Can You See It? -NOP! A Practitioners Study

Diego Soi
Universita degli Studi di Cagliari

Davide Maiorca
Universita degli Studi di Cagliari

Abstract

This study delves into how human intuition detects evasion
attacks. Through a suggested online survey with industry
and academic practitioners, we will analyze the detection of
evasive malware samples by humans, from simple to complex
tactics. We wish to emphasize the need for improved training
for future cybersecurity experts, to enhance malware detection
in human-computer defense systems.

1 Introduction

An evasion attack adds small perturbations to malware sam-
ples, such as changing strings values [4, 10] and the flow of
the samples [3, 6] to evade detection by malware detection
systems. Can the effectiveness of such an attack be gauged by
its visibility to human intuition? As mentioned previously by
Frederickson et al. [9], there is a tradeoff between the strength
of an attack and its detectability by a detection system. In
this study, we follow this dilemma in a slightly different form:
Can an evasion attack be assessed by its detectability to a
human expert? Detection systems are based on human un-
derstanding and experience of “what is malware”. Therefore,
this answer seems straightforward. An evasion attack against
malware detection systems is derived from this notion. Gener-
ally, adding a non-operational (NOP) command is considered
by detection systems as a regular opcode. However, a human
expert immediately considers that a red flag, as it does not
serve any purpose. Therefore, an attack against a machine that
mimics a person, should be affected by human understand-
ing of code. However, it is not so simple. On the one hand,

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

USENIX Symposium on Usable Privacy and Security (SOUPS) 2024.
August 11-13, 2024, Philadelphia, PA, United States.

Giorgio Giacinto
Universita degli Studi di Cagliari

Leonardo Regano
Universita degli Studi di Cagliari

Harel Berger
Georgetown University

ML/DL may be fooled by attacks that are easily identified
by humans. Some models tend to emphasize textual features
that can be easily manipulated [4]. An expert can understand
the meanings of these textual features based on their names
or tags, even if they have not encountered them previously.
Even sophisticated models are challenged by the notion of
human thought [7, 18], thus attacks against machines are not
promised to fool humans. On the other hand, not every attack
on ML / DL is visible to the human eye. An attack on face-
recognition systems can be achieved, which is invisible to the
human eye [20], as it adds infrared perturbation to the picture.

Although this deep understanding of human and com-
puter interaction is of high importance to the community,
a limited body of work has been done in this area. Previ-
ous work [2] built the fundamentals in this field, using a
malware-identification game based on VirusTotal [17] reports.
Also, [13, 15] showed different evasive tactics based on the
complexity of added code. Therefore, in this study, we pursue
a deeper understanding of practitioners of different levels of
expertise to identify evasive malware. We devised different
tactics for evasion attacks, ranging from a clear addition of
useless/dead code to complex entangled loops. We intend to
use these attacks to conduct an online study with about 100
practitioners from academia and industry to identify gaps in
the human identification of malware samples to express the
weaknesses of humanoid malware detection. We hope that
the intel from our study will help in educating future security
experts in the security community. We also wish to enhance
future malware detection models by adding an advanced hu-
man view of malware samples.

2 Methodology

Study Design. The analysis focuses on mobile devices, par-
ticularly Android apps since it is a widely used OS. The study
will be conducted on practitioners with different experience
levels in software analysis (i.e., from academic students to
industry experts) and with varying studying (working) back-
grounds to mitigate the bias related to the studying (working)

methodology, which may affect the analysis of the data. Par-
ticipants will be recruited following two criteria: (i) students
should be from MSc and PhD courses in Computer Engineer-
ing who have some knowledge of the topics of this research;
(if) experts from academia and companies on the IT fields
with a focus on cybersecurity and mobile penetration testing.

The goal of this survey is to answer two research questions:

Q1. What is the correlation between an attack based on
NOPs’ visibility [15] and the detection rate by an expert?

Q2. What is the correlation between the detection time,
practitioner expertise, and success rate?

The survey consists of two questions for each code snippet
to accomplish this goal. Initially, a single-choice question is
used to determine if the practitioner accurately detects the
presence of a NOP (see Appendix A for details). Subsequently,
an open-response question is employed to evaluate which part
of the code snippet influenced the expert’s response to the
previous question.

There are two popular languages to generate code snippets
from for our case: Smali and Java'. The former has been
considered because Smali code is the human-readable format
for the Android DEX code, and, in general, evasion attacks
are made by modifying it. The latter is the main development
language for Android apps. There are two primary reasons
for selecting Java code. First, the study is interpreted from
an analyst’s perspective, who would most likely look at Java
source code using tools like Jadx [14]. Second, using Java
snippets allows us to gather a larger number of practitioners
whose Smali expertise is limited.

