
Mastering Chaos: Achieving Fault Tolerance with

Observability-Driven Prioritized Load Shedding
Building fault-tolerant, performant and cost-efficient
applications with the Aperture open source project

Harjot Gill
CEO, FluxNinja

 @harjotsgill

 @harjotsgill

Hardik Shingala
Engineer, FluxNinja

 @HDKShingala

 @hardik-shingala

https://twitter.com/harjotsgill
https://www.linkedin.com/in/harjotsgill
https://twitter.com/HDKShingala
https://in.linkedin.com/in/hardik-shingala

Introduction

- Harjot Gill
- Co-founder and CEO @ FluxNinja

- Founded in 2021
- Based in the San Francisco Bay Area
- Announced Aperture open source project in late 2022

- Dedicated 10+ years building tooling for DevOps and SREs
- Previously, Co-founder and CEO @ Netsil (Acquired by Nutanix in 2018)

- Microservices observability start-up, spin-off from University of Pennsylvania
- Pioneered low-friction API observability: stream-processed packets to reconstruct

APIs
- Mapping complex microservices applications

- Hardik Shingala
- Software Engineer @ FluxNinja
- 5+ years of experience in cloud native infrastructure products

Metastable failures
Little’s law conundrum: The inevitability of overloads

Little’s law and overloads

Responses

Requests

Service
Little’s law

L = λW

L = Requests in-flight
λ = Average Throughput
W = Average Response time

Normal latency

Healthy service

“Slow” service

Responses

Requests

Service

Timeouts

High latency

Every service has an
inherent concurrency limit.

For a service to remain
stable, concurrent

requests must be limited

Availability degrades rapidly

An overload on a service often kicks-off a chain reaction causing an application wide outage…

Cascading failure

Service1

Service4

Service3

Service2

Service5

Database

⚡

Healthy

Unhealthy

→ Healthy API Call

→ High Latency API Call

→ High Error Rate API Call

1. Degraded
database that
experiences
increased latency.

2. Latency spreads through API call
chains triggers a misconfigured
circuit breaker at service 2

3. Errors returned
from Service 2,
impact Service 1 - a
large blast radius

Death spiral

Load Balancer

Node1

Node3

Node2
replacement

Node2

Node1
Replacement

Healthy

Unhealthy

1. Nodes 1 and 2 degrade
and are replaced by new
nodes which are not ready
for traffic.

2. The load-balancer
redirects all requests to
Node 3, risking its
degradation as well.

→ API call not in use

→ High latency API call

Retry storm

Service1

Service4

Service3

Service2

Service5

Database

⚡

Healthy

Unhealthy

→ Healthy API call

→ High-error API call

→ Unhealthy API call

1. Degraded
database that
experiences
increased latency.2. Latency

propagates via API
call chains, prompting
retries in Services 2,
3, and 5.

3. Retries put even
greater pressure on
the database

Retry storm: permanent overload

System is in a
state of
permanent
overload

Load < Capacity
All good!

Temporary reduction
in capacity leading
to a slight overload

Capacity

Load

Retry storm

Capacity
restored to
the original
level

Metastable failures

Stable

Metastable

Vulnerable
Increasing Load

Decreasing Load

3. High load sustains even after
initial trigger is removed
(permanent overload state)

Sustaining
Effect

State of the System

→State Transition

1. The system operates in
both stable and vulnerable
states as load fluctuates

2. A trigger (e.g. bad deployment, user
surge) can transition the system from
vulnerable to a metastable state.

Intervention

Metastable Failures in the Wild, Huang et
al.

