Schema-First Telemetry

A Hred-eld new approach to application telemetry metadata

Yuri Shkuro

META

Yuri Shkuro

Software Engineer
Meta

shkuro.com

EEEEEEEEEEEEE

Mastering
Distributed
Tracing

sssssssssssssssss

CNCF Jaeger
Founder & Maintainer

Jaegertracing.io

CNCF OpenTelemetry
Co-founder, GC & TC

opentelemetry.io

Mastering Distributed Tracing
Author

http://shkuro.com
http://jaegertracing.io
http://opentelemetry.io
https://www.shkuro.com/books/2019-mastering-distributed-tracing/

Telemetry Metadata

Schema-First Approach

Implementation

Comparison

Q&A

Observability: a measure of how well
internal states of a system can be inferred
from knowledge of its external outputs.

=

>

=
Telemetry

TEMPLE - Six Pillars of Telemetry

® T-Traces
® E-Events

® M- Metrics

® P -Profiles

® L-Logs

® E - Exceptions

Blog post: https://bit.do/telemetry-temple

https://bit.do/telemetry-temple
https://unsplash.com/@belial90?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Telemetry signals describe
behaviors of observable entities

® Host, pod ® User activity

® Service, endpoint ® Workflow

® Database cluster, ... ® Customer account, ...

Dimensions: attributes
of telemetry signals
that identify observable entities

request_latency{service="f00”, endpoint="bar’}=0.0152

Dimensions: necessary,
but not sufficient

latency{service="team-baz/foo”, endpoint="bar’} = 0.0152

request_latency{service="f00”, endpoint="Foo::bar’} = 15.2

Metadata: additional info about telemetry
that provides semantic meaning and
iIdentifies the nature and features of the data

® Data types ® Ownership

® Units ® Semantic identifiers

® Descriptions ® Purpose policies, ...

Metadata unlocks many capabilities

® Discoverability ® \Validation & enforcement
® Exploration ® Safe change management

® Cross-filtering & correlation @ Privacy controls

Metadata approaches

Industry state of the art

® Seman“c COnVentionS ® EX’[ema”y au’[hOI‘ed metadata

- OpenTe|emetry - a.k.a. a'pOSterIOri metadata

- Elastic Common Schema - centralized in a metadata store
® OpenTelemetry Schemas e Automatic data enrichment

- versioning of semantic conventions - Agent-based instrumentation

- transformations for names and values - limited to infra dimensions

Metadata
J

Schemas

N2

Schema-first Telemetry

=
Compiler

Code-first telemetry

Producing a time series

counter.Increment(

)

service_1d
endpoint
status_code

Ilfooll)
Ilt)a I,.II)
response. code,

Code-first telemetry

Adding new dimension

counter.Increment(

service 1d
endpoint
status code
shard 1d

Ilfooll)
Ilt)a I,.II)
response. code,
llbazll ,

Schema-first telemetry

Define schema

struct RequestCounter A
1: string service_1id
2: string endpoint
3: 1nt status code

}

Schema-first telemetry

Emit telemetry

counter.Increment(

struct RequestCounter { RequestCounter (
1: string service_id service_1d "foo",
2: string endpoint endpoint "bar",
3: int status code status_code resp.code,
¥)
)

Schema-first telemetry

Adding new dimension to schema

counter.Increment(

struct RequestCounter { RequestCounter(

1: string service_id service_1d "foo",

2: string endpoint endpoint "bar",

3: int status code status_code resp.code,
\ 4: string shard_id |)

Schema-first telemetry

Emitting new dimension

counter.Increment(

struct RequestCounter { RequestCounter(
1: string service_id service_1d
2: string endpoint endpoint
3: int status_code status_code
4: string shard_id shard_id
})
)

Ilfooll ,
Ilba r.II)
resp.code,
llbazll ,

Implementation

Schema-first telemetry

Authoring flow

(1) Schema change:
struct RequestCounter {

4: ShardID shard id

single pull request

(2) Generated code:
struct RequestCounter {

shard_id: string

Continuous
integration
checks

Actualization
service

schema

V

Metadata
store

(3) Application code:
counter.Inc(RequestCounter(

éHard_id = 'baz’,

Schema-first telemetry

Production data flow

(1) Schema change:
struct RequestCounter {

4: ShardID shard id

single pull request

(2) Generated code:

struct RequestCounter {

éﬁérd_id: string

(3) Application code:
counter.Inc(RequestCounter(

shard_id = 'baz’,

Ul surfaces

Consumers

Metadata
store

schema

D

struct

/

Telemetry SDK

_

\L binary

Scribe

Telemetry backend

[[parse with schema |]

