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Abstract

A priori power analysis would be very beneficial for re-
searchers in the field of developer-centered usable security
since recruiting developers for studies is challenging. Power
analysis allows researchers to know how many participants
they need to test their null hypotheses. However, most studies
in this field do not report having conducted power analysis.
We conducted a meta-analysis of 54 top-tier developer study
papers and found that many are indeed underpowered even
to detect large effects. To aid researchers in conducting a
priori power analysis in this challenging field, we conducted
a systematization of knowledge to extract and condense the
needed information. We extracted information from 467 tests
and 413 variables and developed a data structure to systemati-
cally represent information about hypothesis tests, involved
variables, and study methodology. We then systematized the
information for tests with categorical independent variables
with two groups, i.e., Fisher’s exact, chi-squared, McNemar’s,
Wilcoxon rank-sum, Wilcoxon signed-rank, and paired and
independent t-tests to aid researchers with power analysis
for these tests. Additionally, we present overview informa-
tion on the field of developer-centered usable security and
list recommendations for suitable reporting practices to make
statistical information for power analysis and interpretation
more accessible for researchers.

1 Introduction

A priori power analysis can be used to calculate the neces-
sary sample size for a study to detect an effect with a given
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probability, a given significance criterion, and a defined ef-
fect size [22]. The probability is often set to 80% and the
significance criterion to 5% by convention and the effect size
needs to be chosen by the researcher based on their research
goals [22, 30]. Using a priori power analysis, researchers can
avoid running underpowered studies and missing effects that
are actually present in the population and thus wasting re-
sources or, worse yet, potentially publishing results that are
misinterpreted as stating that there is no effect. It also pre-
vents researchers from using more resources than necessary
by running overpowered studies [35]. This is especially prob-
lematic for the sub-field of developer centered usable security
(DCUS) [48] since developers are often both hard and expen-
sive to recruit. Running underpowered studies in this field
is especially undesirable due to the large amount of effort
coupled with low chances of finding the desired effects even
if they are there. Despite this, power analysis is not common
in the field of DCUS.

In the 54 DCUS papers we analyzed for this SoK, only
9,3% contained any form of power analysis. When the power
of studies has been assessed in other fields in meta-analyses,
these have frequently shown low power, such as in a review
of ACM transactions [12] or in psychology [99]. The lack
of a priori power analysis is one likely reason for this. Our
analysis raises similar concerns of underpowered studies in
DCUS. A potential reason for so few studies being planned
with power analysis is that performing a power analysis is
non-trivial and researchers must know, estimate or guess key
population values such as standard deviations or proportions
to calculate effect sizes or estimate the effect sizes themselves.
This is especially tricky in the fields of Usable Security and
Privacy (USP) and DCUS, due to both the heterogeneity of the
populations studied, as well as the heterogeneity of variables
being measured and the many non-standardized measurement
instruments. On top of that, many tests are not published with
enough statistical details to use them for estimating power for
similar future studies [50].

In this paper, we present a systematization of knowledge
in the field of DCUS with the goal to aid researchers with
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power calculations for some common statistical tests used in
the field: tests with a single categorical independent variable
with two groups, with either a categorical dependent vari-
able: Fisher’s exact test, chi-squared test, and McNemar’s test,
or with a continuous dependent variable: independent and
paired t-test, as well as Wilcoxon rank-sum test and Wilcoxon
signed-rank test. We collected DCUS papers from the fol-
lowing major conferences published between 2010 and 2021:
the Symposium on Usable Privacy and Security (SOUPS),
USENIX Security, the IEEE Symposium on Security and
Privacy (S&P), the ACM Conference on Computer and Com-
munications Security (CCS), the IEEE/ACM International
Conference on Software Engineering (ICSE) and the security
and privacy sessions from the ACM Conference on Human
Factors in Computing Systems (CHI). We excluded any paper
that did not contain an actual user study. This left us with a set
of 54 papers. From these, we manually extracted all relevant
data, including information about 467 statistical hypothesis
tests involving 413 different variables. We developed a data
structure to make this information accessible to researchers
for specific power analyses. We further systematized the data
from the papers by categorizing the involved variables into
13 different groups to make it easier to find proxies for power
calculations if a direct match is not available. We also use our
categories to calculate average statistics which can help re-
searchers sanity check their estimates. The database including
all the data will be made available to the community. Based on
our findings, we make recommendations on how to conduct
power analysis for developer studies.

