
Suman Karumuri
SRECon APAC - Singapore

June 2023

Taming spiky log volumes:
Maintaining real-time logs using KalDB

Who am I?

Principal Observability engineer @ Airbnb.

LogSearch: ELK, Loglens, KalDB

Tracing: Zipkin, PinTrace, SlackTrace,
OpenTracing author.

Large scale distributed systems.

Quiz

Centralized log Search

Logs are widely used to monitor systems.

Centralized log search aggregates data in
one central location

Guaranteed retention.

Triage issues across services and
machines.

Consistent experience.

Log ingestion pipeline

Application Buffer
(Kafka)

Ingester
(Logstash)

Storage
(Elastic)

Client
(UI)

Motivation: Spiky logs.
Dealing with Spiky logs.
Intro to Kaldb
Real time logs with Kaldb
Conclusion

Storage sees 10x log volume than
usual/provisioned capacity.

Log spike

Log spike

Storage sees 10x log volume than usual.

Causes logs to lag: mins to hours.

We lose real-time visibility into our systems.
Uptime SLA

Real SLA for freshness - 50-70%

Perceived SLA: 0%

Increased operational overhead.

Increased infra $$$ for peak provisioning.

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Log spike causes: Misbehaving application

Logging in a tight loop.

Large scale failures of downstream systems
like db failures.

Unexpected request volume to application.

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Log spike causes: Buffer issues

Buffer failures cause log accumulation
upstream.

Backup of data on the buffer.

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Log spike causes: Ingester issues

Log ingester is catching up.

Log ingestion is lumpy.
Large messages.
Parsing or filtering logs.

Log ingester is mis-configured.

Issues with downstream storage.

Application

Buffer
(Kafka)

Ingester
(Logstash)

Storage
(Elastic)

Log spike causes: Storage issues.

Storage issues cause log backup.
When the issue is resolved.
Causes log spike when storage recovers.

Failure types:
Node failures
Reliability/Perf issues.
Failed writes due to field conflicts.

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Motivation: Spiky logs.
Dealing with Spiky logs.
Intro to Kaldb
Real time logs with Kaldb
Conclusion

Dealing with Log spikes: Application level

Logging a tight loop or large messages.
Code review.
Code audit critical paths.

for(i=0; i< large_value;i++) {
large_field = …;
…..
log.info(“... log…” + large_field);

}

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Dealing with Log spikes: Log library level

Unexpected log volume from application
Apply rate limits in log reporter.

Large log messages
Size limits on log messages: <O(10k)/msg
Limits on field truncation size: <1-2k/field

Buffering logs in application?
Smooth log reporting:

small batches & limits.
<1MB per batch

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Dealing with Log spikes: Application level

Log sampling
Every log location should have a sampling

rate.
log.info(0.05, “log”)

Log message prioritization
Only log interesting logs.
One man’s trash is another’s treasure.

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Dealing with Log spikes: Buffer level

Rate limits
Apply rate limits per stream.
Apply message size limits per stream.
Limit messages ingested per second.

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Dealing with Log spikes: Buffer level

Manage the buffer better

OpenRunbook
Open source runbooks for OSS systems.
Real production runbooks.
Don’t reinvent runbooks!

Kafka runbook: OpenRunbook

Please contribute!

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

https://github.com/openrunbook/openrunbook
https://github.com/openrunbook/openrunbook/blob/master/kafka/2.x/kafka2.md

Dealing with Log spikes: Ingester level

Rate limits
Limit number of messages in/out.

Quotas
Assign quotas per service to isolate noisy

neighbors.
Separate streams for services.

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Dealing with Log spikes: Ingester level

Log sampling
Sample logs in the telemetry pipeline.
Use uniform sampling rate when possible.
Keeps logs useful.

Drop logs
If lag is very high(hours), drop logs.

Risk: Data loss.

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Dealing with Log spikes: Storage

Rate limits
Limit messages written per second.
Fixed limit per node allows better

prediction.
Protect storage from excessive reads.
Strict timeouts on reads.
Limit number of parallel read queries.

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Dealing with Log spikes: Storage

Isolation
Separate clusters for large tenants.
Separate tables for each tenant.

Quotas
Enforce quotas for each tenant.

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Root causing of log spikes

Querying storage
Count messages grouped by a field(s).
Pick top 10.
Plot a chart over the last N minutes.
Often the culprit message shows up as

an anomaly in the chart.

Can also be applied in the ingester as a
stream processor.

Less flexible.

