
Making the Impossible

Impossible
Improving Reliability by
Preventing Classes
of Problems @ChrisSinjo

Impossible

https://twitter.com/ChrisSinjo

Hi

Hi
Greetings

@ChrisSinjo

https://twitter.com/ChrisSinjo

@ChrisSinjo

https://twitter.com/ChrisSinjo

Infra Engineer

Making the Impossible

Impossible
Improving Reliability by
Preventing Classes
of Problems @ChrisSinjo

Impossible

https://twitter.com/ChrisSinjo

We are at
SREcon

We likely share:

- Job titles
- Skills
- Ways of thinking

Common ground/
"Best practices"

Some ideas have

outsized
impact

In SRE: SLOs
(Service Level Objectives)

A refresher:
Measuring the performance
of a service as a percentage

of successful operations

Successful requests

Total requests

Example: HTTP requests

x 100

≥ 99.9%

So why am I here
today?

The perils of success

The way we measure
shapes

The way we think

The way we think
shapes

The solutions we explore

SLOs encourage
percentage

thinking

Instances go unhealthy
⬇

Add health checks &
route traffic away

Instances go unhealthy
⬇

Add health checks &
route traffic away

Regional network issues
⬇

Serve from multiple
regions

Regional network issues
⬇

Serve from multiple
regions

Rare slow requests
⬇

Add timeouts to protect
majority of traffic

Rare slow requests
⬇

Add timeouts to protect
majority of traffic

Successful requests

Total requests

Example: HTTP requests

x 100

≥ 99.9%

Reliability is a
percentage

game

We can
stack the odds
in our favour

Not all solutions
look the

same

Not all solutions
are about

percentages

Some solutions
prevent problems

entirely

Today's talk:

- Another lens for reliability
- Examples in the wild
- How to spot problems of
this shape

Today's talk:

- Another lens for reliability
- Examples in the wild
- How to spot problems of
this shape

Today's talk:

- Another lens for reliability
- Examples in the wild
- How to spot problems of
this shape

This is not:

- An attack on SLOs
- One-size-fits all solution
- Possible if you can't edit
software

This is not:

- An attack on SLOs
- One-size-fits all solution
- Possible if you can't edit
software

This is not:

- An attack on SLOs
- One-size-fits all solution
- Possible if you can't edit
software

Examples:

- State machines
- Type systems & memory
safety
- Database migrations

Examples:

- State machines
- Memory safety
- Database migrations

Examples:

- State machines
- Memory safety
- Database migrations

Example 1

State
machines

Collect from customer
⬇

Pay out to merchant

Collect from customer
⬇

Pay out to merchant

Payment
💸

Payment
💸

Created
Submitted
Collected
Paid out
Failed

Simple model

id description state

1 Laptop submitted

2 Phone collected

3 Unused domain
renewal collected

Simple model

id description state

1 Laptop submitted

2 Phone collected

3 Unused domain
renewal collected

Simple model

id description state

1 Laptop collected

2 Phone collected

3 Unused domain
renewal collected

Simple model

id description state

1 Laptop paid_out

2 Phone collected

3 Unused domain
renewal collected

Simple model

id description state

1 Laptop submitted

2 Phone collected

3 Unused domain
renewal collected

Simple model

id description state

1 Laptop failed

2 Phone collected

3 Unused domain
renewal collected

Submitted ➡ Failed

Collected ➡ Failed?

Submitted ➡ Failed

Collected ➡ Failed?

Submitted ➡ Failed

Paid out ➡ Failed?

