e Spotify.R&D

How we Implemented Hi)
Throughput Logging at Spc .

Lauren Muhlhauser | EM | Core Infrastructure

@ spotify.R&D

A Brief and Incomplete History of Logging at Spotify

Back when backend services ran on their own VMs, they logged as much as they
wanted to disk.

As services were migrated to multi-tenant GKE clusters within a shared project
we needed a solution for ephemerality.

GKE provides a managed logging agent, previously FluentD - now FluentBit, that
runs on each GKE node. This tails container log files and sends logs to the same
project.

This does not work for our multitenant clusters, as we want to forward logs from
namespace ‘foo’ to project ‘foo’ accordingly.

@ spotify.R&D

A Brief and Incomplete History of Logging at Spotify

m We were running a custom FluentD image with a handful of plugins built in.

m [his was run in conjunction with an init container that maps each namespace to its host
project.

m Logs were collected across namespaces on a single GKE node and then forwarded to
each corresponding project.

@ spotify.R&D

Google Cloud Logging Output Plugin

m Our FluentD config created n+2 instances of Google’s GCL output plugin.

m One output per namespace.

m One output to handle any logs tagged with “kubernetes.*” that were not matched by the
namespace-specific output plugin and send logs to the multi-tenant project.

m One output that caught any remaining logs and sent them to the multi-tenant project.

m Each instance of the output plugin had 2 threads. These threads were used to
flush FluentD's internal buffer by sending log entries to GCL.

m We configured FluentD to buffer to files on disk, have 1MB chunks, and flush data every five seconds.

@ spotify.R&D

A logging setup that works for dozens of namespaces
won't necessarily work for over 1700 namespaces.

@ spotify.R&D

Initial Investigation

m Users began to report delayed or completely absent logs.

m A small portion of logs were rejected by log ingestion quotas.

m Some users may intentionally keep their tenant project's log quotas low to prevent runaway logging costs.
m Some users may have exhausted their quotas and not know why they're not seeing logs.

@ spotify.R&D

FluentD is Limited to a Single Core

m Many of our FluentD pods were using that & fluentd
single core fully and dropping logs as a DETAILS EVENTS YAML
result.

m The total CPU used by all FluentD pods in
a cluster: CPU @

500 CPU / 500 GKE nodes = 1 CPU fully

used by each pod - -

m FluentD was so CPU bound in some cases
that it didn’t even detect some logs and
didn’t attempt to forward them to GCL.
m We actually don't know the number of logs
lost due to CPU bottlenecks.

@ Spotify.R&D

Solutions We Considered

@ spotify.R&D

FluentBit and Multi-Threading

Pros

m FluentBit is the default logging agent
in GKE 1.17+

m FluentBit added multithreading
support in 1.7.x

Cons

m Various versions OOMing

m Limited to 256 outputs

m With no timeline from Google on
when/if we would be able to configure
the out-of-the-box k8s FluentBit
offering, we once again would roll out

our own image + config.

m This would allow us to configure the number of
workers we need for our output plugins.

@ spotify.R&D

Logback to Send Java Service Logs Directly to GCL

Pros

Services are directly responsible for
their log volume, so if they
overproduce it won't get silently
dropped

Can configure Java services to write
to GCL in their parent project instead
of the multi-tenant GKE project

We can add tracing data to the GCL
logs

Cons

m Updates/changes would require PRs
and deploying every individual service

m Observability team would be expected
to manage default configs and
troubleshooting for the whole
company

m This is only a solution for Java
services

10

|
© spotify.R&D \

Our Final Solution

@ spotify.R&D

FluentBit + High Throughput Exporter Daemonset

m FluentBit + High Throughput Exporter daemonset deployed in each GKE cluster.
m Specific version of FluentBit that did not OOM.

Only 1 FluentBit output required, all logs pass through the exporter.
Improved resource allocation for the deployment.

Per project log sinks in the multi-tenant project.

No more massive 1700+ output FluentD config file.

12

@ spotify.R&D

SRM

L (namespace to project mapping)]

A

GCS

GKE Node

[GKE Service] [GKE Service] [GKE Service J

[InitContainer H FluentBit]

v

Daemonset

Throughput

Google’s High
FluentBit Exporter

\

GKE Node

[GKE Service] [GKE Service] [GKE Service]

[lnitContainer H FluentBit }

Google’s High
Throughput
FluentBit Exporter

Daemonset

—

Logging Architecture

L

Cronjob to

(log-router)

create log sinks J

)

Google Cloud Logging

Multi-tenant Project

Log Sink

(in multi-tenant project)

v

Log Bucket

Tenant Project _Default

13

@ spotify.R&D

It worked a little too well...

m \We were unsure of how many logs we were dropping and which projects were logging

the largest amount.

m Guesstimated at least 80% of logs were dropped.
m Forjava services, we used data studio to show teams what percentage of logs were dropped.

m \We worked with procurement during the rollout to observe cost.

m Got up to testing + 75 production clusters before we had to roll back the solution due to
excessive cost.

