
© 2018 Bloomberg Finance L.P. All rights reserved.

© 2022 Bloomberg Finance L.P. All rights reserved.

A Case Study in Chaos Testing:
Uncovering Kernel Scaling
Issues
SREcon EMEA 2022
October 26, 2022

Gary Liku
Systems Reliability Engineer (SRE), Trading Systems Runtime

© 2022 Bloomberg Finance L.P. All rights reserved.

Agenda

● Introduction
● Sporadic Scaling Problems
● Chaos Testing as an Investigative Tool
● The Problem is Threads... or is it?

○ Profiling /proc
● Mitigation Efforts

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2022 Bloomberg Finance L.P. All rights reserved.

Introduction

● Bloomberg Trading Systems Runtime SRE
○ Over 300 Managed Machines

■ Large hosts, 1TB RAM, 72 hardware threads
○ AIM & TOMS

■ Buy-side/sell-side order management systems
○ Shared Bloomberg Environment

■ Shared Memory
■ High volume of IPC
■ Farms for high CPU jobs

● Suitable for vertical scaling
■ Precision Time Protocol (PTP) for certain time sensitive applications

○ Focus on a subset of high nproc Linux hosts

© 2022 Bloomberg Finance L.P. All rights reserved.

Introduction

● New clusters added to our data centers

● Workloads migrated to take advantage of new hosts

● Things were going smoothly, until…

© 2022 Bloomberg Finance L.P. All rights reserved.

Sporadic Scaling Problems

● Several seemingly unrelated issues became more common
○ Hosts getting hung or very slow
○ Services slow to start-up & shut-down during weekend load testing

■ Usually on scripts running ps or reading /proc
○ ps & /proc are used for monitoring, but they have a significant effect on the system

■ This is particularly bad!
○ Non-Interference Prime Directive for Visibility

■ “The addition of any metrics acquisition subsystem should not noticeably affect the
performance of the measured system”
(https://devops.com/of-max-and-min-the-non-interference-prime-directive-for-visibility/)

https://devops.com/of-max-and-min-the-non-interference-prime-directive-for-visibility/

© 2022 Bloomberg Finance L.P. All rights reserved.

Sporadic Scaling Problems

● More potentially correlated issues
○ Monitoring missing observations

■ More than ps provided metrics
○ PTP health check failing sporadically

■ Real-time requirements
● Especially sensitive to load!

● Needs 4 instances of clock drift within 1 minute to fail

© 2018 Bloomberg Finance L.P. All rights reserved.

Sporadic Scaling Problems

What do our metrics tell us? Event CHECK_PTP Failed

© 2022 Bloomberg Finance L.P. All rights reserved.

Sporadic Scaling Problems

● Alerts correlated to high resource usage
○ Expected for heavy workloads
○ But might be an indication of resource contention

● Still unsure which resource that may be
○ How can we further investigate?

© 2022 Bloomberg Finance L.P. All rights reserved.

Chaos Testing as an Investigative Tool

“Chaos Engineering is the discipline of experimenting on a system in
order to build confidence in the system’s capability to withstand
turbulent conditions in production.”

– principlesofchaos.org

● But, we can also use it as an investigative tool
○ Signs of a resource contention issue

■High load, high system CPU % utilization, high nproc
○ Use Chaos testing to replicate the contention
○ We can then isolate the root cause

http://www.principlesofchaos.org

© 2022 Bloomberg Finance L.P. All rights reserved.

Orchestrating Chaos Tests

● How do we do it?
○ chaoscommander & generaldisarray - Bloomberg’s chaos testing tools

■chaoscommander for orchestration
■generaldisarray as the executor on host

● One experiment per resource type (memory, CPU, nproc, etc.)
○ Simulate reading /proc load
○ Idle threads/procs for nproc test

● Reuse published metrics for test monitoring
○ Failsafe monitors based on metrics

© 2018 Bloomberg Finance L.P. All rights reserved.

Preparing the Experiment

Experiments are composed of
operations. An operation is one or
more programs, generally dedicated
to a specific resource.

Stop a running
experiment at any time

Run creates a
ticket to start
the experiment

© 2018 Bloomberg Finance L.P. All rights reserved.

Running the Experiment

Experiment Duration

© 2018 Bloomberg Finance L.P. All rights reserved.

Running the Experiment

CPUHog test

© 2022 Bloomberg Finance L.P. All rights reserved.