2 Background & Related Work

In the following, we give a very brief overview of the re-
search domain of developer centered usable security before
discussing the background of power analysis. We also ex-
amine the application of power analysis and the practice of
reporting effect sizes and conducting meta-analyses since
these are closely related to power analysis.

When examining the use of statistical techniques, such as
power analysis, meta-analysis, or reporting of effect sizes, in
the following, we try to summarize the state of the practice
as close to DCUS as possible. However, since this is a rela-
tively new field [48] there is not yet much work providing an
overview of the use of such techniques. Instead, we examine
related domains, such as USP and Human Computer Interac-
tion (HCI) in general, or when this is not possible, psychology.
While these fields are by no means equal, we posit that meth-
ods and constraints are at least comparable in that user studies
measuring latent variables, and not only directly observable
variables, are common in all of the mentioned fields.

2.1 Developer Centered Usable Security

DCUS is a subfield of USP, but with a focus on the chal-
lenges and needs of expert users, such as software developers
or administrators, instead of end users, who are at the center
of typical USP-studies [3, 48]. DCUS extends USP’s notion
that security mechanisms should be designed with users in
mind, to developers, which are themselves users, e.g., of cryp-
tography APIs [1, 48, 73], programming languages [90] and
other security tools [e.g. 9, 61, 88]. Tahaei & Vaniea pro-
vide an overview of topics addressed and methods used in
DCUS [103]. While developers have been the main focus, we
also include other expert users such as administrators in this
field (e.g., [106].)

2.2 Theoretical Background of Power Analy-
sis

Power analysis as a concept is situated within the null hypoth-
esis significance testing (NHST) paradigm of statistical analy-
sis. Four parameters are relevant to power analysis: Power, i.e.,
the probability of the test correctly rejecting the null hypothe-
sis, the significance criterion @, the reliability of the sample
results, and the effect size [22, 35]. The largest and invariably
present influencing factor on reliability is sample size [22] -
larger samples produce more consistent and reliable estimates
than smaller ones. Consequently, the sample size is often used
as a stand-in for reliability in power analysis.

These four parameters are interdependent, such that when
three of them are available, it is possible to calculate the
fourth. These calculations are referred to as power analysis.
In general, there are four different kinds of power analysis,
each used to determine one of the parameters from the other
three [22]. The focus of this work is on so-called a priori,
or prospective power analysis, which is used to calculate the
necessary sample size to detect an effect of a desired size with
a chosen power and significance criterion, before actually
conducting the study. For a more detailed introduction to the
four parameters, see Appendix C or Ellis (2010) [35].

To be able to conduct an a priori power analysis, researchers
need to know or guess either a standardized effect size they ex-
pect to detect or related statistics that can be used to calculate
such an effect size. These effect sizes [35] and the resulting
power analysis procedures [38] vary depending on the test
used. The standardized effect sizes needed for the tests at the
focus of our work are ¢ for the chi-squared test, the odds ratio
for McNemar’s test, Cohen’s d for independent samples, and
Cohen’s d, for paired samples mean-comparison tests. While
effect sizes can be converted between each other, what is gen-
erally seen as small, medium, or large differs between the
effect size types [22], and this makes the process of guessing
more difficult since not every researcher is familiar with the
same types of effect sizes. Some procedures require different
information, such the Fisher’s exact test, where success prob-
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abilities for both groups are needed instead of a standardized
effect size, or McNemar’s test, which requires the proportion
of cases, where changes occur in subjects’ responses (propor-
tion of discordant pairs) in addition to the odds ratio effect
size. Alternatively, researchers can also guess unstandardized
effect sizes, such as group means for both groups, i.e., the
difference between these means. This can be more intuitive,
especially when taking the approach of aiming to detect the
smallest practically relevant effect sizes [35]. However, addi-
tional statistics are needed to calculate the necessary standard-
ized effect size from these values. For the tests we focus on in
this work, these are the standard deviations for the two groups
for independent and paired t-tests, Wilcoxon rank-sum tests,
and Wilcoxon signed-rank tests. Additionally, the correlation
between the two groups is necessary for within-subjects tests
with continuous dependent variables. The main aim of this
paper is to help and guide researchers to base these guesses
on previous work or at least enable sanity checks on estimated
values.