Common triggers

● Insufficient capacity allocation

● Service upgrades that introduce performance-regressions due to bugs

● Unexpected traffic spikes during new product launches or sales promotions

● Slowdowns in upstream services or third-party dependencies

● Retry storm after a temporary failure

● Cache failure leading to higher load on database

● Subset of servers going offline causing excess load on remaining servers

Metastable failures are unpredictable, yet very common in modern applications

Mitigation strategies
Building indestructible applications

Local countermeasures are ineffective
Circuit breaking

- Typically implemented in service proxy (e.g. Envoy)
- Localized view between service instances (e.g. error rates)
- Rejects all requests when it “trips”
- Hard to configure the “tripping” threshold as some services are more tolerant to errors
- Client-side technique - does not offer service protection

Static rate-limiting
- Typically implemented as a per-user limit
- Does not offer service protection as the per-user limit is not per-service limit

Reactive auto scaling
- Typically scale workers based on resource consumption (e.g. CPU or memory)
- Can be slow as services need time to warm-up, do discovery, establish database

connections and so on
- Bottleneck typically shifts elsewhere
- Expensive to absorb transient traffic spikes

Local countermeasures are often slow, inadequate and ineffective

Mitigation with adaptive load shedding

Responses

Requests

Responses

Requests

Shed excess
load

Normal load

Overload

Service

Service

Normal latency

Normal latency

Little’s law

L = λW

L = Requests in-flight
λ = Average Throughput
W = Average Response time

Service remains stable by
shedding excess load

Availability degrades gracefully

Requirements for adaptive load shedding

● Determining the ideal load in a constantly changing environment
○ Setting the limit too low can result in rejected requests and wasted capacity
○ Setting the limit too high can lead to slow and unresponsive servers

● Observability: Real-time, global visibility into the state of the entire system
○ Detect overload at databases but load shed at the gateway services

● Controllability: Continuously tracking and correcting system state variables
○ PID controller based closed-loop system
○ Congestion control and active queue management algorithms: TCP BBR, AIMD (Additive

increase, multiplicative decrease), CoDel
● Interaction with other control systems with similar goals:

○ Auto scaling
○ Load balancing

Requirements for prioritization

● Optimize user experience and business value: prioritize on attributes such as API

endpoints, user types, origin service

● Prioritization and fairness algorithms
○ Token and leaky buckets

○ Network schedulers: weighted-fair queueing

○ Probabilistic dropping

● Estimating the cost (tokens) of admitting different types of requests
○ Tokens = Estimated latency?

○ Tokens = Query complexity?

Global load management with Aperture
Controlling the flux: Observability meets Controllability

Aperture overview

● Open source platform for observability-driven load management
● Programmable through declarative policy language expressed as a control circuit graph
● Common policies are packaged as high-level “blueprints”

○ Load scheduling & workload prioritization
○ Quota enforcement
○ Load ramping
○ Auto scaling

● Layered on top of existing stack
○ SDKs: Java, Go, Python etc.
○ Service Mesh: Istio etc.
○ API Gateways and proxies: Nginx, Kong

Aperture architecture

Adaptive load scheduler
Service protection based on feedback loop

Gateway

Search

Cart

Checkout

Healthy Service Vulnerable Service
→ Healthy API Call → High Latency API Call → Observe

App infrastructure

Database

3rd Party DB

Used ConnectionsLatency baseline and
track deviation

Latency CPU/Mem

Scheduler

Observe
(overload confirmation)

Inventory

Observability-driven approach

Adaptive load scheduling policy

Service
latency is
queried
periodically

Exponential
moving
average
establishes
a baseline

Load scheduler
corrects
deviation from
baseline by
shedding load

Load scheduler policy component
circuit:
 components:
 - flow_control:
 adaptive_load_scheduler:
 in_ports:
 setpoint:
 signal_name: SETPOINT
 signal:
 signal_name: SIGNAL
 out_ports:
 desired_load_multiplier:
 signal_name: DESIRED_LOAD_MULTIPLIER
 observed_load_multiplier:
 signal_name: OBSERVED_LOAD_MULTIPLIER
 parameters:
 load_scheduler:
 scheduler:
 workloads:
 - label_matcher:
 match_labels:
 user_type: guest
 parameters:
 priority: 50
 - label_matcher:
 match_labels:
 user_type: subscriber
 parameters:
 priority: 200
 selectors:
 - control_point: ingress
 service: service1-demo-app.demoapp.svc.cluster.local

Policy is expressed as a control
“circuit” composed of components

Signals flow between components
through ports and the circuit is
evaluated periodically

Workloads are defined by matching
labels and assigning priorities

Selectors determine agents where this
scheduler will be configured

Aperture
Agent

Adaptive load scheduler insertion

Service 1 Service 2

Classify Schedule

3. Weighted-fair queuing
scheduler enforces
prioritization and fairness

Aperture
Controller

Admit or Drop
+

Labels (Baggage)

Telemetry

Periodically sets
load multiplier

Serve
Request?

