

This image was created using generative AI

Unleashing Generative AI: Improving Developers Productivity in SRE!

Sandeep Hooda, Senior Vice President

I am human... for now

Movies on Al

Friend?

Foe?

How many of you think that...

Al have surpassed human capabilities

Gen AI is a superior version type of AI

Gen AI is actually just AI but with the capability of producing content

What is generative AI?

"Generative AI refers to a category of artificial intelligence (AI) algorithms that **generate new outputs** based on the data they have been trained on. Unlike traditional AI systems that are designed to recognize patterns and make predictions, generative AI creates new content in the form of images, text, audio, and more"

(Routley, 2023).

Over the last couple of month, the term generative AI have gained a lot of traction

On Google Trends...

A brief history...

Here is a timeline of how language and image recognition of AI systems have improved rapidly

(Kiela et al., 2021; Roser, 2022)

A brief history...

Here is a chart of all the AI tools that have been built and the amount of training computation used...

(Sevilla et al., 2022; Roser, 2022)

XDRS

The color indicates the domain of the Al system: • Vision • Games • Drawing • Language • Other

that was used to train th			rva can solve complex mathematic PaLM: built in 2022 and trained	on 2.5 billion petaFLOP
10 billion petaFLOP			gh-quality text, explain some jokes	
One FLOP is	n is measured in floating point operations (FLOP equivalent to one addition, subtraction, n, or division of two decimal numbers.	·).	often indistinguishabl	
100 million petaFLOP		DALL-E can g	DALL-E: 2021; 4 enerate high-quality images from	7 million petaFLOP written descriptions.
The data is shown on a logarithmic from each grid-line to the next it sh increase in training computation.	scale, so that lows a 100-fold	Recommendation system	NEO: 2021; 1.1 mi so like Facebook's NEO determine ted, online shopping, streaming ser	Ilion petaFLOP what you see on vices, and more
1 million petaFLOP		your social meana je	AlphaGo: 2016; 1.9 million	
		AlphaGo defeated 18-time c complex board game G	hampion Lee Sedol at the ancient Go. The best Go players are no long	and highly 💿 🖣 🍒
10,000 petaFLOP	AlphaFold wa	s a major advance toward solvin	AlphaFold: 2020; 100,000 peta g the protein-folding problem in bi	FLOP iology.
	MuZero chess,	is a single system that achieved	uZero: 2019; 48,000 petaFLOP superhuman performance at Go, without ever being told the rules.	
100 petaFLOP		Alex	Net: 2012; 470 petaFLOP	
	A pivotal early "dee could recognize	p learning" system, or neural net images of objects such as dogs a	nd cars at near-human level.	
1 petaFLOP = 1 quadrillion F	LOP		NPLM 🖕	• •
				• •
10 trillion FLOP		ammon: 1992; 18 trillion FLOI		• •
	TD-Gammon learn level, just below t	ed to play backgammon at a hig he top human players of the time	e. LeNet-5	
100 billion FLOP			RNN for speed	h
	NetTalk: 1: NetTalk was able to learn to pronounce some Englis text as input and matching it to phonetic transcripti limitations, it did not perform the visual recogn	sh text by being given • Z ions. Among its many	LVINN ip CNN	
1 billion FLOP	Pandemonium (Morse)		System 11	
	Samuel Neural Checkers	• Back-pr Neocognitron: 1980; 3	opagation	
10 million FLOP		A precursor of modern v	vision systems. It could recognize characters and a few other pattern Fuzzy NN	IS.
	Perceptron Mark I: built in 1957/58; 695.	,000 FLOP		
100,000 FLOP	Regarded as the first artificial neural network from those marked on the right, but it could r			
	• ADALINE: built in 1960 and traine An early single-layer artificial neural			
1,000 FLOP				
10 FLOP Theseus	: built in 1950 and trained on around 40 floating was a small robotic mouse, developed by Claude Sh Id navigate a simple maze and remember its course.	annon,		
The first electronic computers were developed in the 1940s	Pre I Training computation grew in line with	Deep Learning Era n Moore's law, doubling roughly	every 20 months.	Deep Learning Era Increases in training comput accelerated, doubling roug every 6 months.
1940 1950	1960 1970	1980 199	0 2000	2010 2020

The data on training computation is taken from Sevilla et al. (2022) - Parameter, Compute, and Data Trends in Machine Learning.