Application

Buffer
(Kafka)

Ingestor
(Logstash)

Storage
(Elastic)

Summary: Log spike

Log spike is a 10x increase in volume of logs.

Log spikes lead to lag => loss of real time
visibility into our systems.

Application issues or failures in log ingestion
pipelines cause log spikes.

Better management, rate limiting, sampling,
quotas etc minimize impact of log spikes.

Prevention still results in data loss/lag + toil.

Yet,
when
problems
happen
humans are
paged.

What if
storage can
adapt to
handle a log
spike?

Motivation: Spiky logs.
Dealing with Spiky logs.
Intro to Kaldb
Real time logs with Kaldb
Conclusion

KalDB

KalDB is the ONLY lucene based cloud native
observability database.

Low operational overhead and k8s native.
Open Source

Drop in replacement for OpenSearch.

Designed for PB scale workloads.

Handles field conflicts automatically.

Faster and up to 10x cheaper than
OpenSearch.

Collector

Kafka

App
Disaggregated storage architecture.

Pre-
processor

Kafka
Partition

1..n

Indexer
1..n

S3

Cache

Query

Client

ZK

Cluster
Manager

KalDB Architecture: Cloud native

Log data (writes)

Log data (reads)

Log metadata (writes/reads)

Collector

Kafka

App

Pre-
processor

Kafka
Partition

1..n

Indexer
1..n

S3

Cache

Query

Client

ZK

Cluster
Manager

Pre-processor: Pre-processes the log data.
● Formats logs.
● Enforces quotas.
● Routes data to a specific kafka partition.

KalDB Architecture: Cloud native

Log data (writes)

Log data (reads)

Log metadata (writes/reads)

Collector

Kafka

App

Pre-
processor

Kafka
Partition

1..n

Indexer
1..n

S3

Cache

Query

Client

ZK

Cluster
Manager

Indexer:
● Indexes pulls the data and indexes into Lucene index.
● Periodically snapshot data to deep store.
● Serves queries.

KalDB Architecture: Cloud native

Log data (writes)

Log data (reads)

Log metadata (writes/reads)

Collector

Kafka

App

Pre-
processor

Kafka
Partition

1..n

Indexer
1..n Cache

Query

Client

ZK

Cluster
Manager

Cache

● Downloads segments from S3
● Serves queries.

KalDB Architecture: Cloud native

Log data (writes)

Log data (reads)

Log metadata (writes/reads)

S3

Collector

Kafka

App

Pre-
processor

Kafka
Partition

1..n

Indexer
1..n

S3

Cache

Query

Client

ZK

Cluster
Manager

Query service

● Handles client queries.
● Performs scatter/gather from indexer and cache nodes

to respond to client queries.

KalDB Architecture: Cloud native

Log data (writes)

Log data (reads)

Log metadata (writes/reads)

Collector

Kafka

App

Pre-
processor

Kafka
Partition

1..n

Indexer
1..n

S3

Cache

Query

Client

ZK

Cluster
Manager

Cluster Manager
● Uses Zookeeper as data store and notification store.
● Snapshot management.
● Data life cycle management.
● Node management.

KalDB Architecture: Cloud native

Log data (writes)

Log data (reads)

Log metadata (writes/reads)

Collector

Kafka

App
● Disaggregated storage architecture.

○ Separates compute from storage.
○ Separates durability of data from storage.

■ Kafka = durable unindexed data.
■ S3 = durable indexed data storage.

● Horizontally scalable.
● Minimal dependency between components.

Pre-
processor

Kafka
Partition

1..n

Indexer
1..n

S3

Cache

Query

Client

ZK

Cluster
Manager

KalDB Architecture: Cloud native

Log data (writes)

Log data (reads)

Log metadata (writes/reads)

Motivation: Spiky logs.
Dealing with Spiky logs.
Intro to Kaldb
Real time logs with Kaldb
Conclusion

Storage sees 10x log volume than usual/provisioned
capacity.

To ingest log spike while being real-time:

Prioritize ingesting fresh logs over older logs.

Log spike

Quiz
What does ES do when you add more nodes to it during a log spike?

Log data (writes)

Collector

Kafka

App

KalDB: Prioritize fresh logs over older logs.

Pre-
processor

Kafka
Partition 1 Indexer 1

S3

Log meta-data (writes/reads)

ZK

Cluster
Manager

1

…

10

9

1

Current offset: 1

Indexer:
● Indexes the data into a Lucene indexer.
● Periodically snapshot data to deep store.
● Serves queries.
● Indexer uses Kafka partition as WAL.

