Lessons Learned Running GKE Clusters on
Spot Instances

Olga Mirensky, Platform Engineer, ANZx

ANZOPIUS

Spot Instances Quick Overview

Discount
Updates
Options

Notice

On preemption

Price Insights

) Google Cloud
60 - 91%
Once a month
One size fits all
30 sec
Stop/Hibernate

API, Cost table

aws

Up to 90%

Can be frequent

Price and/or capacity optimised
2 min

Stop/Hibernate/Terminate

“aws ec2 describe-spot-price-history

Spot instance advisor

/AAzure

Up to 90%
Variable

Set max price

30 sec
Deallocate/Delete

Portal price/eviction history, API

This Talk Scope

Capacity Availability

Importance
Graceful Termination

huh?..

Most of today’s talk

Disclaimer: This pie chart is a work of fiction. Any resemblance to actual stats is purely coincidental.

Spot Capacity Management in Kubernetes

e Fallback to on-demand automatically (and un-fallback)

o Priority based expander for Cluster Auto Scaler
o GKE Cluster Auto Scaler price-optimised by default
o Weighted NodeAffinity

e Cluster Reserved Capacity

o Cluster Auto Scaler config option
o Headroom / balloon pods

e Managed Dataplane
o Spot by NetApp, etc.
e Service quota limit for Spot CPU

SRECon 2023

[] priority-expander-cm.yaml

1

0 N O U WN

10
11
12
13

based on https://github.com/kubernetes/autoscaler
higher number - higher priority (not in %)
apiVersion: vl
kind: ConfigMap
metadata:
name: cluster-autoscaler-priority-expander
namespace: kube-system
data:
priorities: |-
10:
— kon-demand.*
50:
- .xspot.x

Raw

Graceful Shutdown

e Fault tolerant applications

e Graceful shutdown on SIGTERM

o In-flight requests handled
o New requests not routed and not accepted
o External connections are closed (DB)

o App specific requirements

e Node Graceful Shutdown feature in k8s System
Workload Pods Pods

o Enabled by default since 1.21
o Node NotReady _E

o SIGTERM propagation: workload vs system pods

We broke everything (but not really)

1-66b95c8b9c-292qt e 2/2
6754f-mhvd2 e 7/7

@ Running 5 243 1

Running 22 730

o 4/4

Running 1126 4056

e 4/4 Running 178 4206
elop-865b95584d-1sn8p e

-7d4df9dbf8-2q5dp °

Running
Running

6 118
5 240
849696986-14f rx []

Running 7 180

° Running 87 5196

Oooooooo

[Running 46 4449
6 124
6 117

11 132

° Running
° Running
[] Running

OutOfpods, Error, NotReady,

ContainerStatusUknown,
NodeShutdown, Terminated,
Init:ContainerStatusUnknown

and more!! 22

PF READY RESTARTS STATUS CPU MEM SCPU/R SCPU/L SMEM/R SMEM/L
0 31 7

Status Type

© OutOfcpu Deployment
@ OutOfcpu Deployment
© OutOfcpu Deployment
© OutOfcpu Deployment
@ OutOfcpu Deployment
@ OutOfcpu Deployment
© OutOfcpu Deployment

ingressgateway-564594c67c-njcdm
ingressgateway-564594c67c-nlrdp
ingressgateway-564594c67c-nz6j2
ingressgateway-564594c67c-pqvdk
ingressgateway-564594c67c-psf8t
ingressgateway-564594c67c-q9471
ingressgateway-564594c67c-qcwlg
ingressgateway-564594c67c-qp8lj
ingressgateway-564594c67c-qqg9n
ingressgateway-564594c67c-t9fhm
ingressgateway-564594c67c-v8wg8
ingressgateway-564594c67c-xf7dd
ingressgateway-564594c67c-xfbds

