFO logs
1%, and so on.

● Traces are dynamically sampled according to usage
with errors being prioritized.

● Teams can opt out or fine-tune the sampling ratio by
service, region, environment, severity, and custom
logic. This is backed by GitOps and is remotely
synced to our collector instances.

Sampling

Enter aggressive Sampling by Default

New approach

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA
New approach

Example of log sampling
configuration

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Allowlist for metrics

● To counter tag cardinality and metrics names with
variables/labels in it.

● Metrics are mostly allowlisted. Metrics from kafka,
mysql, our internal frameworks and others are
allowed by default.

● Allowlists are stored dynamically using GitOps and all
changes to them are applied almost instantly.

Allowlists

Introduced Allowlists for metrics

New approach

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Tech overview

Dynamic
admission

control

K8s
resource

Agent
(daemonset)

Services

Modified
K8s

resource

Vendor

Dynamic on the fly
configuration through

GitOps

New approach

Old Collector

Old Vendor

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Additional changes
Encouraged all teams to move to monorepo with IaC files for alerts and dashboards
This is to provide the SRE teams the ability to apply cross cutting modifications to monitors and reduce burden of
maintenance of such repositories for teams.

Data corrections and vendor specific attributes
We extract tags from metric names, filter high cardinality tags, normalize environment names and add vendor
specific attributes.

Introduced tighter controls on API keys and Vendor functionality
API keys are now issued via special ticketing system and require a review for few specific exceptions. Vendor
specific tech is vetted and tracked by us to ensure governance and compliance.

Robust CICD
We have hundred of units and integration tests. Canary applications emitting telemetry constantly being verified.
Constant load tests. A/B deployments and automatic promotions.

New approach

RI
O

T
GA

M
ES

With the tech part covered, how to approach
teams and their services though?

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA
New approach

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA How did we migrate the teams?

Whiteglove migration Self-service

520 engineers embedded in specific teams with
high impact services.

Helped us gather deep insight on multiple diverse
technologies Riot uses.

Most of the work was carried out by us.The scope
of work varied a lot from team to team, and work
kept changing.

Teams got cold feet to pull the trigger as they
acquired little knowledge of the vendor during the
transition.

Service teams were responsible for migrating
themselves.

A lot of work on documentation was necessary
with a good explanation of tools, examples, and
best practices.

On-call rotation with SLAs for PR reviews and
question-and-answer channels

Required switching to whiteglove along the way
for some teams/services.

Teams were more confident to pull the trigger as
they migrated themselves.

Two different approaches

New approach

RI
O

T
GA

M
ES

Challenges
and key
results06

SR
Ec

on
24

 E
M

EA

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Learnings and tough spots
Challenges and key results

Sampling
Initially it was too aggressive and we underestimated how much teams relied too much on individual logs. People
start thinking about workarounds to bypass it. We eased a lot of the constraints and in some cases optimized
their logs, removing waste. Traces also reduced the reliances on logs.

Gatekeeping is complicated
We started with a manual process to add metrics to allowlist metrics and to fine-tune sampling. It required lengthy
PR reviews that sometimes went across time zones. GitOps, documentation and Quotas have made this easier.

Vendor lock in
Teams were using a lot of different vendor specific libraries and data structures, which required to emulate it on the new
platform or transition to standard tools/data structures. We dropped all vendor specific in code bases.

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA Learnings and tough spots
Challenges and key results

Wastage control is a constant battle
Having tools to control waste allows us to have conversations with service teams and bring data about costs. Metric
cardinality and log data were and still are some of the most significant cost factors, and we can gate-keep bad
practices.

Seriously, documentation is very important
Documentation, backlinks, references and examples for different technologies and our frameworks greatly improved
migration for many teams.

Right tool for the right job
We generate a lot of data, not all of it require to be accessed in real-time manner. Some can be optimized by using logs
instead of metrics, or metrics instead of logs. While others can be sent only when there is an interesting event instead
of constantly being sent.

RI
O

T
GA

M
ES

SR
Ec

on
24

 E
M

EA

We achieved 30% cost reduction in our total Vendor bills. $5M in cost avoidance. We are
also using much more extensively the vendor capacities. Finished the project in 1 year.
350 TB logs/month only. 90% drop of custom metrics ingestion drop. Down to 300k
synthetic runs from 3 million

Tracing is widely used. This helps us understand the web of services and the full player
journeys without much domain knowledge, improving MTTD and accuracy of first
escalation.

With 1 year of operation we had less than a handful of major incidents for the ingestion
pipeline. At high peak it can scale up to 2000 cores with 3 TB of memory.

Easy to integrate. Support industry formats, plus internals. We
support all major languages and major platforms. 0 reliance on
shared frameworks.

Some key results

Challenges and key results

RI
O

T
GA

M
ES

Questions?

SR
Ec

on
24

 E
M

EA