It is estimated by the authors and comes with some uncertainty. The authors expect the estimates to be correct within a factor of two. OurWorldinData.org - Research and data to make progress against the world's largest problems.

Why is improving productivity important? Can we leverage on Gen AI to boost productivity?

Improving productivity allow us to...

What software are out there for developers?

What can be done on hardware to better support Gen Al tools?

Distributed Inference with faster transformer

(Timonin et al., 2023)

Distributed inference with faster transformer

(Timonin et al., 2023)

Example: Training & Deploying of GPT-3

Train 300B tokens in days (A100) – BF16					
	800 GPUs (5x DGX SuperPod)	3x DGXSuperPod	1x DGX SuperPod		
GPT-3: 126M	0.07	0.12	0.37		
GPT-3: 5B	0.8	1.3	3.9		
GPT-3: 20B	3.6	6	18.1		
GPT-3: 40B	6.6	10.9	32.8		
GPT-3: 175B	28	46.7	140		

Estimated Inference Capacity						
GPT-3 Model Parameter Count	Precision	Input/Output Length (Tokens)	Batch Size	Estimated GPU Memory Size	Estimated # of A100 80GB	
100M - 3B	FP16	60/20 200/200	1-256	200MB - 6GB	1	
5B - 20B	FP16	60/20 200/200	1-256	10GB - 600GB	1-8	
100B - 300B	FP16	60/20 200/200	1-256	200GB - 2TB	8-32 GPUs 1-4 Nodes	
500B - 1T	FP16	60/20 200/200	1-256	1TB - 5TB	16-64 GPUs 2-8 Nodes	

How can SREs leverage on Gen Al?

The love hate relationship between SRE & Gen Al

XDBS

Funny responses from GenAl

You can try

Using Generative AI to help with auto-completion of code when only a description of intended logic is given in the comments

Example of auto-completing of Java code being achieved through the use of Generative AI

	ackage com.exa					A 1 ^		Notifications
Q	mport org.spri RestController ublic class De		eb.bind.annotation. {				-	🔁 GitHub Copilot
}								E Maven
hlems	🗵 Terminal 🔨 B	uild Services						

Outcome Achieved

Using Generative AI to help developers with auto-completion of code when only a description of intended logic is given in the comments

You can try

Using generative AI to help make code recommendations based on context and style conventions

Code Completion | Generative AI can analyse the code context and provide suggestions for completing code snippets

Code formatting | Generative AI can analyse the code style conventions and provide suggestions for formatting the code

Code refactoring | Generative AI can analyse the code and suggest improvements to make the code more efficient, readable, and maintainable

Outcome Achieved

Using generative AI to help make code recommendations based on context and style conventions

You can try

Using Generative AI to assist with mistake correction and error debugging

ChatGPT ÷ò́;-4 \triangle Examples Capabilities Limitations "Explain quantum computing in May occasionally generate Remembers what user said simple terms" \rightarrow incorrect information earlier in the conversation "Got any creative ideas for a 10 Allows user to provide follow-up May occasionally produce year old's birthday?"→ harmful instructions or biased corrections content "How do I make an HTTP request Trained to decline inappropriate Limited knowledge of world and in Javascript?" → requests events after 2021 Ι Send a message...

Outcome Achieved

Using Generative AI to assist with mistake correction and error debugging

You can try

Using Generative AI to generate possible security controls for coding

Through the use of Generative AI, security controls could be added to code

		Add Security Controls to Code	
1 2		package com.example.demo;	Notifications
		<pre>import org.springframework.boot.SpringApplication;</pre>	ions
		import org.springframework.boot.autoconfigure.SpringBootApplication;	8
		@SpringBootApplication	iitHub
	•	<pre>public class DemoApplication {</pre>	GitHub Copilot
		<pre>public static void main(String[] args) {</pre>	m Maven
		<pre>SpringApplication.run(DemoApplication.class, args);</pre>	aven
15 16		} <u>•</u> I	
17			
			1000

