
From Push to Pull
Managing Mutable Infrastructure at Scale

COVER NO IMAGE, GREEN

Holly Micham-Mooneyham, Cisco Meraki

hmooneyh@cisco.com
@TrailsThroughTheSystem@hachyderm.io

● Deploy components
● Replace them when things change
● Manage the churn

● Deploy components
● Update them when things change
● Manage the drift

Immutable Infrastructure Mutable Infrastructure

Defining Some Terms

How NOT to Build a Better Mousetrap

How did
we even
get here?

What do
we actually
need?

What’s the
minimum viable
product?

How do we
keep
momentum?

Who are we?

When I joined
Meraki in 2015…

Meraki was based around
mutable infrastructure

We had 405 physical servers

We had 98 engineers

Today in 2023…

Meraki is still based around
mutable infrastructure

We have more than 10x the compute

We have more than 10x the engineers

- People like their workflows
- Requires building consensus

Social Change is Hard We Can’t Change the Past Change takes Time

- Pragmatic decisions got us
here

- Technical debt is expensive

- Competing priorities
- Can’t stop all non-SRE work

Wouldn’t immutable be better at scale?
Why Mutable Infrastructure?

We want things to be
great. But we have to be
good at what we’re doing
now.

From Push to Pull
Managing Mutable Infrastructure at Scale

COVER NO IMAGE, GREEN

Holly Micham-Mooneyham, Cisco Meraki

hmooneyh@cisco.com
@TrailsThroughTheSystem@hachyderm.io

How did we even
get here?

1. Change is constant

2. Needs evolve

3. Complexity is inevitable

“Why This Stuff is Hard” by Lorin Hochstein, SRECon Americas 2023

Capistrano

pre-2016

Evolution of a Deploy System

+ Capistrano

late 2017

+ Jenkins

early 2019

+Gitlab

mid 2020

The Problem of
Constraints

Too much focus on
Kubernetes and feature
gaps around mutable
infrastructure

Challenges integrating
with our technical-debt
laden systems,
especially inventory

The search for the
“perfect” system that
does not exist

What about Existing Systems?

- Fine grained control
- Natural prioritization
- Developers can coordinate

- Synchronous locking of all resources
- Unreproducible production state
- Vulnerable to drift

Push Systems have Benefits They also Don’t Scale

Push Systems as a Mousetrap

“If SRE need the lock for
any reason there’s a very
good chance that you’ll
have to reschedule”

Error
Handling

What do we
actually need?

Breaking Change Budget

- Addressing pain
- Fixing high-interest technical debt
- Providing net-new features
- Building trust

- Social change
- Changing people’s workflows
- Removing constraints

Earned By Spent on

Breaking Change Budget

User Experience
Interviews

Interview Goals

Discover our
users needs

Map out
constraints

Understand
current pain

Make our customers
voices heard

What’s the actual
problem?

“We need to scan
containers during or before
deployment.”

“We need to scan
containers during or before
deployment.”

“We need to prevent
introducing new
vulnerabilities.”

Interview Methodology

4 questions about
current experience

2 questions about
requirements

2 implementation
questions 1 open ended question

2 Positive questions
2 Negative questions

To discover descriptive
needs

To help inform our tooling
choices

To ensure our users voices
are heard

- Rollout strategies
- Feature flags
- Visibility

- Time zones
- Technology choices
- Exceptional cases

- Reproducibility
- Agility/speed
- Synchronicity
- Documentation

Features Constraints Pain

Learnings

Unavoidable Constraints

DevOps Research and Assessment Report: Elite
Guideposts

Frequency Lead Time Time to Restore Change Failure Rate

On-demand < 1 hour < 1 hour 0%-15%

Putting it all
together

Firm Design
Decisions

Core toolchains

Declarative state

Eventual consistency

Earliest
Diagram

Flexibility

Support the unpaved road

How people interact with the system

What people do with the system

Pave the road that handles
 80% of our traffic

Make sure there is a road for
the other 20%

The 80/20 Rule

80
%

What’s the
minimum viable
product

MVP as a process

Use Cases Supported

80%
General Availability

40%
Open Beta

10%
Alpha

1
Early Experiments

Let’s build a system

Early Experiments

Athena

!=

Deploy
Agent

1. Read Intended State
2. Make it So
3. Report State

Deploy
Supervisor

1. Read Intended State
2. Read Current State
3. Report to Users

Refactor
#1

- Sustainability
- Hygiene
- Future-proofing

https://docs.google.com/file/d/1HGknaytt-m2I8XDjv7p0wxhzzvg37jj8/preview

Alpha

“FYI we're firing up the new
deploy system and it's
about to put a bunch of load
on Athena.”

Athena
Load 100%

10%

1%

50%

- #1 descriptive need identified during customer
interviews

- 3 competing use cases
- completely rewritten 4 times
- has the most tests of any part of the system

Targeted Deployments

Paved vs Unpaved Roads

Deploy
API

Beta

Avoiding complexity creep

The Evolution of a Feature

Blessings in disguise

GA and Beyond

Host owner vs service owner

Deploy
Verifier

- Did everything break?
- Roll it back

A Full
System

In Review

How NOT to Build a Better Mousetrap

How did
we even
get here?

What do
we actually
need?

What’s the
minimum viable
product?

How do we
keep
momentum?

Building Stuff is
Exciting!

Question your constraints: Understand how you got here, and
then step outside your local perspective.

Learn your breaking change budget: Spend it in places where
your constraints stop you from building what you need.

Interview your customers: Cut through the noise of
prescriptive needs and learn their descriptive needs.

MVP-as-a-process: Identify your riskiest assumptions and
continuously test with the minimal investment.

Tools for
Making a
Great
System

Thank you!Thank you!

