
Design of a Stateful system
for Robust Deployment
and Observability

SREcon22 Asia/Pacific
7–9 December, 2022

Kazuki Higashiguchi, @hgsgtk
Sr. Site Reliability Engineer

A Better Way to Manage Stateful Systems:

What this talk is about

Lessons learned from a project building and operating a stateful WebSocket
server

Design considerations of stateful systems maintaining long-living states

Implement zero-downtime automated

deployment pipeline

Deployment

Observability Make invisible internal states inside of an app

observable

Topic Technique

Case study - E2E test automation service for web apps

Build tests easily
with no-code

Cross-browser
testing Parallel execution

Case study - Primary infrastructure components

● Web server
○ Management console (e.g., create/edit test scenarios, run tests, view test results)

● Test execution engine (Worker)
○ Facilitate test executions, persist test results data

● Test execution environment (Device farm)
○ Browsers and devices running tests

● Connect server / client
○ Establish a secure bidirectional tunnel connection with customers’ private

networks

Case study - Test execution journey

Case study - A stateful system in Autify

Case study - States in Connect server

1. Use WebSocket to establish a bidirectional tunnel connection (Session)
a. Long-living connection between Connect server and Connect client

2. Proxy server to transfer requests (Test Connection) from Device farm
a. Proxy HTTP(S) requests over Session

Robust Deployment

Design of a stateful system for…

Automated zero-downtime deployment for a stateful system

Why zero-downtime?

Actively developed

High stability is required Zero-downtime

Automation

Blue-Green Deployment
Rolling Update

Background

● Go application developed by Autify
● Frequently deployed into production

● Used by customers right now to test
applications on their private
networks

● Reliable test execution infrastructure
is essential for our business

Solution

● To keep deployment frequency
● Minimal errors

● To make this stateful system reliable

…etc

A failure story - with a Blue-Green deployment

A stateful server is running in Blue environment…

Prepare Green
Switch a router so
incoming requests

go to Green
Terminate BlueKeep Blue running

for a while

Steps in a typical Blue-Green deployment

1. Prepare Green

2. Switch a router incoming

requests go to Green

3. Keep Blue running for a while

4. Terminate Blue

Start a new Blue-Green deployment…

A failure story - with a Blue-Green deployment

Terminating a busy Blue server causes test execution errors

A failure story - with a Blue-Green deployment

How to avoid errors during deployment

Terminating Blue servers
causes errors

Prepare Green
Switch a router so
incoming requests

go to Green

Terminate Blue

Keep Blue running
for a while

Confirm if Blue is
ready to terminate

Solution - Verification step to confirm if Blue is ready to terminate

Symptom Why?

Blue server is not ready to terminate
if it has busy states internally

Until Blue becomes ready

Candidates to see if Blue is ready to terminate

Log monitoring

Infrastructure metrics
Watch CPU usage, Network I/O, etc

● +1 Help to understand and
measure how apps are behaving

● -1 Just an event measured at some
point. Not real-time status of app

See internal states inside of app
● +1 Single source of truth
● +1 Real-time data
● -1 Effort to design and implement

codes to make apps observable

● -1 Mixed causes other than app
● -1 Difficult to see what the

application is currently doing

Possible solutions Effectiveness

Get data about internal states via app

Search for application logs

Design tips for making stateful apps observable (1)

● e.g., “GET /metrics”
● Similar patterns, Health Endpoint

pattern
● Easy to use from external

programs

HTTP endpoint to show metrics of internal states

Design tips for making stateful apps observable (2)

● To build metrics of internal states anytime
● e.g., Store metadata of ongoing states in-memory
● It should be considered at an earlier stage to avoid a huge rewrite

Design stateful app to be able to see necessary details
in each state

Verification steps to confirm if Blue is ready to terminate

If the number of sessions is 0, it is ready

● Server-1: Not ready to terminate
● Server-2: Ready to terminate

Get metrics of internal
states via API

Determine if each server is
ready to terminate

Still not enough to address long-living states

Happy path

Unhappy path

Until Blue become ready

Prepare
Green

Switch a router so
incoming requests go

to Green

Terminate
Blue

Keep Blue
running

for a while

Confirm if Blue is
ready to terminate

Steps in Blue-Green deployment

Every session in a blue server shuts
down when starting a deployment.
Deployment finishes successfully.

Every session in a blue server keeps
running. We’ve waited for hours, but
Blue is not ready to terminate yet…

Any ways to address unhappy path?

Long-living existing sessions makes
terminations of Blue wait for a long time

Symptom Why?

