
No Time to Do It All!

Alex Wise
@aws-snarkitect@bluesky.social
contact@alexwise.guru

MAR 26
2025

Approaching Overload on DevOps Teams

● SWE focused on
reliability

● I believe in open
source software

● <- That’s my dog!

@aws-snarkitect@bsky.social

Overload: The flow of work into the
system is greater than the rate of
work it can perform.

Bee-in’

Busy
00 LABEL

Bee-in’

Busy

https://www.semafor.com/article/09/12/2024/ex-crowdstrike-employees-detail-rising-technical-errors-before-july-outage

Wayfinder™

01 Why Are We All So Busy?

02 Diagnosing Overload

03 Exacerbator 1: Knowledge Decay

04 Exacerbator 2: Queue Management

05 What the Future Holds

resources are finite change continues

“The theory of graceful extensibility: basic rules that govern adaptive systems” Woods, 2018

So I came down from the mountain
thinking I had uncovered two fundamental
truths.

● “They are reaping what they’ve sowed.”

● Greedy business intentionally denied critical
reinvestment.

● “They made their bed and are sleeping in it”
● “Real Engineers would never do that.”● “Real Engineers would never do that.”
● “They made their bed and are sleeping in it”

● “They are reaping what they’ve sowed.”

● Greedy business intentionally denied critical
reinvestment.

Feeling overload, making hard decisions in the
face of uncertainty, and worrying about how
you’re going to pay down cognitive debt is just a
natural part of any system, and everyone in this
room should have empathy and reserve
judgment for teams feeling this pain.

This is also why it’s important to learn to be
efficient when faced with these resource
pressures, and to embrace change as it comes.

Wayfinding

01 Why Are We All So Busy?

02 Diagnosing Overload

03 Exacerbator 1: Knowledge Decay

04 Exacerbator 2: Queue Management

05 What the Future Holds

“Joint Cognitive Systems”,
Woods and Hollnagel

● Shed Load
● Reduce Thoroughness
● Shift Work in Time
● Recruit Resources ��

��
✅
❌ ��

If you hear these on your team, it could be
a response to overload.

Shedding Load
“Does anyone know why this never got done?”
“Did anyone fix ____?”
“Did we ever circle back with X about this?”
“I think we were supposed to do that last quarter.”

Reducing Thoroughness
“Oh, this code doesn’t have any tests.”
“Did this change not get committed?”
“Where’s the documentation for this?”

It’s also important to celebrate the times
we handle overload in a more positive way.

Shift Work in Time
“Hey good work, we saw we weren’t going to be able to
accommodate this right now so we got it shifted in time to next
quarter.”

Recruit Resources
“We’re a little busy with other priority work right now, is it
possible to have X team handle this part?”

Wayfinding

01 Why Are We All So Busy?

02 Diagnosing Overload

03 Exacerbator 1: Knowledge Decay

04 Exacerbator 2: Queue Management

05 What the Future Holds

So I thought I’d apply some

engineering…

Start with Some Assumptions
● Single Service, Greenfield, 4 SWE team
● Starts at 150k LoC written in first year
● No additional code written after that.
● Every year, the employee with the longest

tenure is replaced

More Assumptions 🥱😴
● Each year, bugs are found for every 20k LoC,

randomly distributed throughout the codebase.
● If the author of that line is still at the company, it

takes 1 hour to fix
● If the author is not, it takes 10 hours to fix.
● We want to measure hours spent fixing bugs

So what does that look like?

This area is where we are bumping up
against the finite resources limits of the
universe and feeling overload.

“We gave you two headcount this year why
aren’t we seeing two headcount worth of
added productivity?”

But what can we do about it?
● Tautological Answer: Retain your employees

○ Retaining employees is a super power

● But it’s not always possible
○ Build robustness to this impact
○ This is also a super power

Implicit Assumption: Each LoC owned by 1 person

Mobbing, Pairing, and Sharing significantly improves impact

Let’s Migrate Half the Codebase!

“Hey that looks

familiar…”

https://lethain.com/migrations/

“Migrations: The sole scalable fix to tech debt”

Migration is a set of muscles you need to build
● Identify good targets for migration
● Recollect requirements
● Drive technical change, build consensus
● Derisk, Derisk, Derisk!
● Sell the change to the business

Beware

You-Touch-It-You

-Own-It-ism

Engineering Managers
- Set up lunch and learns
- Reward digging into neglected
parts of the system and bringing
back knowledge

Principal/Staff Engineers
- Dive in and bring someone more
junior with you, documenting
everything
- Look for opportunities to
rewrite/migrate

If you see folks avoiding parts of the
system that they don’t understand, fix
those incentives

How to Fight Knowledge Decay

01 Get better at employee retention

02 Mob, Pair, and Share

03 Migrate All The Things

04 Fight Copenhagen Culpability

Wayfinding

01 Why Are We All So Busy?

02 Diagnosing Overload

03 Exacerbator 1: Knowledge Decay

04 Exacerbator 2: Queue Management

05 What the Future Holds

“Principles of Product Development Flow”,
Don Reinertsen

● Don’t saturate capacity
● Batch size matters

Once you get above ~75% utilization of a
queue (DevOps team) you will see a massive
drop in throughput.

Worse yet, your delivery will become much
less predictable as work takes longer to
complete.

If your team has a significant amount of
interrupt-driven work, you shouldn’t plan
additional work to take you over 75%

Large Batches of Work 😟 😫 💔
● Increases cycle time
● Increases variability
● Delays feedback
● Batch size has an exponential relationship with delivery time
● Self-reinforcing: Creates Large-batch dependencies elsewhere

How to Cutesy your Queues

01 Get rid of the aspirational backlog

02 Carve Up the Big Tasks

03 Swarm on long-tail work

04 Set WIP limits

Thanks for listening!

Extra Slides

Because I

Talked Fast

WIP

Limits

There are a lot of different philosophies on this

● Reinertsen: WIP limit twice your average WIP level
● Goldratt: Set the limit to the flow rate of biggest bottleneck
● Utilization Trap: Fewer than the number of servers
● Agile: Change, Measure, and Evaluate

I’m not a die hard believer in any one way, but all these folks agree
that WIP limits improve flow rate and reduce variability.

https://medium.com/hackernoon/wip-it-real-good-66aa710178fd

Reduce Thoroughness

Shift Work in
 Time

Recruit
Resources

Shed Load