Outcome Achieved

Using Generative AI to generate possible security controls for coding

You can try

Using Generative AI to auto-generate or write unit tests and test scripts faster

Sample of using ChatGPT to write unit test

Sample of using Github's CoPilot to generate unit test

Outcome Achieved

Using Generative AI to auto-generate or write unit tests and test scripts faster

You can try

Using Generative AI to help with source code documentation

Sample JSON Utility class that converts object to JSON and vice versa

```
public class JsonUtil {
   private static final ObjectMapper objMapper = new ObjectMapper();
   private JsonUtil() {
                             Ι
   public static <T> T fromJsonString(String jsonString, Class<T> classOfT) throws JsonException {
        JavaType tType = objMapper.getTypeFactory().constructType(class0fT);
        return fromJsonString(jsonString, tType);
   public static <T, C extends Collection<T>> C fromJsonStringToCollection(String jsonString,
                                                                            Class<C> classOfC, Class<T> classOfT) throws JsonException {
        JavaType colType = objMapper.getTypeFactory().constructCollectionType(classOfC, classOfT);
        return fromJsonString(jsonString, colType);
    static <T, C extends Collection<T>> String toJsonStringFromCollection(
            Collection<T> collection, Class<C> classOfC, Class<T> classOfT) throws JsonException {
        JavaType colType = objMapper.getTypeFactory().constructCollectionType(classOfC, classOfT);
```


Outcome Achieved

Using Generative AI to help with source code documentation

You can try

Using Generative AI to translate code

Translation of JSON converter into other language

Here are some comments to explain the C++ code:
 Here are some comments to explain the C++ code: The code includes the "json.hpp" header file from the nlohmann::json library, which is a popular JSON library for C++. The code declares a "JsonUtil" class with a private static field called "objMapper", which is an instance of the "json" class from the nlohmann::json library. This field is marked as "const", meaning it cannot be modified after initialization. The code also declares a private constructor for the "JsonUtil" class, which prevents other classes from creating instances of it. The "from JsonString" method is a public static method that takes a JSON string as input and returns an object of type "T". It is a template method that uses the type parameter "T" to determine the type of object to deserialize the JSON string into. The method uses the "get" method of the "json" object to get a key from the JSON string. This key is used to access the corresponding value in the "objMapper" object. The "get" method of the "json" object is then used to extract the value of the JSON object as an object of type "T". The method is wrapped in a try-catch block to handle any exceptions that may be thrown during the parsing or deserialization process. If an exception is caught, a new std::runtime_error exception is thrown with a custom
 Finally, the "objMapper" field is initialized with an empty "json" object. Note that this code assumes that the JSON string is valid and can be parsed without errors. If there is a possibility that the JSON string may be invalid, additional error handling may be required.
℃ Regenerate response
Send a message.

Outcome Achieved

Using Generative AI to translate code

You can try

Using Generative AI to create user stories and test scenarios

ChatGPT

Outcome Achieved

Using Generative AI to create user stories and test scenarios

References

- Roser, M. (2022, December 06). The brief history of artificial intelligence: The world has changed fast What might be next? Retrieved from <u>https://ourworldindata.org/brief-history-of-ai</u>
- Kiela, D., Bartolo, M., Nie Y. Kaushik, D. Geiger, A., Wu, Z. ... Williams, A. (2021, April 07). Dynabench: Rethinking benchmarking in NLP. Retrieve from <u>https://arxiv.org/abs/2104.14337</u>
- Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M., & Villalobos, P. (2022). Compute Trends across three eras of machine learning. 2022 International Joint Conference on Neural Networks (IJCNN). <u>https://doi.org/10.1109/ijcnn55064.2022.9891914</u>
- 4. Routley, N. (2023, February 2). *What is Generative Ai? an ai explains*. World Economic Forum. Reference from https://www.weforum.org/agenda/2023/02/generative-ai-explain-algorithms-work/
- 5. Timonin, D., Hsueh, B. Y., & Nguyen, V. (2023, May 24). Accelerated inference for large transformer models using NVIDIA Triton Inference Server. NVIDIA Technical Blog. <u>https://developer.nvidia.com/blog/accelerated-inference-for-large-transformer-models-using-nvidia-fastertransformer-and-nvidia-triton-inference-server/</u>

