# The Math of Scalability

Avishai Ish-Shalom (@nukemberg)







#### Math???



#### Define "scalability"

#### Define "scalability"

The relation between

- Resources
- Processing time
- Problem size / Work

S(R,T,W)

## Batch $T = S(R) \mid W = const$

Interactive

 $W = S(R) \mid T = const$ 

#### Scalability chart



Concurrency/nodes

# Lies, damn lies and statistics

#### Someone will win the lottery but it won't be you

#### The law of truly large numbers

Once in a million events happen all the time

#### The birthday paradox

How many people should be in a room for P[shared birthday] > 0.5?

#### The birthday paradox

How many people should be in a room for P[shared birthday] > 0.5?



#### Volume scales faster than surface

Connections  $\propto {\cal O}(n^2)$ 

Subgroups  $\propto \mathcal{O}(2^n)$ 



## Emergent behavior

When do grains of sand become a heap?

#### Let's play a game

- 1. Choose a number between 1 and 5, call that X
- 2. Wait until you hear hand clapping
- 3. Clap your hands X times
- 4. Wait X seconds
- 5. Go back to #2

# When do re-mirrors become a storm?



#### Emergent behavior

- Aggregate impact
- Interactions of elements dominate
- Non-linear emergence





#### Emergence of state

- Interactions *are* state
- Super linear scaling
- Propagation time increases with scale

# All large systems are essentially stateful

#### The Universal Scalability Law



Concurrency/nodes

#### The Universal Scalability Law

$$X(N) = rac{\gamma N}{1+lpha (N-1)+eta N(N-1)}$$

- $\alpha$  Contention; queueing for shared resource
- $\beta$  Consistency; Coordination between processes
- $\gamma$  Relative scale parameter

#### lpha - Contention

- Waiting for shared resource
- Queueing
- Limited by shared resource



 $\beta$  - Consistency

- Coordination between processes
- Processes wait for each other
- Limited by any process



#### What about latency?



Concurrency/nodes

#### How do we scale things?

By warping space and time!

Space warp



#### Time warp

Re-order: divide time

Lag: slow time





Concurrency/nodes

#### Queue theory crash course





#### Variance





### #FailAtScale

Component failure

Interaction failure

### #FailAtScale

Component failure

independent  $\rightarrow$  linear scaling

Interaction failure

dependent  $\rightarrow$  super linear scaling



#### #FailAtScale

- Statistical failures
- Latency grows  $\rightarrow$  timeouts
- Failure demand (retries)

#### Go forth and scale

- Lower the variance, raise the mean
- Avoid coordination
- Warp time and space
- Reduce statistical failures

#### Quality is key to Scaling "Quality" $\rightarrow$ less rework, uniformity





#### What have we learned?

- Math helps us think
- Models reveal scaling challenges

#### QED