Finishing the Experiment

● How do we know the experiment was successful?
○ Many of the issues we were expecting emerged

■4 missed PTP checks
■Gaps in monitoring
■High system CPU with tasks hanging

○ On multiple hosts on the same resource test - threads
○ This was surprising, as we expect to scale close to ~4 million (pid_max)

■But, we were seeing issues as low as 300k nproc

● Most importantly, repeat experiments gave the same results!

© 2022 Bloomberg Finance L.P. All rights reserved.

Finishing the Experiment – Summary

● Observed several issues when scaling
○ PTP Alerts
○ Slow start/stop scripts - particularly those calling ps or reading /proc
○ Hanging/slowness

● Designed experiments to explore several potential causes
○ A test per resource - nproc, CPU, memory, etc.

● Experiments point to nproc as the culprit
○Actually threads, as thread count >> process count
○Alerts trigger ~300k nproc << pid_max (~4 million)

● Repeat experiments show similar results

© 2022 Bloomberg Finance L.P. All rights reserved.

The Problem is Threads… or is it?

● /proc is an atypical directory; it’s created on demand
● Linux kernel keeps track of processes & threads similarly

○ /proc/<pid>/task/<tid>

© 2022 Bloomberg Finance L.P. All rights reserved.

Profiling /proc

proc_pid_readdir
● 3.10 Kernel

○ Ubuntu 13.X
○ Redhat 7.X

/* for the /proc/ directory itself, after non-process stuff has been done
*/
int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)

{
[..]

for (iter = next_tgid(ns, iter);
 iter.task;
 iter.tgid += 1, iter = next_tgid(ns, iter)) {

if (has_pid_permissions(ns, iter.task, 2))
__filldir = filldir;

else
__filldir = fake_filldir;

filp->f_pos = iter.tgid + TGID_OFFSET;
if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {

put_task_struct(iter.task);
goto out;

}
}
filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;

out:
return 0;

}

https://elixir.bootlin.com/linux/v3.10/C/ident/proc_pid_readdir
https://elixir.bootlin.com/linux/v3.10/C/ident/file
https://elixir.bootlin.com/linux/v3.10/C/ident/filp
https://elixir.bootlin.com/linux/v3.10/C/ident/dirent
https://elixir.bootlin.com/linux/v3.10/C/ident/filldir_t
https://elixir.bootlin.com/linux/v3.10/C/ident/filldir
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/next_tgid
https://elixir.bootlin.com/linux/v3.10/C/ident/ns
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/task
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/tgid
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/next_tgid
https://elixir.bootlin.com/linux/v3.10/C/ident/ns
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/has_pid_permissions
https://elixir.bootlin.com/linux/v3.10/C/ident/ns
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/task
https://elixir.bootlin.com/linux/v3.10/C/ident/filldir
https://elixir.bootlin.com/linux/v3.10/C/ident/fake_filldir
https://elixir.bootlin.com/linux/v3.10/C/ident/filp
https://elixir.bootlin.com/linux/v3.10/C/ident/f_pos
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/tgid
https://elixir.bootlin.com/linux/v3.10/C/ident/TGID_OFFSET
https://elixir.bootlin.com/linux/v3.10/C/ident/proc_pid_fill_cache
https://elixir.bootlin.com/linux/v3.10/C/ident/filp
https://elixir.bootlin.com/linux/v3.10/C/ident/dirent
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/put_task_struct
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/task
https://elixir.bootlin.com/linux/v3.10/C/ident/filp
https://elixir.bootlin.com/linux/v3.10/C/ident/f_pos
https://elixir.bootlin.com/linux/v3.10/C/ident/PID_MAX_LIMIT
https://elixir.bootlin.com/linux/v3.10/C/ident/TGID_OFFSET

© 2022 Bloomberg Finance L.P. All rights reserved.

Profiling /proc

● Rerun the chaos test for
threads with profiling

● Reset /proc/profile counters
for each test

● Top 4 functions by clock tick
○ native_safe_halt
○ find_pid_ns
○ mutex_spin_on_owner
○ next_tgid

© 2022 Bloomberg Finance L.P. All rights reserved.