THRIFT for schema authoring

Why it makes sense for Meta

e De-facto standard at Meta e Language features
- Defines interfaces between services - Type aliases
- Similar to Protobuf - Annotations

- Familiar to most engineers

e Powerful tool chain e Namespaces & composition
- Build & IDE support, code gen - Reuse of semantic data types
- X-language, x-repo syncing - Collaborative authoring

Metadata in the schema

Redefining OpenTelemetry semantic convention for host resources

struct HostResource {

1: string 1id

2: string name

3: string arch

}

Metadata in the schema

Redefining OpenTelemetry semantic convention for host resources

struct HostResource {
@isplayNameq{'"Host ID"}
@escription{"Unique host ID. For Cloud, this must be ..."}
1: string 1d

@isplayName{"Short Hostname"}
@escription{"Name of the host as returned by ‘hostname’ cmd.”}
2: string name

@isplayName{"Architecture"}
@escription{"The CPU architecture of the host system."}
3: string arch

}

Metadata in the schema
Using rich types

struct RequestCounter {
» string service_1d
+ string endpoint
+ int status code
+ string shard_id

Metadata in the schema
Using rich types

struct RequestCounter {
» string service_1d
+ string endpoint
+ int status code
+ string shard_id

typedef string ServicelD
typedef 132 StatusCode
typedef string ShardID

struct RequestCounter {
1: ServicelID service 1d
2: string endpoint
3: StatusCode status_code
4: ShardID shard 1d

}

Metadata in the schema

Annotations on shared rich types

// Example: devvml23
@DisplayName{"HostName"}
typedef string HostName

// Example: devvml23.zonel.facebook.com
@DisplayName{name="HostName (with FQDN)"}
typedef string HostNameWithFQDN

Annotations In the schema

Defining two different representations of the same semantic type

@SemanticType{InfraEnum.DataCenter _Host}
typedef string HostName

@SemanticType{InfraEnum.DataCenter_Host}
typedef string HostNameWithFQDN

Annotations In the schema

Qualifying rich type fields with additional semantic meaning

struct RPC {

1: ServicelID source service

2. ServicelD target_service

}

Annotations In the schema

Qualifying rich type fields with additional semantic meaning

enum OneWayMsgExchangeActorEnum A
SOURCE = 1, TARGET = 2,

}

struct OneWayMsgExchangeActor {
1: OneWayMsgExchangeActorEnum value

}

Annotations In the schema

Qualifying rich type fields with additional semantic meaning

@SemanticQualifier
struct OneWayMsgExchangeActor {

}

Annotations In the schema

Qualifying rich type fields with additional semantic meaning

struct RPC {
@OneWayMsgExchangeActor{SOURCE}

1: ServicelID source service
@OneWayMsgExchangeActor{TARGET}

2. ServicelD target_service

}

Comparison

Authoring
Experience

® Lines of code

® Deployment complexity

® Collaborative authoring

® Log site consistency

Change

Management

Schema evolution

Change management safety

Compile-time safety

Automated code changes

Consumption

® Introspection

® Semantic x-filtering

Comparison: approaches to telemetry metadata

Authoring experience Change management Consumption
Lines of Distributed Scr_Iema Schema Change Compile time ACLUBL . Semantic
Deployment ! consistency ! management code Introspection e
code authoring ! evolution safety x-filtering
at log sites safety changes

Plain dimensional
models

000006
IGO0
_-----

Semantic
Conventions

OpenTelemetry
Schemas

Externally
authored metadata

Automatic data
enrichment

Schema-first
approach

3K With automation Not applicable

Conclusion

Why schema-first telemetry makes sense for Meta:

® Schema-first is a paved path ® [ncremental improvement / migration
- Familiar to most engineers - Existing a-posteriori metadata solutions
- Good tooling support - Can be applied one dataset at a time

Future work

e Versioning and A/B testing e Data governance
- How to “canary” a schema change - Defining common semantic types
- Evolving annotations language

Can it work in OpenTelemetry?