Each session keeps living until a client disconnects a
WebSocket connection

Prepare Green
Switch a router so
incoming requests

go to Green

Terminate Blue

Keep Blue running
for a while

Confirm if Blue is
ready to terminate

Shut down idle
sessions in Blue

Solution - Shut down idle sessions in Blue

Until Blue become ready

Until Blue becomes
ready to terminate

Shut down idle sessions in Blue - 1st step

Get metrics of
internal states via API

Determine if each
session is idle

Shut down idle
sessions

Clients reconnect
to Green

Get detailed metrics of each session via API

Shut down idle sessions in Blue - 2nd step

Get metrics of
internal states via API

Determine if each
session is idle

Shut down idle
sessions

Clients reconnect
to Green

Implement the business logic to determine if each
session is idle

a. If no Test Connection, it is idle
b. Else, it is busy (must not be shut down)

Busy
(5 test conns)

Idle
(0 test conns)

Shut down idle sessions in Blue - 3rd step

Implement HTTP endpoint
to control internal states

● Deployment process sends
requests “DELETE
/sessions” to close sessions

● Server accept requests and
closes idle sessions

Shu down idle sessions by calling API to control each session

Shut down idle sessions in Blue - 4th step

Clients reconnect to Green following by the router navigation

Client application should have
an automatic reconnection

● In case a server is replaced

Succeeded to address unhappy path

1st 2nd 3rd
Shut down idle

sessions in Blue

● Existing clients can now be safely directed to the Green in sequence
○ It is easier to find the safe time to disconnect on a per-session basis than on a per-server

basis
● Deployment time has been mitigated

Implementation with AWS

Prepare
Green

Switch a router so
incoming requests go

to Green

Terminate
Blue

Keep Blue
running

for a while

Confirm if Blue is
ready to terminate

Steps in Blue-Green deployment

Shut down idle
sessions
in Blue

Develop in-house deployment
pipeline
● No managed AWS service

was a fit

AWS Step Functions*1 and Lambda
● +1 Serverless
● +1 Fully customizable
● -1 Takes time to build

*1 AWS Step Functions is a visual workflow service helping developers to build automated processes

Deployment workflow with AWS Step Functions

Prepare
Green

Switch a router
incoming requests go

to Green

Shut down idle
sessions
in Blue

Confirm if Blue is
ready to terminate

Keep Blue running
for a while

Terminate
Blue

 Lessons we learned

● Long-living states make it difficult to terminate an old server safely
● Blue-Green deployment with two steps controlling internal states

○ 1. Shut down idle states (Sessions; WebSocket conns)
○ 2. Verify Blue servers are ready to terminate before terminating them

● Design a stateful app to be observable and be able to control its internal
states since an earlier stage

● Pros/Cons
○ +1 Zero-downtime, no errors during deployment
○ +1 Mitigate deployment time by shutting down idle states gradually
○ -1 Time to build a deployment pipeline

Observability

Design of a stateful system for…

A measure of how well you can understand and explain any situation your
system can get into, no matter how novel or bizarre.

A difficult question to answer in stateful systems (1)

How can we see the actual usage
of each stateful server?

● Meaningful data is inside of internal
states

● e.g., The number of test connections
each server addresses in its internal
state

Low Visibility

Difficult questions Solution

Custom metrics
visualizing
internal states

Cause

● Inside of app is
invisible from external

● Not persistent

 Custom metrics to overview inside of a stateful app

● Get metrics data via API to show
metrics of internal states

● Record as a custom metrics
○ e.g., DataDog custom metrics from

datadog-agent

● Visualize meaningful data inside of
an app
○ E.g., number of test connections -> how

busy each server is

● Set alerts
○ Define what makes a metric health versus

unhealthy

A difficult question to answer in stateful systems (2)

Can you search all events and user
requests related to a suspicious
state?

● Logic to handle internal states would be
complex and core part of app

● e.g., Session “A” seems to be
disconnected at unintentional timing. Is
it ok?

Difficult to search
from each state

● No searchable key
by default

Searchable logs and
traces by each state
identifier

Difficult questions SolutionCause

 Searchable logs by each state level

{“ts”: “...”, "level": "info", "session_id": "ssid-1", "msg": "..."}
{“ts”: “...”, "level": "info", "session_id": "ssid-2", "msg": "..."}
{“ts”: “...”, "level": "warn", "session_id": "ssid-1", "msg": "...’"}
{“ts”: “...”, "level": "info", "session_id": "ssid-1", "test_conn_id": "id-1",
"msg": "..."}
{“ts”: “...”, "level": "info", "session_id": "ssid-1", "test_conn_id": "id-2",
"msg": "..."}
{“ts”: “...”, "level": "info", "session_id": "ssid-2", "test_conn_id": "id-1",
"msg": "..."}
{“ts”: “...", "level": "info", "session_id": "ssid-1", "msg":"..."}

| jq 'map(select(.session_id == "ssid-1"))'

| jq 'map(select(.test_conn_id == "id-1"))'

● Likely to be uniquely
identifiable
○ e.g., Session_id > test_conn_id

● Structured logging
● Add an identifier of state to the

key of log entries
○ e.g., session_id, test_conn_id

Techniques Effect

Traces - OSS case study - Selenium Grid 4

@tags.session_id=”sess
ion_id”

Tag: @session_id

● Selenium Grid 4
○ A server that makes it easy to run tests in

parallel on multiple machines
○ Instrumented with tracing using

OpenTelemetry

● Add a state identifier into
span attributes *1

● Traces can be searched by
“session_id”
○ (WebDriver) Session id is a

unique identifier to handle a
browser for testing

Techniques

*1 Key-value pairs providing additional information about each span

 Traces - Custom Instrumentation to search for traces

@tags.session_id=”session_id”