We want some

restrictions

class Payment
 def fail()
 state = "failed"

State restriction pseudocode

class Payment
 def fail()
 if state == "submitted"
 state = "failed"
 else
 raise "Cannot fail from state: #{state}"

State restriction pseudocode

class Payment
 def submit()
 if state == "created"
 state = "submitted"
 else
 raise "Cannot submit from state: #{state}"

State restriction pseudocode

Payment
💸

Created
Submitted
Collected
Paid out
Failed

Payment
💸

Created
Submitted
Collected
Payout submitted
Paid out
Failed

class Payment
 def fail()
 if state in ["submitted", "payout_submitted"]
 state = "failed"
 else
 raise "Cannot fail from state: #{state}"

State restriction pseudocode

An
ad-hoc
mess

Bugs 📈

Maintenance 📈

Computer
Science has an

answer

We can use a

state machine

State machine:

- A set of states
- A set of allowed transitions
between those states

class Payment
 states(["created", "submitted", ...])

 allow_transition("created", "submitted")
 allow_transition("submitted", "collected")
 allow_transition("submitted", "failed")
...

State machine pseudocode

Created Collected Paid out

Failed

Submitted

Created Collected Paid out

Failed

Submitted

class Payment
 states(["created", "submitted", ...])

 allow_transition("created", "submitted")
 allow_transition("submitted", "collected")
 allow_transition("submitted", "failed")
...

State machine pseudocode

Error: cannot transition from
"paid out" to "failed"

class Payment
 states(["created", "submitted", ...])

 allow_transition("created", "submitted")
 allow_transition("submitted", "collected")
 allow_transition("submitted", "failed")
...

State machine pseudocode

class Payment
 states(["created", "submitted", ...])

 allow_transition("created", "submitted")
 allow_transition("submitted", "collected")
 allow_transition("submitted", "failed")
 allow_transition("failed", "submitted")
...

State machine pseudocode

Created Collected Paid out

Failed

Submitted

Often
dismissed:

"Too academic"

https://github.com/gocardless/statesman

https://github.com/gocardless/statesman

Make the problem

impossible

Example 2

Memory
safety

Not here to sell
you
Rust

Something we

often
take for granted

But first,
some C

char *ptr = malloc(SIZE);
do_stuff(ptr);
free(ptr);

Memory allocation in C

char *ptr = malloc(SIZE);
do_stuff(ptr);
free(ptr);
// Many lines more code
do_other_stuff(ptr);

Use-after-free in C

Undefined
behaviour

(You don't know what your program will do)

Undefined
behaviour

(An attacker might be able to abuse it)

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=use+after+free+2022

A non-scientific study

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=use+after+free+2022

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41849

A non-scientific study

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41849

You don't know
which one will

be serious

The assertion that
we can simply code
better is nonsense

Something we

often
take for granted

Garbage
collected
languages

def main()
 name = "Chris"
 greet(name)

def greet(name)
 puts("Hello #{name}")

Garbage collection pseudocode

Garbage collection pseudocode

def main()
 name = "Chris"
 greet(name)

def greet(name)
 puts("Hello #{name}")

Falls out of scope

The computer
does it

for you

Garbage collection
is outrageously
successful

Java

Go

Ruby

Python

JavaScript

C#

Haskell

Lisp

PHP

Erlang

But what
about...

You don't
always want a

runtime

Stuck with
manual memory
management

Until...

Okay so
hear me out

Ownership &
borrow-checking

Tl;dr:
Every value in memory
has at most one owner

def main()
 name = "Chris"
 greet(name)

def greet(name)
 puts("Hello #{name}")

Garbage collection pseudocode

fn main() {
 let name = String::from("Chris");
 greet(name);
}

fn greet(name: String) {
 println!("Hello {}", name);
}

Rust greetings

fn main() {
 let name = String::from("Chris");
 greet(name);
}

fn greet(name: String) {
 println!("Hello {}", name);
}

Rust greetings

Owner transferred

fn main() {
 let name = String::from("Chris");
 greet(name);
}

fn greet(name: String) {
 println!("Hello {}", name);
}

Rust greetings

Falls out of scope

Owner transferred

Owner out-of-scope
⬇

Value dropped

fn main() {
 let name = String::from("Chris");
 greet(name);
 say_goodbye(name);
}

fn greet(name: String) {
 println!("Hello {}", name);
}

Rust greetings

Compiler error

fn main() {
 let name = String::from("Chris");
 greet(&name);
 say_goodbye(name);
}

fn greet(name: &String) {
 println!("Hello {}", name);
}

Rust greetings

Borrow

No
manual memory
management

The computer
does it

for you

No
GC

Make the problem

impossible

Example 3

Database
migrations

MySQL
(but also true in Postgres)