Profiling /proc
next_tgid called from proc_pid_readdir
static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
{

struct pid *pid;

if (iter.task)
put_task_struct(iter.task);

rcu_read_lock();
retry:

iter.task = NULL;
pid = find_ge_pid(iter.tgid, ns);

[..]
rcu_read_unlock();
return iter;

}

/*
 * Used by proc to find the first pid that is greater than or equal to nr.
 *
 * If there is a pid at nr this function is exactly the same as find_pid_ns.
 */
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
{

struct pid *pid;

do {
pid = find_pid_ns(nr, ns);
if (pid)

break;
nr = next_pidmap(ns, nr);

} while (nr > 0);

return pid;
}

next_tgid
-> find_ge_pid
-> find_pid_ns

https://elixir.bootlin.com/linux/v3.10/C/ident/tgid_iter
https://elixir.bootlin.com/linux/v3.10/C/ident/next_tgid
https://elixir.bootlin.com/linux/v3.10/C/ident/pid_namespace
https://elixir.bootlin.com/linux/v3.10/C/ident/ns
https://elixir.bootlin.com/linux/v3.10/C/ident/tgid_iter
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/pid
https://elixir.bootlin.com/linux/v3.10/C/ident/pid
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/task
https://elixir.bootlin.com/linux/v3.10/C/ident/put_task_struct
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/task
https://elixir.bootlin.com/linux/v3.10/C/ident/rcu_read_lock
https://elixir.bootlin.com/linux/v3.10/C/ident/retry
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/task
https://elixir.bootlin.com/linux/v3.10/C/ident/pid
https://elixir.bootlin.com/linux/v3.10/C/ident/find_ge_pid
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/tgid
https://elixir.bootlin.com/linux/v3.10/C/ident/ns
https://elixir.bootlin.com/linux/v3.10/C/ident/rcu_read_unlock
https://elixir.bootlin.com/linux/v3.10/C/ident/iter
https://elixir.bootlin.com/linux/v3.10/C/ident/pid
https://elixir.bootlin.com/linux/v3.10/C/ident/find_ge_pid
https://elixir.bootlin.com/linux/v3.10/C/ident/nr
https://elixir.bootlin.com/linux/v3.10/C/ident/pid_namespace
https://elixir.bootlin.com/linux/v3.10/C/ident/ns
https://elixir.bootlin.com/linux/v3.10/C/ident/pid
https://elixir.bootlin.com/linux/v3.10/C/ident/pid
https://elixir.bootlin.com/linux/v3.10/C/ident/pid
https://elixir.bootlin.com/linux/v3.10/C/ident/find_pid_ns
https://elixir.bootlin.com/linux/v3.10/C/ident/nr
https://elixir.bootlin.com/linux/v3.10/C/ident/ns
https://elixir.bootlin.com/linux/v3.10/C/ident/pid
https://elixir.bootlin.com/linux/v3.10/C/ident/break
https://elixir.bootlin.com/linux/v3.10/C/ident/nr
https://elixir.bootlin.com/linux/v3.10/C/ident/next_pidmap
https://elixir.bootlin.com/linux/v3.10/C/ident/ns
https://elixir.bootlin.com/linux/v3.10/C/ident/nr
https://elixir.bootlin.com/linux/v3.10/C/ident/nr
https://elixir.bootlin.com/linux/v3.10/C/ident/pid
https://elixir.bootlin.com/linux/v3.10/C/ident/find_ge_pid

© 2022 Bloomberg Finance L.P. All rights reserved.

Profiling /proc

● Locks are a good candidate for the cause of contention

● We see contention and we see locks
○ The RCU locks cause contention!

● Problem solved? Not quite
○ RCU locks are designed to avoid blocking on readers, but allow blocking on writers
○ The data shows contention on readers (ls /proc, ps)
○ So, what’s going on?

© 2022 Bloomberg Finance L.P. All rights reserved.

Profiling /proc

“The problem is get_pid_list() traverses the entire tasklist in order to
build the PID list needed by ls /proc. It read-holds tasklist_lock
during this traversal and blocks updates to the tasklist, such as
those performed by fork(). On machines with large numbers of
tasks, this can cause severe difficulties, particularly given multiple
instances of certain performance-monitoring tools.”

 – Paul E. McKenney (maintainer of Linux kernel RCU)
October 1, 2003

https://www.linuxjournal.com/article/6993

https://www.linuxjournal.com/article/6993

© 2018 Bloomberg Finance L.P. All rights reserved.

Prime Directive Violation!

© 2022 Bloomberg Finance L.P. All rights reserved.