@tags.test_conn_id=”test_conn_id”

Provide context into spans by adding
an identifier of states into span tags

Traces have contexts pointing internal
states

 Lessons we learned

● Building a robust deployment makes us to consider observability of stateful
systems
○ Solutions for building a robust deployment can be used to build metrics data

● Improve metrics, logs, and traces in case something unknown happens
around the core stateful part

Questions? >>>
@hgsgkt

Kazuki Higashiguchi

HTTP Tunneling over WebSocket

Appendix A

https://speakerdeck.com/hgsgtk/http-tunneling-in-go

HTTP Tunnel with CONNECT method

1. Client sends CONNECT request

2. Gateway opens TCP connection
to the server

3. Gateway returns HTTP ready
message to the client

4. Start bidirectional
communication of raw packets
of data

Quoted from HTTP: The Definitive Guide / 8.5 Tunnels

https://learning.oreilly.com/library/view/http-the-definitive/1565925092/ch08s05.html#httptdg-CHP-8-SECT-5.1

HTTP Tunneling over WebSocket

HTTP(S)
Client

HTTP(S)
Server

WebSocket
server

WebSocket
client

WebSocket
Conn

WebSocket
Conn

TCP
Conn

TCP
Conn

$ curl -Lv -x http://websocket-server https://target.local

WebSocket server and WebSocket client jointly act as a
proxy(gateway).

https://target.localhttp://websocket-server

streaming streaming

WebSocket server tells the address of
destination to WebSocket client.

WebSocket client open a TCP connection to
the destination server.

Bidirectional message over
an established WebSocket
connection.

Infrastructure patterns of routing
stateful servers

Appendix B

Load balancing with Sticky session
+1 Simple
+1 Little or no implementation required

Infrastructure patterns of routing stateful servers

Another API tell clients the addr
+1 Address flexible server requirements (e.g.,
enterprise customer)
+1 Each server has its own URL, making
reconnection easy

1 2

If one session is busy in more long
term…

Appendix C

1st 2nd N
Shut down idle

sessions in Blue

Theoretically, if a single session is used forever and uninterruptedly, the solution
“Shut down idle sessions in Blue” will not be sufficient.

Unhappy path again if one session is busy more long term…

A possible design

Make the network route redundant by having two sessions at the same time

1

2

3

A possible design: Pros/Cons

● Faster deployment even when some sessions are busy for a long time

Pros

Cons

● More complex design and error handling
○ Lots of edge cases (e.g., network interruption)

Our current decision: Go with the original design
● Browser automation does not always make network requests (e.g., scrolling, find an element)
● Enough easy to find the safe time to disconnect on a per-session
● Even if this becomes necessary, the original design will still need to be

Infrastructure patterns between
browsers and proxies

Appendix D

● Proxy address is specified at startup
○ Changing addresses after startup is tricky.

Modern browsers’ specification

./Google\ Chrome --no-sandbox --proxy-server={proxy-host}:{proxy-port}
e.g., Chrome

Infrastructure design patterns

1 Browser Proxy

2 Browser Local
Proxy

Proxy

3 Browser Load
Balancer

Proxy

+1 Straightforward
-1 No way to switch a proxy server
after launching a browser

Pros/Cons

+1 Can switch a target proxy by a
local proxy behavior
-1 Communicating address changes
to the Local proxy could be
complicated

+1 Can switch a target proxy by load
balancing
-1 It depends on the URL of the load
balancer itself.

Proxy

Proxy

Supplementary materials

Appendix X

Open Page

Network request during browser operation - Simple

A test Scenario with a simple web application

Input Form
Find

Element Assert Request by
JavaScript

Connect server

Conn Conn
Test Connection lives until closed.

E.g.,
● Close TCP sessions
● Keep-Alive timeout

Start
WebSocket
Connection

Network request during browser operation - WebSocket

Action Action Close App

Connect server

wss://srecon22-example.autify.com…
Conn

Close

A frontend application using WebSocket

References

● HTTP Tunneling in Go by Kazuki Higashiguchi, Autify
● Book “Observability Engineering” by Charity Majors, Liz Fong-Jones,

George Miranda
● Book “Operations Anti-Patterns, DevOps Solutions” by Jeffery Smith
● Book “Practical Monitoring” By Mike Julian
● Observability Whitepaper by CNCF TAG for Observability
● Observability in Selenium Grid by Selenium
● Blue Green Deployment by martinfowler.com

https://speakerdeck.com/hgsgtk/http-tunneling-in-go
https://learning.oreilly.com/library/view/observability-engineering/9781492076438/
https://learning.oreilly.com/library/view/operations-anti-patterns-devops/9781617296987/
https://learning.oreilly.com/library/view/practical-monitoring/9781491957349/
https://github.com/cncf/tag-observability/blob/main/whitepaper.md
https://www.selenium.dev/documentation/grid/advanced_features/observability/
http://martinfowler.com