Namespace

0/1
171
0/1
171
171
171
171
0/1
0/1
0/1
171
171
0/1

Cluster Pods Running

NN NN NN

Pods Desired

NN NN NN

NodeAffinity @ 6d15h
Running 0 37h
Completed <mmmuu— l? 6d15h
Terminated 0 ® ® 6dl15h
Running 0 2d%h
Running 0 2d%h
Running 0 6d15h
NodeAffinity 4mfmmmmm @3 6d15h
NodeAffinity © =) 6d15h
NodeAffinity @ 6d15h
Running 0 6d15h
Running 0 2d9h
NodeAffinity 0 6d15h

message: Pod Predicate NodeAffinity failed

Warning FailedMount | 2m21s |(x3870 over 5d10h) kubelet MountVolume.SetUp failed for volume “xxxx”

: object|“<namespace>"/"<name>" |not registered

Warning FailedMount 45m (x185 over 6h45m) kubelet MountVolume.SetUp failed for volume

kube-api-access-12345"] : object "my-ns"/"kube-root-ca.crt" not registered
Warning NodeAffinity 41m kubelet Predicate NodeAffinity failed
Warning FailedMount 26s (x28 over 41m) kubelet MountVolume.SetUp failed for volume

kube-api-access-12345"] : object "my-ns"/"kube-root-ca.crt" not registered

Automatic Reclaiming

1 protoPayload.request.@type=(

2 "type.googleapis.com/compute.instances.repair.recreateInstance"” OR
3 "type.googleapis.com/compute.instances.preempted” OR

4 "type.googleapis.com/compute.instances.delete")

5 -676b2d4d-gnjb"

@ Logfields @ Histogram

Histogram

4 1
1
<[, i [
0 é =
May 17, 9:30AM 10:00AM

Query results 8 log entries

SEVERITY TIMESTAMP AEST ¥ SUMMARY Z EDIT

@ Toview older entries: [Extend time by: 1 hour | v] [Edit time]

The same node can
be backed by
different VMs over its

T
11:00AM

lifetime

> @ 2023-05-17 09:37:53.995 AEST compute.instances.preempted compute.googleapis.com compute.instances.preempted -pps-r

> i 2023-05-17 09:37:55.866 AEST compute.instances.repair.recreateInstance compute.googleapis.com .e.instances.repair.re

> i 2023-05-17 09:37:57.635 AEST v1.compute.instances.delete GCE Managed Instance Group for GKE compute.googleapis.com

> @ 2023-05-17 09:38:05.249 AEST v1.compute.instances.delete GCE Managed Instance Group for GKE compute.googleapis.com

> @€ 2023-05-17 10:08:33.560 AEST compute.instances.pree| apis.com compute.instances.preempted pps-r

> @ 2023-05-17 10:08:35.550 AEST compute.instances.repgir.recreateInstance ompute.googleapis.com .e.instances.repair.re recreatelnstance
> i 2023-05-17 10:08:37.338 AEST v1.compute.instances. Qe ged=ErfStance Group for GKE compute.googleapis.com

> @€ 2023-05-17 10:08:44.780 AEST v1.compute.instances.delete GCE Managed Instance Group for GKE compute.googleapis.com h

! T

method identity

NodeAffinity

e NodeAffinity pods traced back to a node with reclaimed VM and still in cluster

e Related to https://issuetracker.gooqgle.com/issues/185362914

o Kubelet restart edge case
o Still an issue with GKE preemptible VMs at the time.
o Users still report this issue (1.24.10-gke.2300)

“Note that this issue has little to no impact on $ kubectl get pod $name -o yaml
workloads. As long as the pod is backed by NS

message: Pod Predicate NodeAffinity failed
phase: Failed

pod is immediately created and rescheduled.” reason: NodeAffinity

controller (deployment/statefulset, etc) a new

https://issuetracker.google.com/issues/185362914

Little to no impact on workloads...