A priori power analysis is important, as both under- and
overpowered studies are detrimental to the furthering of
knowledge. Conducting an underpowered study means that
failing to reject the null hypothesis is likely [35]. Since non-
significant results are less likely to be published [7, 96], the
effort in planning and conducting the underpowered study
may be wasted. On the other hand, overpowered studies are
wasteful, too [35]. Highly powered tests can detect very small
effects so that in extreme cases, it is possible to find a highly
statistically significant, albeit very small actual difference,
which may be irrelevant in practice. Less power and fewer
resources would have been sufficient to detect a practically
relevant effect [35]. In addition to waste of resources, only
collecting data from as many participants as necessary mini-
mizes the amount of data collected, with positive effects on
participants’ privacy. Additionally, both underpowered and
overpowered studies may be interpreted incorrectly when
focusing on p-values. Underpowered non-significant results
may be dismissed as irrelevant, even in the case of a large
effect, while overpowered significant results representing triv-
ial effects can be posited as important due to the statistical
significance [35]. In DCUS, it is especially important to be
mindful when recruiting since developers as specialists are
usually time-constrained, and payment is often much higher
than in end-user studies.

2.3 Application of Power Analysis

The tools to conduct power analysis have evolved from power
and sample size tables [22] to online calculators', designated
computer programs, like G¥Power [38] and multiple imple-
mentations in programming languages commonly used for
statistical analysis, like the pwr package, among others in
R [91] or the statsmodels library in Python [98].

Le.g., powerandsamplesize.com or jakewestfall.org/power

Nevertheless, historically, power analysis has often not
been applied [14, 22]. Unfortunately, in many fields, this
is still the case according to more recent reviews, such as
in psychology, where only 5% of 183 reviewed publications
mentioned power analysis [113]. In other fields, often in the
medical domain, power analysis is more prevalent, e.g., 43%
of studies in a review of obesity interventions in schools [55]
and over 60% of reviewed publications in NEJM and Lancet
reported prospective power analyses [109]. A possible rea-
son is adherence to submission guidelines [108], which we
recommend updating for the field of USP. If there is enough
prior information, power analysis is recommendable for grant
applications to ensure sufficient funds are planned for recruit-
ment.

In HCI, power analysis is also frequently not applied. E.g.,
in 2018, only five of 519 experimental papers at CHI used
prospective power analysis [34]. In interviews evaluating a
prototype of a program to facilitate power analyses, some
researchers were explicitly skeptical of power analysis as a
research tool [34]. In a more cursory evaluation of terminol-
ogy used in the CHI proceedings of 2017 - 2019, rather than
manual inspection of publications, only between 1.5% and
2.7% of the papers containing the term “experiment” also
contained the term “power analysis” [33]. In our own anal-
ysis of USP publications at SOUPS and CHI in 2021 and
2022, we found that only 5.4% of SOUPS papers used power
analysis in some form and 8.3% of USP CHI papers did so.
Over these two years, only ten of 146 (6.8%) USP papers
at CHI and SOUPS used power analysis in some way. Two
of those papers conducted post hoc power analysis, which is
controversial since power and p-values are directly related,
and if a result is not significant, i.e., the p-value is high, then
power was too low to detect an effect of the size present in the
sample. So little is gained by the post hoc power calculation
[45, 56].

Consequently, power to detect small effects in published
studies is frequently low [35]. Literature shows this to be the
case for such diverse research areas as management infor-
mation systems, including ACM transactions [12], psychol-
ogy [93, 99], and health professions education [25]. While
not a formal review of power, Cockburn et al. examine empir-
ical computer science literature and find evidence of the same
practices that contributed to the replication crisis in other do-
mains [21]. At the largest HCI conference, CHI, quantitative
studies may even be underpowered to detect large effects [20].