Log data (writes)

Collector

Kafka

App

Pre-
processor

Kafka
Partition 1 Indexer 1

S3

Log meta-data (writes/reads)

ZK

Cluster
Manager

1

2

10

…

1

2

KalDB: Prioritize fresh logs over older logs.

Log data (writes)

Collector

Kafka

App

Pre-
processor

Kafka
Partition 1

New
Indexer 1

S3

Log meta-data (writes/reads)

ZK

Cluster
Manager

1

…

100

99

● Indexer fails.
● New indexer comes up, realizes it is too behind.

KalDB: Prioritize fresh logs over older logs.

Log data (writes)

Collector

Kafka

App

Pre-
processor

Kafka
Partition 1

New
Indexer 1

S3

Log meta-data (writes/reads)

ZK

Cluster
Manager

1

…

100

99

● Indexer fails.
● New indexer comes up, realizes it is too behind.
● Creates a recovery task, starts indexing from

head.

Prioritize fresh logs over older data.

Recovery task
Partition 1.
Offsets: 1-99

Current offset: 100

100

KalDB: Prioritize fresh logs over older logs.

Log data (writes)

Collector

Kafka

App

Pre-
processor

Kafka
Partition 1

New
Indexer 1

S3

Log meta-data (writes/reads)

ZK

Cluster
Manager

1

…

100

99

Recovery indexer

● Picks up the recovery task.
● Indexes the data and uploads snapshot to S3.

Elastic IO capacity for catch up.

Same mechanism for log spikes.

Current offset: 100

100

Recovery
Indexer 1

1

2

Current offset: 2

Recovery task
Partition 1.
Offsets: 1-99

KalDB: Prioritize fresh logs over older logs.

Dealing with noisy neighbours

Isolation
Separate clusters for large tenants.
Separate tables for each tenant.

Quotas
Enforce quotas for each tenant.

Managing multiple(100+) clusters is
tedious and error prone.

Log data (writes)

Collector

Kafka

App

KalDB: Multi-tenancy

Pre-
processor

Log data (reads)

Kafka
Partition

1..n

Indexer
1..n

S3

Log meta-data (writes/reads)

Cache

Query

Client

ZK

Cluster
Manager

Kafka
Partition 1

Kafka
Partition 2

Indexer 1

Indexer 2 S3

Provides workload isolation + true resource
isolation.

Isolates workloads without running a separate
cluster.

Log data (writes)

Collector

Kafka

App

Pre-
processor

Log data (reads)

Kafka
Partition

1..n

Indexer
1..n

S3

Log meta-data (writes/reads)

Cache

Query

Client

ZK

Cluster
Manager

Kafka
Partition 1

Kafka
Partition 2

Indexer 1

Indexer 2 S3

True workload isolation between services without
running a separate cluster.

Allocates specific capacity to specific services.

KalDB: Multi-tenancy

Log data (writes)

Collector

Kafka

App

Pre-
processor

Log data (reads)

Kafka
Partition

1..n

Indexer
1..n

S3

Log meta-data (writes/reads)

Cache

Query

Client

ZK

Cluster
Manager

Kafka
Partition 1

Kafka
Partition 2

Indexer 1

Indexer 2 S3

Provides true workload isolation between services
without running a separate cluster.

Reduces cluster management overhead.

KalDB: Multi-tenancy

Motivation: Spiky logs.
Dealing with Spiky logs.
Intro to Kaldb
Real time logs with Kaldb
Conclusion

Summary: Log spike

Log spike is a 10x increase in volume of logs.

Log spikes lead to lag => loss of real time
visibility into our systems.

Application issues or failures in log ingestion
pipelines cause log spikes.

Better management, rate limiting, sampling,
quotas etc minimize impact of log spikes.

Prevention still results in data loss/lag + toil.

Summary: KalDB

KalDB is an open source petabyte scale
lucene based log search engine.

KalDB has built in back-fill that prioritizes
ingesting fresh logs over older logs.

KalDB features like multi-tenancy, automatic
field conflict resolution simplify log pipeline
maintenance.

Thank you!

Suman Karumuri @ LinkedIn.

mansu @ twitter

Kaldb @ https://github.com/slackhq/kaldb

OpenRunbook

https://github.com/slackhq/kaldb
https://github.com/openrunbook/openrunbook

All product names, logos, and brands are property of their respective owners. All company, product and service
names used in this presentation are for identification purposes only. Use of these names, logos, and brands does not
imply endorsement.

Q & A

Handling
Field
Conflicts

Kaldb

Real time
logs with
Kaldb

All
techniques
result in
Data lag or
Data loss.

