
Start Small, Scale Big
Building and Scaling Platforms and SRE
Culture at Startups

Yash Shanker Srivastava

● 7 years in the industry

● based in Bangalore, India

● Engineering Manager at Toplyne

● started with developing payment products at PayU
Payments, India

● DevOoopsed for companies like Setu, Validus
Capital, 2c2p and Toplyne

● love to contribute to design and development of
Distributed Systems

devooops.dev
srecon@devooops.dev
devooops.dev/linkedin
devooops.dev/twitter
devooops.dev/github

Introduction

Site Reliability Engineering

Site reliability engineering (SRE) is the practice of using software tools to
automate IT infrastructure tasks such as system management and
application monitoring.

Organizations use SRE to ensure their software applications remain
reliable amidst frequent updates from development teams.

SRE especially improves the reliability of scalable software
systems because managing a large system using software is more sustainable
than manually managing hundreds of machines.

Platforms Engineering

Platform engineering is the discipline of designing and building Internal
Developer Platforms, toolchains and workflows that enable
self-service capabilities for software engineering
organizations.

Platform engineering teams apply software engineering principles to

accelerate software delivery.

Platform engineers ensure application development teams are
productive in all aspects of the software delivery lifecycle.

Startup vs ScaleUp vs Large Org

Startup Scaleup Large Org

5-20 Engineers 50-200 Engineers above 500 Engineers

Developing its first product |
Achieving PMF

Rapid growth for the
product/s | Achieved PMF

Multiple proven products

Trying to establish business
model

Proven business model,
now scaling it

Matured and scaled
business model

No revenue | Pre-seed to
Series-A

Some revenue | Series B to
Series D

pre-IPO or Public

2-15 mil USD in bank Above 50 mil USD in bank lol amount in bank

Goals : Startup vs Scaleups

● Startup
○ Develop the product and find PMF
○ Go to market and onboard first few customers
○ Absorb feedback from the customers and rapidly build for them
○ Be frugal, but okay to spend

● Scaleup
○ Stabilise the product
○ Scale efficiently without breaking the product
○ Build stable features
○ Be frugal, but spend efficiently

Reliability & Platform Engineering

● automation
● shared philosophy of DevOps
● stability and scalability
● collaboration
● continuous feedback and improvements

TLDR ; Make others’ life easier.

Imbibing SRE
Philosophies in an
Engineering Org

Alignment of platforms with the needs of
the business

● serve tech to solve business
● save money
● not get influenced by industry trends
● avoid fancy technology: you don't need it, and it's slow to use
● work through the constraints
● make Engineering sustainable

Staying adaptable while scaling

● make an Engineering Charter, that defines your culture
○ Separate SRE/Platforms charter, while scaling out

● take short-term decisions, keeping long term vision in mind
● tech-stacks, principles and philosophies of the SRE culture need to be adaptable
● achieve business excellence immediately, but tech excellence in iterations

Example :

● use saas and managed services
● start with a monolith
● dockerize your services, but don’t use k8s
● use SaaS o11y provider, but with otel-exporters
● use infrastructure-as-code
● implement continuous delivery

Setting up SRE culture from the first
Engineer

● gatekeeping bullshit out of Engineering culture is important
● ensure that reliability remains at the core of the organization's culture as it

scales
● it is difficult in the growth phase to start with standardization platforms
● retrofitting of SRE principles adds toil
● no-SRE model (thanks PSN team 😉) works wonders

○ implement the philosophy, not the role/designation/team
○ ones who write the code, [must/should] know best how/where to run it

Strategies for
Developing SRE

Platforms in
Constraints

Adapting SRE philosophy based on
constraints

● time
○ GTM being the goal, there isn’t much time to get to tech eutopia
○ ship or die

● money
○ frugality (current market conditions, well. 😢)
○ no money to waste

● people
○ people come with biases and practices

● knowledge
○ team members have different knowledge levels and learnings

Decisions regarding suitable technologies
and services

Decisions regarding suitable technologies
and services

cool and best is not the always the most suitable.

Decisions regarding suitable technologies
and services

● monolith vs microservices ⏱
● self-hosting vs managed services 💲
● binaries/executables vs containers vs functions 🛠
● docker-compose vs Beanstalk vs ECS vs EKS
● datadog vs ELK vs Signoz
● real-time/sync vs event-driven/batch
● database
● SaaS vs in-house self hosted

Tldr: building business logic vs building infra

Synergy between Platform Engineering,
DevOps, and SRE Principles in Practice

● shared goals
● collaboration and cross-functional work
● DevOps in their foundation
● automation and standardization
● continuous feedback and improvements

TLDR ; Make others’ life easier.

Open Source your SRE and
Platforms

(within your Engineering team)

It’s DAY 2

It’s DAY 2

Where the fudge is

SECURITY ?

It’s DAY 2

Where the fudge are

SECURITY ?

COMPLIANCE ?