1. Service checks with Aperture
Agent before serving each request
or a feature

2. Rego (OPA) based classifier
uses OpenTracing baggage
headers to label requests

Request

Response

Request + Baggage

Request + Baggage

Workload prioritization with Aperture

Client Service Priority

Cart 255

Search 150

Recommendations 10

Checkout
Scheduled
requests

Tokens? Ok or wait

Fill rate

Inventory

Search

Cart

C
la

ss
ify

Token Bucket

Weighted Fair
Queueing Scheduler

Dropped
requests

Global quotas
Enforcing precise limits

Gateway

Inventory

Search

Cart

Checkout

Database

Global quotas

3rd Party DB

Honor 3rd party
limits?

Want to maintain
RPS per service?

Don’t want external partners
to abuse a service?

RPS: 25k

RPS: 30k

RPS: 15k

RPS: 40k

RPS: 10k

App infrastructure

External
Service

Vulnerable Service

Stable Service

RPS: 50k

Global quotas

• Service protection
• When max capacity is known (load testing)
• Allocate/enforce exact quotas (rps) with other services

• Managing external API rate limits
• External services such as OpenAI, GitHub, DynamoDB etc. have rate limits. Clients must

honor the limit in order to prioritize requests
• Control costs by preventing accidental overuse

• Preventing abuse
• Rate-limit external clients based on per-user or per-device quotas

Global quotas in Aperture

Aperture
Agent

Aperture
Agent

Aperture
Agent

Aperture
AgentDistributed

Token Buckets
(in-memory)

1. Distributed token
buckets using
consistent hashing
on labels.

2. Agents take
tokens from the
owner Agent for
the label.

Tokens?
user: xyz

Ok or
wait

• Aperture provides consistent-hashing
based global token buckets

• High performance compared to
centralized Redis based system

• Smooth load compared to fixed
window rate limiting

• Lazy sync (optional) for even lower
latencies

• Schedule (prioritize) requests when
capacity is reached

user: xyz

Quota scheduler policy component
circuit:
 components:
 - flow_control:
 quota_scheduler:
 in_ports:
 bucket_capacity:
 constant_signal:
 value: 500
 fill_amount:
 constant_signal:
 value: 25
 rate_limiter:
 interval: 1s
 label_key: http.request.header.api_key
 scheduler:
 workloads:
 - label_matcher:
 match_labels:
 http.request.header.user_type: guest
 parameters:
 priority: 50
 - label_matcher:
 match_labels:
 http.request.header.user_type: subscriber
 parameters:
 priority: 200
 selectors:
 - control_point: ingress
 service: service1-demo-app.demoapp.svc.cluster.local

Quotas are expressed as -
● Bucket capacity (for allowing

bursts) - e.g. 500 requests
● Fill amount and interval - e.g. 25

request per second
● Label key - Buckets are created

for each key/value pair, e.g. users,
services, API keys

Workloads are defined by matching
labels and assigning priorities

Selectors determine agents where this
scheduler will be configured

Aperture in FluxNinja ARC
Protecting PostgreSQL by scheduling GraphQL APIs

Protecting PostgreSQL

Without Aperture

Latency when
load is normal

Latency spikes when
load has increased

High acceptance rate
with normal load

Low acceptance
rate with high load

With Aperture

Latency when
load is normal

Latency is normal even
when load has increased

Acceptance rate
at normal load

Higher rate for high priority requests

Q & A
• Aperture project on GitHub: https://github.com/fluxninja/aperture

• Aperture Docs: https://docs.fluxninja.com/docs

• Early access to FluxNinja ARC: https://app.fluxninja.com/sign-in

https://github.com/fluxninja/aperture
https://docs.fluxninja.com/docs
https://app.fluxninja.com/sign-in

