

Async Pipeline Secret Sauce 🔆

© 2025 eBay. All rights reserved. Confidential and proprietary.

Beyond Sequential:

A Recipe for Async Pipeline Observability and Alerting

Jash Mistry, Gabriela Medvetska

Agenda

Prepare Ingredients

Availability Metric

Availability Service Level Objective (SLI)

Number of successful events per second

```
sum(rate(consumed_item_count{consumer_name="RankingConsumer",
event_name="RANK.SEED.ITEM",status="SUCCESS"}[5m]))
```

Number of total events per second

```
sum(rate(consumed_item_count{consumer_name="RankingConsumer",
event_name="RANK.SEED.ITEM",status="SUCCESS|ABANDONED"}[5m]))
```

SLI formula:

SLI =
$$\left(\frac{\text{Good Events}}{\text{Valid Events}}\right) \times 100\%$$

Producer

Latency Service Level Objective (SLI)

Number of successful events per second

```
sum(rate(consumed_item_count{consumer_name="RankingConsumer",
event_name="RANK.SEED.ITEM", le="10000"}[5m]))
```

Number of total events per second

```
sum(rate(consumed_item_count{consumer_name="RankingConsumer",
event_name="RANK.SEED.ITEM", le="+Inf"}[5m]))
```

SLI formula:

SLI =
$$\left(\frac{\text{Good Events}}{\text{Valid Events}}\right) \times 100\%$$

Metrics Must Flow

We are the whisk takers

Let your SLOs handle the heavy whisking

SLO - Service Level Objective - is an internal promise to meet customer expectations.

An SLO sets the target of an SLI - Service Level Indicator - over a period of time.

goal period 99% of events over 30 days should be processed within 10s

SLI metric

Wicks, R. (2021, December 6). a mixer mixing a mixture in a glass bowl. Unsplash.

https://unsplash.com/photos/a-mixer-mixing-a-mixture-in-a-glass-bowl-mvl8LEshy6U

Email 🔻

Mar 6th

Email 5:53 AM Email 💌					
Alert	Alert V gmedvetska@ebay.com				
₹. ₽		10	Metric Alerts	1936	
<u>S</u>		Đ	Maintenance Alerts	13108	Mar 6th
		b	JIRA Notifications	1138	<u>last 5m</u>
P		G	Inbox	2189	<u>t 8 9]</u>

We burn out

Balance Your Flavors

Metrics -> 99 Alerts -> Alert Fatigue

Error Budget & Burn Rate

Error Budget - number of errors accumulated over a certain period of time before your services go out of compliance.

Budget of Unreliability (Error Budget) = 100% - availability target %
Budget of Unreliability (Error Budget) = 100% - latency target %

Jones, Chris; Wilkes, John; Murphy, Niall. Betsy Beyer (ed.). "Site Reliability Engineering: How Google Runs Production Systems". *Google Site Reliability Engineering*. O'Reilly.

Season your alerts to taste

Multi-window multi-burn rate alerts strike the right balance between false positives and sufficient performance monitoring.

```
Burn rate = budget consumed * compliance period / alerting window
```

```
Error Budget Consumed = 2%
Compliance Period = 30 days * 24 hours = 720 hours
Alerting Window = 1 hour
```

```
Burn rate = 0.02 * 720 hrs / 1 hr = 14.4
```

Alert	Long Window	Short Window	Burn Rate	Error Budget Consumed
Critical (Page)	1 hour	5 minutes	14.4	2%
Critical (Page)	6 hours	30 minutes	6	5%
Warning (Notification)	1 day	2 hours	3	10%
Warning (Notification)	3 days	6 hours	1	10%

Jones, Chris; Wilkes, John; Murphy, Niall. Betsy Beyer (ed.). "Site Reliability Engineering: How Google Runs Production Systems". Google Site Reliability Engineering. O'Reilly.

Season your alerts to taste

Multi-window multi-burn rate alerts strike the right balance between false positives and sufficient performance monitoring.

```
Burn rate = budget consumed * compliance period / alerting window
```

```
Error Budget Consumed = 2%
Compliance Period = 30 days * 24 hours = 720 hours
Alerting Window = 1 hour
```

```
Burn rate = 0.02 * 720 hrs / 1 hr = 14.4
```

Alert	Long Window	Short Window	Burn Rate	Error Budget Consumed
Critical (Page)	1 hour	5 minutes	14.4	2%
Critical (Page)	6 hours	30 minutes	6	5%
Warning (Notification)	1 day	2 hours	3	10%
Warning (Notification)	3 days	6 hours	1	10%

Jones, Chris; Wilkes, John; Murphy, Niall. Betsy Beyer (ed.). "Site Reliability Engineering: How Google Runs Production Systems". Google Site Reliability Engineering. O'Reilly.

Season your alerts to taste

Availability Alert

```
((
    sli_error:ratio_rate5m{sli_name="SLI_RankingConsumer_RANK_SEED_ITEM_availability"} > 0.144
) and (
    sli_error:ratio_rate1h{sli_name="SLI_RankingConsumer_RANK_SEED_ITEM_availability"} > 0.144
)) or ((
    sli_error:ratio_rate30m{sli_name="SLI_RankingConsumer_RANK_SEED_ITEM_availability"} > 0.06
) and (
    sli_error:ratio_rate6h{sli_name="SLI_RankingConsumer_RANK_SEED_ITEM_availability"} > 0.06
))
```

Data Loss Alert

```
absent(
    sum(
        sli_valid_events{sli_name="SLI_RankingConsumer_RANK_SEED_ITEM_availability"}
)) or absent(
        sum(
            sli_good_events{sli_name="SLI_RankingConsumer_RANK_SEED_ITEM_availability"}
))
```

Harnessing Your SLO Metrics

© 2025 eBay. All rights reserved. Confidential and proprietary.

Async SLO case study #1

- SLO Burn Rate Alert for pool r1rmmbescont
- Started: 2025-02-19 10:13:04.143 +0000 UTC
- Labels:

SLI Name

SLI_r1rmmbescont_RmmConsumer_RRP_FLOW_UPDATE_availability

Async SLO case study #2

lt's a wrap

Stay in touch

Jash Mistry Member of Technical Staff at eBay

Gabriela Medvetska ➡ Proud Ukrainian ➡ | Site Reliability Engineer at eBay ♠ ♠