14

@ spotify.R&D

Back to the drawing board...

m Turns out log throughput was even higher than we thought for some projects, it
makes sense that services in certain clusters weren’t getting any logs at all!

m \We used the cost data from the initial rollout to notify high spend project owners.

m \We now had per project metrics for log throughput available to us for the next
rollout.

m Google informed us that we could set sampling within project sinks with this
config: sample(insertld, 0.10) AND ...

15

@ spotify.R&D

Sampling

m To automate sampling on high spend projects, we created an alert in GCP that checks for
high throughput per project.
m [he alert hits pubsub which then gets picked up by our sampling service.

m The service sets sampling to 10% (meaning you will get 10% of your project’s logs).

m [he project owners will be notified via email that their project has been sampled.

@ spotify.R&D

Log Sampling in Backstage

m \We also added a page in Backstage that allows teams to view and adjust the sampling
for their project.

PROJECT

Xxpn-monitoring-1

Overview Log Sampling w
Storage

Declarative A 0 Unable to view your logs in the Cloud Console? You need to use the storage scoped view in GCL. See Stack Enterprise for more details.
eclarative Access

Declarative Resources
[gke-xpn-1] Exported bytes per log sink

Log Sampling

15 MB/s

12.5 MB/s

10 MB/s

7.50 MB/s

5 MB/s

2.50 MB/s
18:00

== sink-to-xpn-monitoring-1 145MB/s 5.87 MB/s

Current sampling for xpn-monitoring-1is set to 100%.

To change the sampling rate, select an option from the dropdown.

10%
25%
50%
75%

Remove Sampling

@ spotify.R&D

(GCP Alert o i
ert on
. " Backstage Log
exported log bytes :
Metric Sampling Page
\ \J\/
i)
Pubsub
- J v
e)
Log Sink

Sampling Service
" v

Log Sampling Architecture

@ Sspotify.R&D "

Crisis averted!

m With automated sampling, after a few adjustments, we were able to successfully roll out
the FluentBit based solution the second time around.

m High throughput projects were sampled accordingly (to reduce cost) and no longer
throttling other projects within the same cluster.

Daily + ~
&S Issue during 2nd Rollout
Initial Rollout
I
'
|
.b
i 2nd Rollout Success :)
1
-fggll_ O R = DR, s > . IR H BB H T e
18 Jan 22) Feb 10 Foo 14 Feb 16 Feb 22 Fab 26 Mxr2 Marb Mw @ Mar 12 Mar 16 Mar 20 Mar 24 Mt 28 Agrt Aprd N7 Agn 11 Apr 15 Apr 18 Apr 27 May 1 May B Maxy 9

Cost trend 0

@ spotify.R&D

Limitations

m There are a few limitations to the multi-tenant high throughput solution:
m Currently, the default log view in GCP does not display logs, you need to navigate to the storage view.
m Log based metrics and alerts in the GCP console do not work with logs in the _Default log bucket.
m Google’s Error Reporting feature does not work with logs in the _Default log bucket.
m You cannot create a log sink within a tenant project for logs in the _Default log bucket. Log sinks would
need to be in the multi-tenant project.

m \We have feature requests open to resolve these issues.

m As a workaround, teams can send logs to GCL directly from their service

m This will route logs directly to their parent project and allow them to use the above features.
m There are instructions for: C#, Java, Go, Node, PHP, Python, and Ruby

20

@ spotify.R&D

Logging Best Practices

By default, only WARN and ERROR logs should be sent to GCL.
Use tracing instead.

Use metrics instead.

Disable logging to GCL completely if you do not need it.

Each of the above has trade-offs. The important thing to keep in mind is that full
request logging can be very expensive for high-traffic services.

21

@ Spotify. R&D

Everything you log should have a purpose.

Whether it’s usage data, user events, or application errors and exceptions, it should be
valuable to your team. A basic rule of thumb for whether to log something can be to ask
yourself, “Is this information immediately useful in some way, and will it provide the
details | need to understand the underlying cause and make decisions?”

FIND
YOUR

PORPOISE

22

Thank you

@ Spotify.R&D

