CRAYON DRAWING

OBLIGATORY

AUDIENCE
PARTICIPATION

How many people could draw a diagram of
a system they’re responsible for from
memory?

Of those: if someone else in your team
drew the diagram, would they look the
same?

WHO AM 1

e Currently an SRE at Snowflake
o I am not speaking on behalf of Snowflake.
e Worked 1in infrastructure in a couple of other companies

e (@msuriar on Twitter, Github.

@OMsURTAR

WHY ARE WE TALKING
ABOUT THIS

e We run complex systems.
e Reasoning about complexity is hard.
e Documenting complexity is hard.

BECAUSE WE RUN COMPLEX

SYSTEMS

REASONING

e How do systems respond in steady state?
e How do systems respond in various degraded modes?

@msuRIAR

e Given some symptoms of problems, where
should we look to further narrow things
down?

DOCUMENTING

How do you “best” document a system?
How many high level components are there?
How complicated are each of your subcomponents?

What are the linkages between components.. ?

@OMsURTAR

HOW DO WE MAKE ALL
THIS TRACTABLE!

WE BUILD ABSTRACTIONS

MY HOME

NETWORK™

PHYSICAL

@MsURIAR

e Every physical device, and every cable

LAYER 3

Y
(£33 W T~ 8534 S/

1338/

wlEy 1Y

@MsURIAR

e Elide some physical devices, make
subnets explicit
o Wifi (phones, laptops)
o Wired (desktops, NAS, etc)
o Jail (untrusted IoT junk)

ABSTRACT

D

o G =
|
ﬁw%t

//ft

@MsURIAR

e All network infrastructure devices
(apart from main router) hidden.

WHICH OF THESE.

e .. 1is the most accurate?
e .. is the most useful?

@msuRIAR

ALTERNATIVELY, WHICH WOULD YOU USE TO DEBUG..

e Stuttering video from your NAS?
e Slow page load times to usenix.org ?

@msuRIAR

1"M AN ENGINEER

I solve practical problems

DEMO TIME

@msuRIAR

@MsURIAR

e ISP DNS: your recursive resolver

e Google DNS: Google’s authoritative
nameservers

e Maglev: Google network loadbalancers

e GFE: reverse proxy

e GSLB: internal RPC loadbalancing
service

e AFE: “application frontend” -
service-specific thing that can respond
to query.

MORE AUDIENCE

PARTICIPATION

How many people could you draw (or
close to draw) one or the other of
those from memory?

How many people could then explain how
X worked to someone else?

50 WHATT

e Standard diagrams are useful tools

o .. for communication

o . for training/onboarding

o .. for identifying opportunities to improve things
O

@OMsURTAR

STANDARD DIAGRAMS BUILD

SHARED UNDERSTANDING

e In this case, everyone having the same
diagram is much more important than it
being strictly accurate

e Has knock on implications for system
design

o 1if a system doesn’t have a useful
abstraction that can be drawn from
memory...

o consider maybe it’s too complicated
to understand?

SYSTEM DIAGRAMS ARE GOOD FOR...

Onboarding new team members
Reinforcing shared
understanding (or identifying
inconsistencies 1in
understanding) between team
members

Reasoning about the system
o when it’s working
o .. when 1it’s not

Identifying potential changes
Understanding the impact of
proposed changes to the overall
system design

@OMsURTAR

RIG

HT - NOW WHATT

Take a system you’re responsible for, try and draw it
from memory

Do it again every few days

o what changes?

o what stays the same?

o does your 1intuition about the system improve?

Do your diagrams help you explain things to colleagues?
o Do their diagrams help you?
Group exercise

o Have your entire team each draw your system (alone)
o Contrast and compare

@OMsURTAR

e Repetition and correction

o Onboarding - do it several times
with new hires, until they can do it
themselves

Get everyone on your team to draw a
diagram of what you’re oncall for

USE THE TOOLS WHICH WORK FOR YOU

e Pen and paper
e Dry-erase board and markers

e Digital tools

o SVG/DOT
o mermaid-js (supported 1inline in Github markdown)

@OMsURTAR

[N CASE YOU THOUGHT I MADE THOSE UP...

] | orionApp | - | orionApp | |Routing Engine | < :
i Nor d Interface ontracts
@ GFE .| Application ol [P e SLAs
(Reverse Proxy) Frontend — =TT

I Flow || Topology ‘ I Config ‘
Manag Manag Manag

1 1 Configure
| Openflow Front End (OFE) | | “Policy
A 4 \ o Monitor

{ el
A
{2
A
N

Control Plane

Management Plane

— _ -~ OpenFlow ~ ~ _
Google Load o § SDN Switch SDN Switch
b < Balancer | Application Al Coeniow agent (0Fa)][I Openfiow Agent (0FA) |t
i i Ba(kend -l DataPlane JI DataPlane |NeLUFITS
Server GSLB - Monitor
l i v i
OMsURIAk

e https://sre.google/sre-book/production-

environment/#fig production-environment
life-of-a-request

e https://www.usenix.org/system/files/nsd

i21-ferguson.pdf - Figure 2

https://sre.google/sre-book/production-environment/#fig_production-environment_life-of-a-request
https://sre.google/sre-book/production-environment/#fig_production-environment_life-of-a-request
https://sre.google/sre-book/production-environment/#fig_production-environment_life-of-a-request
https://www.usenix.org/system/files/nsdi21-ferguson.pdf
https://www.usenix.org/system/files/nsdi21-ferguson.pdf

QUESTIONS!