Profiling /proc

● The quote suggests contention should be mainly in writers
○ So far our data suggests its coming from the readers
○ Can we further support this?

● Where is the time spent?
○ Add timing to readdir call

■ After first loop
■ After all loops

○ Re-run thread chaos test in the background

© 2018 Bloomberg Finance L.P. All rights reserved.

Profiling /proc

© 2022 Bloomberg Finance L.P. All rights reserved.

Profiling /proc – Summary

● Chaos testing told us our problems are correlated with high nproc and
high read usage of /proc

● Used the /proc/profile system to profile kernel functions used to read /proc

● Further isolated to the set of functions responsible for building /proc/<pid>
directories

● Data suggests contention on readers
○ Most time spent in first loop

■ Seems to be spent building the pid list - something done by readers

● But, design of RCU locks suggest contention on writers!

© 2022 Bloomberg Finance L.P. All rights reserved.

Mitigation Efforts

● Chaos testing revealed our issues were tied to high nproc

● Potentially due to RCU lock-related contention in the kernel data structure
used in proc_pid_readdir
○ pid namespaces

■ Containers

● CONFIG_RCU_FANOUT
○ “Lower fanout values reduce lock contention, but also consume more memory and

increase the overhead of grace-period computations.”
https://lwn.net/Articles/609904/#What%20Next%20for%20the%20RCU%20API

○ RCU locks are used for other kernel data structures – be careful!

https://lwn.net/Articles/609904/#What%20Next%20for%20the%20RCU%20API

© 2022 Bloomberg Finance L.P. All rights reserved.

Mitigation Efforts

● Add nproc as a factor for load balancing
○ Contention looks exponential with respect to nproc

■ Reducing nproc by half gives ~4x returns
● Monitor and alert on threads

○ Per task and per host alerts

● Optimize applications for thread usage
○ Threads were cheap

■ Messaging libraries
■ Job queues
■ JVM

● Default thread pools - Garbage Collection/JIT compiler
■ Review threading best practices

● Less of a problem in later kernel releases
○ Closer to linear growth with thread counts

© 2022 Bloomberg Finance L.P. All rights reserved.

Summary

● Observed several issues with scaling
● Designed experiments to explore several potential causes
● Experiments point to nproc/threads as the culprit
● Repeat experiments show similar results
● Kernel profiling confirmed scaling issues
● Further investigation led to kernel /proc readdir related functions
● Now able to implement mitigation techniques

© 2022 Bloomberg Finance L.P. All rights reserved.

On to the Next Experiment

● Chaos testing is a great proactive tool

● Also useful as an investigative tool

● What types problems could we use this technique on?
○ Difficult to reproduce
○ Wide ranging (more samples)
○ Regression testing

© 2022 Bloomberg Finance L.P. All rights reserved.

Special Thanks

● TS SRE Runtime Team & OMS Team
● Bloomberg Resilience Engineering Team

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2022 Bloomberg Finance L.P. All rights reserved.

Thank you!
https://TechAtBloomberg.com/blog/bloomberg-bets-big-on-sres/

https://www.bloomberg.com/careers

https://techatbloomberg.com/blog/bloomberg-bets-big-on-sres/
https://www.bloomberg.com/careers

© 2022 Bloomberg Finance L.P. All rights reserved.

Profiling /proc

● /proc/profile & readprofile (why not perf - doesn’t work well on our hosts)
● Increments counter on clock tick

readprofile | sort -n | tail -n 10
 16 get_signal_to_deliver 0.0106
 20 tick_nohz_idle_exit 0.0595
 24 avtab_search_node 0.1667
 35 __do_page_fault 0.0277
 55 do_exit 0.0210
 64 next_tgid 0.3636
 70 release_task 0.0599
 77 finish_task_switch 0.1719
 24385 native_safe_halt 762.0312
 25299 total 0.0032

of clock ticks function name # of ticks / size

© 2022 Bloomberg Finance L.P. All rights reserved.

Profiling /proc

● Read-Copy-Update (RCU) Locks
○ Used for data structure synchronization
○ Called a lock but actually “lock free” for readers

● Designed for read-mostly data
○ Writers cannot block readers
○ Readers do not synchronize

■ Very low overhead
■ Rcu_read_lock is a no-op

● Except when kernel allows preemption
○ Writers are blocked until readers are finished

● Kernel config
○ CONFIG_RCU_FANOUT
○ CONFIG_RCU_FANOUT_LEAF