As part of the survey, we will ask for voluntarily disclosing
information about the professional demographic and organiza-
tional characteristics of the practitioners (e.g., years of experi-
ence in software analysis, cybersecurity, and their work), and
an introductory section is needed to assess the participants’
level of Java knowledge in such a way as to correlate these
variables with the results of the survey. Additionally, to assess
the correlation between detection time and success rate, the
survey has different time slots depending on the complexity
of the code snippet. Particularly, participants will have a max-
imum time limit to analyze and detect, the presence of a NOP.
Data analysis. In conducting the experiments and analyzing
the collected data, we will follow the checklist proposed by
Wohlin et al. [19]. In particular, we will analyze quantitatively
in terms of statistics and correlation between data (i.e., vis-
ibility vs detection rate, time vs detection rate, expertise vs
detection rate). Theoretically, we expect a direct proportion
between variables since higher time, expertise, and visibility
would increase the detection rate. During the analysis phase,
the actual time of response will be gathered and not the max-
imum slot selected for the snippet. Moreover, a qualitative
analysis is necessary to study how human experts recognize
the presence of an evasive attack. By analyzing the data, we

"Kotlin is less supported and spread in the community:
https://techaffinity.com/blog/kotlin-vs-java/

expect a correlation between visibility, time, expertise, and
detection rate. Increased visibility should make spotting an
NOP easier, while more time and expertise should enhance
the ability to identify evasive code.

Threat to validity. Ideally, we aim to employ treatments that
evade state-of-the-art anti-malware to reproduce the real sce-
nario accurately. Nevertheless, this can not always be possible
since sometimes the time needed to manually evaluate the
binary would not be compatible with our setup.

Another potential threat is that some subjects are MSc
Computer Engineering students. The discussion on how well
students approximate IT experts is active, and no consensus
has been reached yet [8, 12]. Nevertheless, significant studies
have routinely employed students, e.g., in software engineer-
ing [16] and cybersecurity [5, 11], mainly due to the difficulty
of involving industrial experts. Following a common practice
in such studies, we will test the student’s proficiency in Java
and correlate it with their results.

This research will adhere to ethical standards by obtaining
informed consent, ensuring participant privacy, and maintain-
ing data confidentiality. Participation will be voluntary and
anonymous. We will also obtain GDPR [1] consent from
participants before starting the survey, and no personally iden-
tifiable information (PII) will be collected.

3 Anticipated Contribution

As an expected contribution, we aim to offer insights into the
intricate adversarial structures that could be inserted into the
source code of Android apps to circumvent ML/DL systems.
Specifically, our objective is to offer a practical evaluation
of the relationship between evasion attacks and the detection
rate by a human analyst.

Moreover, we aim to provide a deeper understanding of the
human perception of evasion attacks. This will constitute a
first step through a comprehensive evaluation of the differ-
ences between human and machine reasoning processes when
tasked to evaluate a potential evasive binary malware.

Thus, this contribution has the potential to pave the way
for research to improve the detectability of malware evasion
attacks by incorporating the "human factor" into the process.

4 Future Work

Moving forward, the primary objective of this preliminary
research is to utilize the insights to construct a pipeline in
which both automatic approaches, such as LLMs systems, and
human analysis are employed to recognize the presence of eva-
sive code structures (i.e., dead code and useless code), which
can circumvent learning-based methodologies to identify ma-
licious code. We intend to leverage LLLMs, both foundation
and fine-tuned code models, such as ChatGPT and Code Copi-
lot, to enhance the automated identification of evasive code.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

General data protection regulation (gdpr). https://gd
pr-info.eu/, 2016.

Simone Aonzo, Yufei Han, Alessandro Mantovani, and
Davide Balzarotti. Humans vs. machines in malware
classification. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 1145-1162, 2023.

Harel Berger, Amit Dvir, Enrico Mariconti, and Chen
Hajaj. Breaking the structure of mamadroid. Expert
Systems with Applications, 228:120429, 2023.

Harel Berger, Chen Hajaj, Enrico Mariconti, and Amit
Dvir. Crystal ball: From innovative attacks to attack
effectiveness classifier. IEEE Access, 10:1317-1333,
2021.

Mariano Ceccato, Paolo Tonella, Cataldo Basile, Paolo
Falcarin, Marco Torchiano, Bart Coppens, and Bjorn
De Sutter. Understanding the behaviour of hackers while
performing attack tasks in a professional setting and in
a public challenge. Empirical Software Engineering,
24(1):240 — 286, 2019.

Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun
Zhang, Surya Nepal, Yang Xiang, and Kui Ren. An-
droid hiv: A study of repackaging malware for evading
machine-learning detection. IEEE Transactions on In-
formation Forensics and Security, 15:987-1001, 2019.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang
Yu, Tao He, Haotian Wang, Weihua Peng, Ming Liu,
Bing Qin, and Ting Liu. A survey of chain of thought rea-
soning: Advances, frontiers and future. arXiv preprint
arXiv:2309.15402, 2023.

Robert Feldt, Thomas Zimmermann, Gunnar R. Berg-
ersen, Davide Falessi, Andreas Jedlitschka, Natalia Ju-
risto, Jiirgen Miinch, Markku Oivo, Per Runeson, Martin
Shepperd, Dag I. K. Sjgberg, and Burak Turhan. Four
commentaries on the use of students and professionals in
empirical software engineering experiments. Empirical
Software Engineering, 23(6):3801 — 3820, 2018.

