
Lessons Learned Running GKE Clusters on
Spot Instances

Olga Mirensky, Platform Engineer, ANZx

Spot Instances Quick Overview

Discount 60 - 91% Up to 90% Up to 90%

Updates Once a month Can be frequent Variable

Options One size fits all Price and/or capacity optimised Set max price

Notice 30 sec 2 min 30 sec

On preemption Stop/Hibernate Stop/Hibernate/Terminate Deallocate/Delete

Price Insights API, Cost table `aws ec2 describe-spot-price-history`

Spot instance advisor

Portal price/eviction history, API

This Talk Scope

Capacity Availability

Graceful Termination

huh?..

Disclaimer: This pie chart is a work of fiction. Any resemblance to actual stats is purely coincidental.

Importance

Most of today’s talk

Spot Capacity Management in Kubernetes

● Fallback to on-demand automatically (and un-fallback)
○ Priority based expander for Cluster Auto Scaler

○ GKE Cluster Auto Scaler price-optimised by default

○ Weighted NodeAffinity

● Cluster Reserved Capacity
○ Cluster Auto Scaler config option

○ Headroom / balloon pods

● Managed Dataplane
○ Spot by NetApp, etc.

● Service quota limit for Spot CPU

SRECon 2023

Graceful Shutdown

● Fault tolerant applications

● Graceful shutdown on SIGTERM
○ In-flight requests handled

○ New requests not routed and not accepted

○ External connections are closed (DB)

○ App specific requirements

● Node Graceful Shutdown feature in k8s
○ Enabled by default since 1.21

○ Node NotReady

○ SIGTERM propagation: workload vs system pods

25 sec 5 sec

Workload Pods
System
Pods

We broke everything (but not really)

🤔

⁉
OutOfpods, Error, NotReady,

ContainerStatusUknown,

NodeShutdown, Terminated,

Init:ContainerStatusUnknown

and more!! 󰷺

message: Pod Predicate NodeAffinity failed

Warning FailedMount 2m21s (x3870 over 5d10h) kubelet MountVolume.SetUp failed for volume “xxxx”

: object “<namespace>“/”<name>” not registered

Warning FailedMount 45m (x185 over 6h45m) kubelet MountVolume.SetUp failed for volume

. kube-api-access-12345" : object "my-ns"/"kube-root-ca.crt" not registered

Warning NodeAffinity 41m kubelet Predicate NodeAffinity failed

Warning FailedMount 26s (x28 over 41m) kubelet MountVolume.SetUp failed for volume

. kube-api-access-12345" : object "my-ns"/"kube-root-ca.crt" not registered

Automatic Reclaiming

The same node can

be backed by

different VMs over its

lifetime

method identity

recreateInstance

NodeAffinity

● NodeAffinity pods traced back to a node with reclaimed VM and still in cluster

● Related to https://issuetracker.google.com/issues/185362914
○ Kubelet restart edge case

○ Still an issue with GKE preemptible VMs at the time.

○ Users still report this issue (1.24.10-gke.2300)

“Note that this issue has little to no impact on

workloads. As long as the pod is backed by

controller (deployment/statefulset, etc) a new

pod is immediately created and rescheduled.”

$ kubectl get pod $name -o yaml
…
status:
 message: Pod Predicate NodeAffinity failed
 phase: Failed
 reason: NodeAffinity

https://issuetracker.google.com/issues/185362914

Little to no impact on workloads…

● 12 pods in 21 seconds on the same node

● At least 21 seconds deployment did not have desired capacity

● It is not a problem now, but something happened in the past

No Panic!

Does my Deployment (StatefulSet /

DaemonSet) have desired number of replicas

Running and Ready?

But there is a better way…

Not so “little impact”

● Platform should be easy to consume

● Software Engineers are not experts in Dead Pods

● Engineers raise “issues” and support requests again and again, wastes time

● Spot instances became the first suspect when anything goes wrong even

when

○ Technically there is no issue

○ Or issues are not caused by Spot preemptions

Solutions

● k8s Garbage Collector

○ In GKE threshold is 1000 objects

● https://github.com/kubernetes-sigs/descheduler

○ Safely evicts (not deletes) pods

○ Rebalance Availability Zones

○ Spread pods of the same deployment across nodes

○ Remove ‘Failed’ pods immediately, and more

● Data

○ Platform Critical User Journeys (CUJ) and SLOs

https://github.com/kubernetes-sigs/descheduler

Takeaways

Implementing well-known SRE k8s practices are crucial on Spot:

● Replication

● Spread across zones and nodes (TSC[1], pod AntiAffinity)

● Graceful shutdown

● Probes

● Tier applications by priority

● PDBs. Don’t protect from Spot preemptions, but improve overall availability

[1] new features: https://kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

https://kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

What doesn’t kill you makes you stronger

Thank you

CAS expanders: https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler/expander

Open Source CAS developed by AWS: https://karpenter.sh/

GKE on-demand fallback:
https://cloud.google.com/blog/topics/developers-practitioners/running-gke-application-spot-nodes-demand-nodes-fallback

TopologySpreadConstraints new features: https://kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler/expander
https://karpenter.sh/
https://cloud.google.com/blog/topics/developers-practitioners/running-gke-application-spot-nodes-demand-nodes-fallback
https://kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