Challenges to overcome

® |DL choice & capabilities ¢ End-to-end schema coordination

e Developer experience e Culture change

Thank You

Find me @ https://shkuro.com

Yuri Shkuro, Benjamin Renard, and Atul Singh. 2022.
Positional Paper: Schema-First Application Telemetry.
SIGOPS Oper. Syst. Rev. 56, 1 (June 2022), 8—17.

http://bit.do/schema-first-telemetry

Positional Paper: Schema-First Application Telemetry

Yuri Shkuro, Meta Benjamin Renard, Meta Atul Singh, Meta

ABSTRACT

Application telemetry refers to measurements taken from
software systems to assess their performance, availability,
correctness, efficiency, and other aspects useful to operators,
as well as to troubleshoot them when they behave
abnormally. Many modern observability platforms support
dimensional models of telemetry signals where the
measurements are accompanied by additional dimensions
used to identify either the resources described by the
telemetry or the business-specific attributes of the activities
(e.g., a customer identifier). However, most of these
platforms lack any semantic understanding of the data, by not
capturing any metadata about telemetry, from simple aspects
such as units of measure or data types (treating all dimensions
as strings) to more complex concepts such as purpose
policies. This limits the ability of the platforms to provide a
rich user experience, especially when dealing with different
telemetry assets, for example, linking an anomaly in a time
series with the corresponding subset of logs or traces, which
requires semantic understanding of the dimensions in the
respective data sets.

In this paper, we describe a schema-first approach to
application telemetry that is being implemented at Meta. It
allows the observability platforms to capture metadata about
telemetry from the start and enables a wide range of
functionalities, including compile-time input validation,
multi-signal correlations and cross-filtering, and even
privacy rules enforcement. We present a collection of design
goals and demonstrate how schema-first approach provides
better trade-offs than many of the existing solutions in the
industry.

1. INTRODUCTION

Observability is a critical capability of today’s cloud native
software systems that power products such as Facebook,
Gmail, WhatsApp, Twitter, Uber Rides, etc. Originally
defined in control theory, observability provides operators
with deeper insight into various aspects of the complex
behavior of systems, including their performance,
availability, correctness, and efficiency. When the systems
behave abnormally, observability is used to troubleshoot the
incidents and mitigate them to bring the behavior back to
normal, with mean time to mitigation being one of the critical
success measures.

To provide observability, the systems are instrumented to
produce various telemetry signals. The most common types

of application telemetry used with today's cloud native
systems are metrics, logs, events, and traces [12], [21]. A
common characteristic of different telemetry types is that
they usually combine one or more measurements with a set
of identifying dimensions. For example, a metric is a numeric
observation typically associated with a name, such as
“request_count”, and some dimensions, such as “host” or
“endpoint”. Similarly, in a semi-structured log message, the
measurement part is played by the message text,
accompanied by searchable dimensions such as log level,
thread name, etc.

Modern telemetry platforms, in addition to ingesting vast
amounts of telemetry data, usually perform extensive
indexing of the dimensions to allow rich querying and
aggregations over the raw measurements [17], [10], [2]. Most
of them treat dimensions as free-form collections of key-
value pairs. Platforms like OpenTelemetry [15] or Jaeger [20]
allow associating basic types with dimension values, while
systems like Prometheus [6] allow associating descriptions
with the metrics while treating all dimensions as strings.
Little, if any, additional metadata is captured or understood
by these systems. This puts a burden on the user to understand
how to interpret the dimensions and how to leverage them
when querying data.

The complex nature of cloud native systems often requires
investigations that involve more than a single source of
telemetry. A spike in error rate in a single zone might warrant
a look at the logs or traces from the same zone for better
diagnosis of the issue. This is where many modern telemetry
platforms fall short, as they lack semantic understanding of
the data. Two telemetry signals might share a dimension
“region”, but in one case referring to the region where the
software runs and in the other case to the region where the
user is located. Joining telemetry by this dimension as if it is
the same thing is probably meaningless. Metadata can be the
missing link in solving these problems.

In this paper we define metadata as additional information
that provides semantic meaning to telemetry data and helps
in identifying the nature and features of the data. Examples
of observability metadata include data types, units,
descriptions, ownership, purpose policies, semantic
identifiers, etc.

There are different ways to associate metadata with
telemetry, such as using naming conventions to imply
semantic meaning or defining metadata a-posteriori, after the
telemetry data has been produced and stored. In this paper we

https://shkuro.com
http://bit.do/schema-first-telemetry