-- Create a table
CREATE TABLE payments (
 id int NOT NULL,
 ...
)

-- Realise `int` isn't large enough (232)
-- You're going to run out of IDs
ALTER TABLE payments MODIFY id bigint;

-- Create a table
CREATE TABLE payments (
 id int NOT NULL,
 ...
)

-- Realise `int` isn't large enough (232)
-- You're going to run out of IDs
ALTER TABLE payments MODIFY id bigint;

-- Create a table
CREATE TABLE payments (
 id int NOT NULL,
 ...
)

-- Realise `int` isn't large enough (232)
-- You're going to run out of IDs
ALTER TABLE payments MODIFY id bigint;

Blocks all
other queries

🕵

The migrations
reviewer

Add a new column
or

Recreate the table

🕵

The migrations
reviewer

😰

The migrations
reviewer

🕵 🕵 🕵

The migrations
reviewers

😰 😰 😰

The migrations
reviewers

It doesn't

scale

and it's still

not enough

Seemingly innocuous

ALTER TABLE payments ADD COLUMN refunded boolean;

But can
still

be dangerous

-- Slow transaction
START TRANSACTION;
SELECT * FROM payments;

-- Forces this to queue
ALTER TABLE payments ADD COLUMN refunded boolean;

-- Which blocks these
SELECT * FROM payments WHERE id = 123;

-- Slow transaction
START TRANSACTION;
SELECT * FROM payments;

-- Forces this to queue
ALTER TABLE payments ADD COLUMN refunded boolean;

-- Which blocks these
SELECT * FROM payments WHERE id = 123;

-- Slow transaction
START TRANSACTION;
SELECT * FROM payments;

-- Forces this to queue
ALTER TABLE payments ADD COLUMN refunded boolean;

-- Which blocks these
SELECT * FROM payments WHERE id = 123;

Tl;dr:

- MySQL-compatible
- Scalability (sharding)
- High-availability

Tl;dr:

- MySQL-compatible
- Scalability (sharding)
- High-availability

Tl;dr:

- MySQL-compatible
- Scalability (sharding)
- High-availability

VReplication
A stream of changes

DeleteInsert

Update

ALTER TABLE payments MODIFY id bigint;

ALTER TABLE payments MODIFY id bigint;

id (int) description

1 Laptop

2 Phone

id (bigint) description

ALTER TABLE payments MODIFY id bigint;

id (int) description

1 Laptop

2 Phone

id (bigint) description

1 Laptop

ALTER TABLE payments MODIFY id bigint;

id (int) description

1 Laptop

2 Phone

id (bigint) description

1 Laptop

ALTER TABLE payments MODIFY id bigint;

id (int) description

1 Laptop

2 Phone

3 Unused domain
renewal

id (bigint) description

1 Laptop

2 Phone

ALTER TABLE payments MODIFY id bigint;

id (int) description

1 Laptop

2 Phone

3 Unused domain
renewal

id (bigint) description

1 Laptop

2 Phone

3 Unused domain
renewal

ALTER TABLE payments MODIFY id bigint;

id (int) description

1 Laptop

2 Phone

3 Unused domain
renewal

id (bigint) description

1 Laptop

2 Phone

3 Unused domain
renewal

ALTER TABLE payments MODIFY id bigint;

id (int) description

1 Laptop

2 Phone

3 Unused domain
renewal

id (bigint) description

1 Laptop

2 Phone

3 Unused domain
renewal

ALTER TABLE payments MODIFY id bigint;

id (int) description

1 Laptop

2 Phone

3 Unused domain
renewal

User queries (via proxy)

id (bigint) description

1 Laptop

2 Phone

3 Unused domain
renewal

ALTER TABLE payments MODIFY id bigint;

id (int) description

1 Laptop

2 Phone

3 Unused domain
renewal

User queries (via proxy)

id (bigint) description

1 Laptop

2 Phone

3 Unused domain
renewal

ALTER TABLE payments MODIFY id bigint;

id (int) description

1 Laptop

2 Phone

3 Unused domain
renewal

User queries (via proxy)