Christopher Frederickson, Michael Moore, Glenn Daw-
son, and Robi Polikar. Attack strength vs. detectability
dilemma in adversarial machine learning. In 2018 inter-
national joint conference on neural networks (IJCNN),
pages 1-8. IEEE, 2018.

Davide Maiorca, Davide Ariu, Igino Corona, Marco
Aresu, and Giorgio Giacinto. Stealth attacks: An ex-
tended insight into the obfuscation effects on android
malware. Computers & Security, 51:16-31, 2015.

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

Salvatore Manfredi, Mariano Ceccato, Giada Sciarretta,
and Silvio Ranise. Empirical validation on the usability
of security reports for patching tls misconfigurations:
User-and case-studies on actionable mitigations. Jour-
nal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications, 13(1):56 — 86, 2022.

Luka Pavli¢, Marjan Hericko, and Tina Berani¢. An
expert judgment in source code quality research do-
main—a comparative study between professionals and
students. Applied Sciences (Switzerland), 10(20):1 — 13,
2020. Cited by: 0; All Open Access, Gold Open Access.

Sebastian Schrittwieser, Elisabeth Wimmer, Kevin
Mallinger, Patrick Kochberger, Caroline Lawitschka, Se-
bastian Raubitzek, and Edgar R Weippl. Modeling ob-
fuscation stealth through code complexity. In European
Symposium on Research in Computer Security, pages
392-408. Springer, 2023.

Skylot. Jadx: Dex to java decompiler. https://gith
ub.com/skylot/jadx, 2024.

Diego Soi, Davide Maiorca, Giorgio Giacinto, and Harel
Berger. Can you see me? on the visibility of nops
against android malware detectors. arXiv preprint
arXiv:2312.17356, 2023.

Toni Taipalus and Hilkka Grahn. Framework for sql
error message design: A data-driven approach. ACM
Transactions on Software Engineering and Methodol-
ogy, 33(1), 2023. Cited by: 1; All Open Access, Hybrid
Gold Open Access.

VirusTotal. Virustotal: Analyze suspicious files and urls
to detect types of malware, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large
language models. Advances in neural information pro-
cessing systems, 35:24824-24837, 2022.

Claes Wohlin, Per Runeson, Martin Hst, Magnus C.
Ohlsson, Bjrn Regnell, and Anders Wessln. Experimen-
tation in Software Engineering. Springer Publishing
Company, Incorporated, 2012.

Zhe Zhou, Di Tang, Xiaofeng Wang, Weili Han, Xiangyu
Liu, and Kehuan Zhang. Invisible mask: Practical at-
tacks on face recognition with infrared. arXiv preprint
arXiv:1803.04683, 2018.

https://gdpr-info.eu/
https://gdpr-info.eu/
https://github.com/skylot/jadx
https://github.com/skylot/jadx

Appendices

A Code snippets examples

Code snippets employed in the survey are manually imple-
mented by following the same reasonings in the previous work
[15] in which some snippets are automatically generated with
an adversarial attack.

Listing | is an Android Java code with two classes: (i)
MainActivity and (ii) R whose function v (int n) contains
a NOP in the form of useless operations. Indeed, the returned
value does not depend on the operations before the return
statement (i.e., shifts and XORs in lines 18 to 21).

import android.util .Log;

;| public class MainActivity {

public static void onCreate(String/[]

args) {
R rs = new R(3);
int r = rs.v(10);
Log.i("TAG", "Result: " + n);
}
}
public class R{
int k;
public R(int k) {
this .k = k;
}
public int v(int n) {

int a=n;

int b=(a<<this .k);

int c=(a”n)"this .k;

b = (b~this .k);

return (b”this . k)>>this . k;

Listing 1: A code snippet with useless operations.

Listing 2 shows another kind of NOP. In this case, there is
an if that will not be executed. Indeed, the condition is always
false (i.e., c (7, 5)=74), and the code inside the if the branch
is dead code.

On the other hand, Listing 3 shows an example of a Java
code snippet without NOPs. Indeed, in this case, there are no

additional instructions that are not executed or do not change
the resulting value.

public class M {
public static void main(String[]
int d=8;
int a=4;
int b=a+2;
System.out. println(c(a, b));
if (d>2 && ¢ (7,5)==0{
int a = 0;
for(int i=0;i<5;i++)
a+=1%2;
System.out.println ("The result
is " + a);

}

args) |

}

private static int c(int a, int b) {
return a * a + b * b;

}

Listing 2: A code snippet with useless operations.

public class Main{
public static void onCreate(String|]

args) {

byte[] b = {44, 112, 119, 108, 113,
98, 100, 102, 44, 102, 110, 118, 111,
98, 119, 102, 103, 44, 51};

D d = new D();

byte[] r = d.d(b);

for (int i=0;i<b.length;i++)

System.out.println(r[i]);

1

}

public class D {
public byte[] d(byte[] b) {

byte[] r = new byte[b.length];

for (int i=0; i<b.length; i++) {
r[i] = (byte)(b[i]"3);

1

return r;

Listing 3: A code snippet with useless operations.

	Introduction
	Methodology
	Anticipated Contribution
	Future Work
	Appendices
	Code snippets examples