It’s DAY 2

Where the fudge are

SECURITY ?

COMPLIANCE ?

SECOPS ?

Case Study 1 : Setu

March 2020 vs May 2022

● 1st product (collect-payments) went live
● 0 revenue. USD 15mil in bank.
● 3 micro-services
● a few thousand API requests per month
● a few GBs of data processing per month
● 1 team of total 5 engineers
● 1 Platform Engineer

● 8 live products across, payments,
investments, lending and KYC

● over 50 microservices in production
● ~25 million API requests per month
● ~50 TBs of data processing per month
● 8 teams of over 30 engineers
● 2 Platform Engineers

How we started at Setu ?

● March 2020
○ 3 microservices deployed across 1 live product.
○ deployed on AWS
○ containerized services and deployed on Elastic Beanstalk
○ infrastructure managed in Terraform
○ DevOps Team responsible for Infra changes, security, compliance and

peripherals
○ manual deployments

● May 2020
○ Launching the second product

● June 2020
○ Plans to launch 5 more products rapidly within 6 months

How we started at Setu ?

● deployments involved downtimes
● change management and patching was challenging
● lack of standardization
● writing new infrastructure was boring and time taking
● multiple regulatory audits

○ api security testing
○ recurring full infra vapt audits

● decentralised flow of architectural decisions were difficult to standardise

Birth of Platform Engineering at Setu

Standardised DevOps Platform to be used across Setu

● modularised self-serve infrastructure as code in Terraform
○ ECS based containerized deployments
○ RDS and MongoDB Atlas
○ Site-site VPN with multiple bank infrastructures

● feature packed hardened Packer based AMIs
○ HIDS, NIDS, FIM, SSH Hardening, antivirus

● ELK based o11y for logs and metrics (no traces)
○ alerting, incident management on PagerDuty and Slack

● built in Security and Compliance
○ ISO 27001:2013 , RBI SAR, Banks and NPCI audits audit checks
○ Cloud Security Alliance - Star Level One certified

May 2022

● 8 live products across, payments, investments, lending and KYC
● over 50 microservices in production
● ~25 million API requests per month
● ~50 TBs of data processing per month
● 8 teams of over 30 engineers
● streamlined incident management and 3 level on-call rotation policies
● 2 Platform Engineers

How Dev teams used the Platforms

How architectural decisions flow into the
Platform ?

Impact

● Go to Production depended only on writing business logic for the product.
● All SRE components built into the Platform from Day 0 of dev.
● Dev Teams owned end to end infrastructure and operations of their product.
● Setu had to go undergo 20 InfoSec and Compliance Audits in a single year

○ All done seamlessly with minimal dev effort
● PR to release time gone down to 10 minutes
● Standardised infra and practices across the business.

Case Study 2 : Toplyne

June 2022 vs June 2023

● product is live
● monolith, with few data services spread

across lambda functions and in Airflow
● a few thousand API requests per month
● 10s of TBs of data processing per

month
● 5 Data Scientists, 3 Data Engineers, 5

FullStack Devs
● no “standardised” infra-as-code
● SRE practices instilled from the 1st

Engineer
● automated deployments
● 1 Platform SRE

● product is live
● still a monolith, tens of services across

Lambda, Batch, Airflow
● 100s of TBs of data processing per

month
● 5 Data Scientists, 4 Data Engineers, 10

FullStack Devs
● standardised infra-as-code platform
● continuous delivery
● devs own their ops
● 2 Platform SREs

State of Platforms in June 2023

● no Kubernetes [󰤅]
● prefer native AWS services [save time]
● migrated Airflow from MWAA (AWS managed Airflow) to self-hosted [more

control]
● migrated o11y from Datadog to self-hosted Grafana LGTM stack [save costs]
● platform team produces self-serve infra and services for DS, DE and Product

teams
● regular knowledge sharing in a fast moving org [sustain the culture]
● push to release takes 8-10 minutes (ci, secops, infra-updates, cd)
● platform is the product of the SRE team

○ support in the form of new features, not “support”

Why “How Google or
Netflix Do SRE” is

Not a Good Place for
Startups to Start

With

Why How Google or Netflix Do SRE is Not a
Good Place for Startups to Start With

- requirements
- business
- tech

- scale
- maturity

- org
- engineering team

- budgets

Conclusions

Framework for setting up a Culture of Site
Reliability Engineering

● implement principles, not the role/team
● standardise, yet allow extensibility
● stay adaptable
● prioritise business needs over exciting tech
● iterate towards perfection, but don’t add debt

○ the perfect tool/practice/culture doesn’t exist
● use plug/play managed services to start with
● prefer productization, over support based service
● just get shit done

DON’T GET EXCITING IDEAS FROM CONFERENCES/PODCASTS/YT VIDEOS, AND
RUSH TO IMPLEMENT IN YOUR ORG. 🤪

June 2020 June 2022

Questions ?