Fully-online
schema

migrations

😰 😰 😰

The migrations
reviewers

People doing
their actual job
😀 😀 😀

Make the problem

impossible

Examples

Take aways:

- Complementary technique
- You have to write software
- It's not easy to spot

SLOs
are alive

and well

Percentage
solutions

are too

Percentage
solutions

A
complementary
technique

https://gocardless.com/blog/fear-free-postgresql-migrations-for-rails/

https://gocardless.com/blog/fear-free-postgresql-migrations-for-rails/

Take aways:

- Complementary technique
- You have to write software
- It's not easy to spot

No code
changes

This is

not
one of them

Sometimes BIG

Sometimes small

Not everyone
can build a
database

https://github.com/gocardless/statesman

https://github.com/gocardless/statesman

Maybe
someone

already solved it

Take aways:

- Complementary technique
- You have to write software
- It's not easy to spot
 - But there are some tells

Take aways:

- Complementary technique
- You have to write software
- It's not easy to spot
 - But there are some tells

🕵

The migrations
reviewer

🙄

Smug internet
comments

🙄

Smug internet
comments

Examples:

- State machines
- Memory safety
- Database migrations

Add more
unit tests

Write
better C

Just hire
a DBA

Smug comments:

- State machines
- Memory safety
- Database migrations

Write
better C

Just hire
a DBA

Smug comments:

- State machines
- Memory safety
- Database migrations

Add more
unit tests

Write
better C

Just hire
a DBA

Smug comments:

- State machines
- Memory safety
- Database migrations

Add more
unit tests

Write
better C

Just hire
a DBA

Smug comments:

- State machines
- Memory safety
- Database migrations

Add more
unit tests

Write
better C

Just hire
a DBA

There's
probably more

to it

The assertion that
we can simply code
better is nonsense

We
can

do better

Thank you
✌❤

@ChrisSinjo
@planetscaledata

https://twitter.com/ChrisSinjo
https://twitter.com/planetscaledata

Image credits
• Poker Winnings - slgckgc - CC-BY - https://www.flickr.com/photos/slgc/42157896194/

• Thinking Face - Twemoji - CC-BY - https://github.com/twitter/twemoji

• Ferris (Extra-cute) - Unofficial Rust mascot - Copyright waived - https://rustacean.net/

• A350 Board - Mark Turnauckas - CC-BY - https://www.flickr.com/photos/marktee/
17118767669/

• Play - Annie Roi - CC-BY - https://www.flickr.com/photos/annieroi/4421442720/

https://www.flickr.com/photos/slgc/42157896194/
https://github.com/twitter/twemoji
https://rustacean.net/
https://www.flickr.com/photos/marktee/17118767669/
https://www.flickr.com/photos/marktee/17118767669/
https://www.flickr.com/photos/annieroi/4421442720/

Image credits
• White jigsaw puzzle with missing piece - Marco Verch Professional Photographer - CC-BY

- https://www.flickr.com/photos/30478819@N08/50605134766/

• Hedge maze - claumoho - CC-BY - https://flickr.com/photos/claudiah/3929921991/

• photo_1405_20060410 - Robo Android - CC-BY - https://www.flickr.com/photos/
49140926@N07/6798304070/

• Gears - Mustang Joe - Public Domain - https://www.flickr.com/photos/mustangjoe/
20437315996/

https://www.flickr.com/photos/30478819@N08/50605134766/
https://flickr.com/photos/claudiah/3929921991/
https://www.flickr.com/photos/49140926@N07/6798304070/
https://www.flickr.com/photos/49140926@N07/6798304070/
https://www.flickr.com/photos/mustangjoe/20437315996/
https://www.flickr.com/photos/mustangjoe/20437315996/

Questions?
✌❤

@ChrisSinjo
@planetscaledata

https://twitter.com/ChrisSinjo
https://twitter.com/planetscaledata

