
1

How we Implemented High
Throughput Logging at Spotify

Lauren Muhlhauser | EM | Core Infrastructure

2

A Brief and Incomplete History of Logging at Spotify

■ Back when backend services ran on their own VMs, they logged as much as they
wanted to disk.

■ As services were migrated to multi-tenant GKE clusters within a shared project
we needed a solution for ephemerality.

■ GKE provides a managed logging agent, previously FluentD - now FluentBit, that
runs on each GKE node. This tails container log files and sends logs to the same
project.

■ This does not work for our multitenant clusters, as we want to forward logs from
namespace ‘foo’ to project ‘foo' accordingly.

3

■ We were running a custom FluentD image with a handful of plugins built in.
■ This was run in conjunction with an init container that maps each namespace to its host

project.
■ Logs were collected across namespaces on a single GKE node and then forwarded to

each corresponding project.

A Brief and Incomplete History of Logging at Spotify

4

Google Cloud Logging Output Plugin

■ Our FluentD config created n+2 instances of Google’s GCL output plugin.
■ One output per namespace.
■ One output to handle any logs tagged with “kubernetes.**” that were not matched by the

namespace-specific output plugin and send logs to the multi-tenant project.
■ One output that caught any remaining logs and sent them to the multi-tenant project.

■ Each instance of the output plugin had 2 threads. These threads were used to
flush FluentD's internal buffer by sending log entries to GCL.
■ We configured FluentD to buffer to files on disk, have 1MB chunks, and flush data every five seconds.

5

A logging setup that works for dozens of namespaces
won't necessarily work for over 1700 namespaces.

6

■ Users began to report delayed or completely absent logs.
■ A small portion of logs were rejected by log ingestion quotas.

■ Some users may intentionally keep their tenant project's log quotas low to prevent runaway logging costs.
■ Some users may have exhausted their quotas and not know why they're not seeing logs.

Initial Investigation

7

FluentD is Limited to a Single Core

■ Many of our FluentD pods were using that
single core fully and dropping logs as a
result.

■ The total CPU used by all FluentD pods in
a cluster:
500 CPU / 500 GKE nodes = 1 CPU fully
used by each pod

■ FluentD was so CPU bound in some cases
that it didn’t even detect some logs and
didn’t attempt to forward them to GCL.

■ We actually don't know the number of logs
lost due to CPU bottlenecks.

8

Solutions We Considered

9

Pros
■ FluentBit is the default logging agent

in GKE 1.17+
■ FluentBit added multithreading

support in 1.7.x

Cons
■ Various versions OOMing
■ Limited to 256 outputs
■ With no timeline from Google on

when/if we would be able to configure
the out-of-the-box k8s FluentBit
offering, we once again would roll out
our own image + config.
■ This would allow us to configure the number of

workers we need for our output plugins.

FluentBit and Multi-Threading

10

Pros
■ Services are directly responsible for

their log volume, so if they
overproduce it won't get silently
dropped

■ Can configure Java services to write
to GCL in their parent project instead
of the multi-tenant GKE project

■ We can add tracing data to the GCL
logs

Cons
■ Updates/changes would require PRs

and deploying every individual service
■ Observability team would be expected

to manage default configs and
troubleshooting for the whole
company

■ This is only a solution for Java
services

Logback to Send Java Service Logs Directly to GCL

11

Our Final Solution

12

FluentBit + High Throughput Exporter Daemonset

■ FluentBit + High Throughput Exporter daemonset deployed in each GKE cluster.
■ Specific version of FluentBit that did not OOM.

■ Only 1 FluentBit output required, all logs pass through the exporter.
■ Improved resource allocation for the deployment.
■ Per project log sinks in the multi-tenant project.
■ No more massive 1700+ output FluentD config file.

13

Logging Architecture

14

■ We were unsure of how many logs we were dropping and which projects were logging
the largest amount.
■ Guesstimated at least 80% of logs were dropped.
■ For java services, we used data studio to show teams what percentage of logs were dropped.

■ We worked with procurement during the rollout to observe cost.
■ Got up to testing + ⅔ production clusters before we had to roll back the solution due to

excessive cost.

It worked a little too well…

15

Back to the drawing board…

■ Turns out log throughput was even higher than we thought for some projects, it
makes sense that services in certain clusters weren’t getting any logs at all!

■ We used the cost data from the initial rollout to notify high spend project owners.
■ We now had per project metrics for log throughput available to us for the next

rollout.
■ Google informed us that we could set sampling within project sinks with this

config: sample(insertId, 0.10) AND ...

16

■ To automate sampling on high spend projects, we created an alert in GCP that checks for
high throughput per project.

■ The alert hits pubsub which then gets picked up by our sampling service.
■ The service sets sampling to 10% (meaning you will get 10% of your project’s logs).
■ The project owners will be notified via email that their project has been sampled.

Sampling

17

■ We also added a page in Backstage that allows teams to view and adjust the sampling
for their project.

Log Sampling in Backstage

18

Log Sampling Architecture

19

■ With automated sampling, after a few adjustments, we were able to successfully roll out
the FluentBit based solution the second time around.

■ High throughput projects were sampled accordingly (to reduce cost) and no longer
throttling other projects within the same cluster.

Crisis averted!

20

Limitations

■ There are a few limitations to the multi-tenant high throughput solution:
■ Currently, the default log view in GCP does not display logs, you need to navigate to the storage view.
■ Log based metrics and alerts in the GCP console do not work with logs in the _Default log bucket.
■ Google’s Error Reporting feature does not work with logs in the _Default log bucket.
■ You cannot create a log sink within a tenant project for logs in the _Default log bucket. Log sinks would

need to be in the multi-tenant project.

■ We have feature requests open to resolve these issues.
■ As a workaround, teams can send logs to GCL directly from their service

■ This will route logs directly to their parent project and allow them to use the above features.
■ There are instructions for: C#, Java, Go, Node, PHP, Python, and Ruby

21

Logging Best Practices

■ By default, only WARN and ERROR logs should be sent to GCL.
■ Use tracing instead.
■ Use metrics instead.
■ Disable logging to GCL completely if you do not need it.

Each of the above has trade-offs. The important thing to keep in mind is that full
request logging can be very expensive for high-traffic services.

22

Whether it’s usage data, user events, or application errors and exceptions, it should be
valuable to your team. A basic rule of thumb for whether to log something can be to ask
yourself, “Is this information immediately useful in some way, and will it provide the
details I need to understand the underlying cause and make decisions?”

Everything you log should have a purpose.

23

Thank you