% k get pods --field- selector[status phase=Failed]o custom-columns=CREATED_AT: .metadata. creatlonTlmestamp NAME : .metadata.name ,NODE: . spec.nodeName | sort

2023-02-28T02:50:24Z prometheus-kube-state-metrics-6756f8f968-hxw7f gke- % -0@3cbca2c-2pt6
2023-02-28T03:06:14Z prometheus-kube-state-metrics-6756f8f968-s4nfz gke- -0@3cbca2c-2pt6
2023-02-28T03:06:18Z prometheus-kube-state-metrics-6756f8f968-9b9f1l gke- -03cbca2c-2pt6
2023-02-28T03:06:192 prometheus-kube-state-metrics-6756f8f968-f9vhw gke- -03cbca2c-2pt6
2023-02-28T03:06:20Z prometheus-kube-state-metrics-6756f8f968-1rrjh gke- -03cbca2c-2pt6
2023-02-28703:06:21Z prometheus-kube-state-metrics-6756f8f968-fntvj gke- -03cbca2c-2pt6
2023-02-28703:06:25Z prometheus-kube-state-metrics-6756f8f968-2v8pt gke- -03cbca2c-2pt6
2023-02-28T03:06:26Z prometheus-kube-state-metrics-6756f8f968-d2gmé gke- -03cbca2c-2pt6
2023-02-28T03:06:27Z prometheus-kube-state-metrics-6756f8f968-159nw gke- -03cbca2c-2pt6
2023-02-28T03:06:28Z prometheus-kube-state-metrics-6756f8f968-7kv2d gke- -03cbca2c-2pt6
2023-02-28T03:06:28Z prometheus-kube-state-metrics-6756f8f968-x9qjg gke- -03cbca2c-2pt6
2023-02-28T03:06:30Z prometheus-kube-state-metrics-6756f8f968-chhzg gke- -03cbca2c-2pt6
2023-02-28T03:06:35Z prometheus-kube-state-metrics-6756f8f968-gnjtg gke- -03cbcaZc-2pt6

e 12 podsin 21 seconds on the same node

e Atleast 21 seconds deployment did not have desired capacity

e Itis not a problem now, but something happened in the past

No Panic!

Does my Deployment (StatefulSet /
DaemonSet) have desired number of replicas

Running and Ready?

But there is a better way...

Not so “little impact”

e Platform should be easy to consume

e Software Engineers are not experts in Dead Pods

e Engineers raise “issues” and support requests again and again, wastes time
e Spot instances became the first suspect when anything goes wrong even

when
o Technically there is no issue

o Orissues are not caused by Spot preemptions

Solutions

e k8s Garbage Collector
o In GKE threshold is 1000 objects

e https://qithub.com/kubernetes-sigs/descheduler

o Safely evicts (not deletes) pods
o Rebalance Availability Zones
o Spread pods of the same deployment across nodes
o Remove ‘Failed’ pods immediately, and more
e Data
o Platform Critical User Journeys (CUJ) and SLOs

https://github.com/kubernetes-sigs/descheduler

Takeaways

Implementing well-known SRE k8s practices are crucial on Spot:

e Replication

e Spread across zones and nodes (TSC[1], pod AntiAffinity)
e Graceful shutdown

e Probes

e Tier applications by priority

e PDBs. Don’t protect from Spot preemptions, but improve overall availability

[1] new features: https://kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

https://kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

What doesn’t kill you makes you stronger

Thank you

CAS expanders: https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler/expander

Open Source CAS developed by AWS: https://karpenter.sh/

GKE on-demand fallback:
https://cloud.google.com/blog/topics/developers-practitioners/running-gke-application-spot-nodes-demand-nodes-fallback

TopologySpreadConstraints new features: https:/kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler/expander
https://karpenter.sh/
https://cloud.google.com/blog/topics/developers-practitioners/running-gke-application-spot-nodes-demand-nodes-fallback
https://kubernetes.io/blog/2023/04/17/fine-grained-pod-topology-spread-features-beta/

