SRE .,
CON_ P;ﬂ\CIFIE

Observability in the MLOps g
Lifecycle with Prometheus

Shivay Lamba
KubeFlow Maintainer
WASMEdge Ambassador

@howdevelop

MLOps - DevOps Engineer?

SRE - Machine Learning
Reliability Engineering

Making sure that machine learning infrastructure is highly available, reliable, and

meets the service-level agreements (SLAS).
Setting up a system to proactively monitor compute, memory, network latency,

etc.
Controlling costs of machine learning infrastructure by optimizing design and

workflow.

Monitoring O

=> SLOs
=> System Failures

ML Model LifeCycle

model code

data

Model Building

[

training
code

v
38
candidate

models

training
data

Model Evaluation
and
Experimentation

Productionize
Model

Y

Y
00
00

chosen
model

L
il

test metrics

00
00
productionized
model

data

test
code

model

Deployment

[

application

=6
code and
model in

production

Monitoring and

—’III_

production
data

Monitoring in context of ML O

=> Different challenges

Monitoring in context of ML O

=> Different challenges

o Model edge cases

Monitoring in context of ML O

-> Different challenges
o Model edge cases

o Data distribution has shifted

Monitoring in context of ML O

-> Different challenges
o Model edge cases
o Data distribution has shifted

o Misconfigured models

Monitoring in context of ML O

-> Different challenges
o Model edge cases
o Data distribution has shifted
o Misconfigured models

=> Model still makes a prediction

Monitoring in context of ML O

-> Different challenges
o Model edge cases
o Data distribution has shifted
o Misconfigured models

=> Model still makes a prediction but predictions are not useful

Monitor what?

=> Model metrics
=> System metrics

=>» Resource metrics

ML Metrics

Operational - Is it Are the predictions

working? accurate?
Latencies Model Outputs
- Memory size

CPU usage

Is the data what is

expected?

Model Inputs

Monitor what?

=> Model metrics
=>» System metrics

=>» Resource metrics

Monitor what?

=> Model metrics

=>» System metrics
Request throughput
Error rate
Request latencies
Request body size

Response body size

Monitor what?

=> Model metrics
=> System metrics

=» Resource metrics

Monitor what?

=> Model metrics

=> System metrics

=» Resource metrics
CPU utilization
Memory utilization
Network data transfer

Disk 1/0O

Monitor what?

=» Model metrics
=> System metrics

=>» Resource metrics

Model Drift O

=> Environment changes affect model

Model Drift

=> Environment changes affect model

=> Change in data distribution

Use of Prometheus

One of the most popular open-source stacks for monitoring
metrics is the combination of Prometheus and Grafana.

Prometheus scrapes metrics from instrumented jobs, either
directly or via an intermediary push gateway for short-lived
jobs. It stores all scraped samples locally and runs rules over
this data to either aggregate and record new time series from
existing data or generate alerts.

Short-lived
jobs
push metrics
atexit

x

Pushgateway

| Jobs/
exporters

Prometheus
targets

Service discovery

Prometheus
alerting

pagerduty

© kubernetes file_sd
discover §
targets H notify
: h etc
' Prometheus server
i push
: alerts
il Il | wme
{Retrleval}{ TSDB } [server J
PromQL
g ,,,,,,,,,,,,,, Prometheus
web Ul
Node Grafana Data
""""""""" ﬁ visualization
\ and export

Fast API
Demo

Fast APl Demo Q

=> Create a REST service to expose the model

FastAPl Demo

=> Create a REST service to expose the model
=> Instrument the server to collect metrics which are exposed via a separate metrics endpoint

prometheus-fastapi-instrumentator

Fast APl Demo

=> Create a REST service to expose the model
=> Instrument the server to collect metrics which are exposed via a separate metrics endpoint
prometheus-fastapi-instrumentator

=> Deploy Prometheus to collect and store metrics

Fast APl Demo

=> Create a REST service to expose the model

=> Instrument the server to collect metrics which are exposed via a separate metrics endpoint
prometheus-fastapi-instrumentator

=> Deploy Prometheus to collect and store metrics

=> Deploy Grafana to visualize the collected metrics

Fast APl Demo

=> Create a REST service to expose the model

=> Instrument the server to collect metrics which are exposed via a separate metrics endpoint
prometheus-fastapi-instrumentator

=> Deploy Prometheus to collect and store metrics

=> Deploy Grafana to visualize the collected metrics

=> Locus to Simulate

/metrics /metrics

API Server

N <N

Prometheus

Collect metrics

Time Series Database

x

320 m
Lad
é 1252022

https://docs.google.com/file/d/1XFfIbOhUrQYVDoxyb9I-nAFOsptc799C/preview

Seldon Q

-=> What is Seldon?

=> Seldon Core, an open-source framework, makes it easier and faster to deploy our machine
learning models and experiments at scale on Kubernetes. Seldon Core serves models built in

any open-source or commercial model building framework

=> Seldon Core exposes metrics that can be scraped by Prometheus. The core metrics are

exposed by the service orchestrator (executor).

Seldon Q

-> https://deploy.seldon.io/en/v2.0/contents/getting-started/production-installation/metrics.

html

=> The analytics component is configured with the Prometheus integration. The monitoring for
Seldon Deploy is based on the Prometheus Operator and the related PodMonitor and

PrometheusRule resources.

https://deploy.seldon.io/en/v2.0/contents/getting-started/production-installation/metrics.html
https://deploy.seldon.io/en/v2.0/contents/getting-started/production-installation/metrics.html

Thank You!