When power analysis is not used to determine appropri-
ate sample size, alternative approaches include recruiting the
maximal number of participants possible, based on population,
time, and monetary constraints [35], following prior practice
and experience in the domain of interest [20, 35] or using
rules of thumb, such as 10 or 15 cases of data per predic-
tor [39], 50 + 8 x k, where k is the number of predictors in
regression for testing the overall model [49], or two subjects
per variable to estimate the coefficients in linear regression [8].
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However, none of these methods guarantee that studies will
have sufficient power [35].

To increase power, especially in fields like DCUS, where
recruiting is challenging, researchers should also consider
adapting their research design to increase the reliability of
measurements and reduce random errors, e.g., by conducting
within-subjects research [35]. Another possibility is conduct-
ing sequential analyses, whereby a study can be stopped at
planned intervals if a large enough effect can be detected at
this time, which on average reduces the necessary number
of participants [67]. There is some discussion about whether
stopping studies early like this introduces an additional bias
towards larger effects [13, 72] or not [42, 97].

2.4 Effect sizes and Meta analysis

Reporting of effect sizes and conducting meta-analyses are
topics closely related to power and power analysis. Re-
searchers need to determine an expected effect size or a min-
imum relevant effect size to conduct power analyses. Meta-
analyses, in contrast to (systematic) literature reviews, which
provide a narrative summary of a research domain, make use
of effect sizes to combine findings from different studies [35].
In conducting re-analyses with larger amounts of data, they
achieve a higher power to detect effects [35].

A general lack of detail in statistical reporting was admon-
ished in early HCI meta-analyses [79], and lack of effect
size reporting is a problem, e.g., in studies investigating soft-
ware engineering [62]. Grof3’s analysis of statistical report-
ing in USP showed that half of the 114 analyzed user stud-
ies from 20062016 reported incomplete results [50]. This
makes both prospective power analysis and meta-analyses
more difficult [50, 62]. In general, there are few meta-analyses
in HCI [64]. As a domain using diverse analysis methods
and tools derived, e.g., from computer science, design sci-
ence, or psychology, there are not necessarily unified report-
ing standards within HCI, which makes meta-analyses dif-
ficult [104]. When reporting is not sufficient, a workaround
is to ask authors for the raw data, but this comes with the
drawback that not all authors will respond, e.g., Hornbaek et
al. had a response rate of 48% [57]. Nevertheless, there are
examples of meta-analyses in HCI, e.g., about human-robot
interaction [36], usability measures [57], and typing exper-
iments [81]. While there are certainly literature reviews in
USP, e.g., [15, 32] and also in DCUS [103] we did not find a
meta-analysis in this domain.

As part of our systematization of knowledge, we con-
ducted a meta-analysis concerning statistical power in the
field of DCUS. However, due to incomplete reporting and
test-specific limitations, we could only do this meta-analysis
for 140 tests in 20 studies.

3 Literature Collection

In the following, we describe the creation of our literature
corpus for DCUS. As a catch-all, we will refer to this sort of
literature as a developer paper in the remainder of this work.
We define a developer paper as literature including a user
study in some form, in which the participants are software de-
velopers, software testers, administrators, other people respon-
sible for planning, developing, testing, or managing software,
or proxies for such people. An example of proxies would be
computer science students, which are commonly used as a
stand-in, e.g., for software developers [77]. We focus on the
domain of usable security and privacy, which means that the
studies should be focused on privacy or security problems
and technology. We exclude any papers which do not include
a study with actual users.

We started collection of literature in early 2021 and col-
lected developer papers from four major conferences about
security and privacy, which were published between 2010 and
2020: SOUPS, USENIX Security, S&P, CCS, and addition-
ally ICSE and the USP tracks of ACM SIGCHI. Abstracts
were used to determine whether a paper fits our definition of
a developer paper, and in case of uncertainty, the method sec-
tion of the paper was additionally used to clarify. We updated
our literature basis in March 2022. Our final sample consists
of 54 papers. Of those, 20 were published at SOUPS, 11 at
CCS, 8 at ICSE, 7 at USENIX Security, 5 at S&P and 3 at
CHLI. The list can be found in Appendix A.

4 Systematizing Study and Statistical Test
Data

Our goal was to collect and systematize information on stud-
ies and statistical tests from the domain of DCUS, focusing on
what is necessary to conduct power analyses for user studies
in this domain. We also wanted to add general information on
the data collection process and the types of participants, since
this might also be relevant when planning a new study. To aid
researchers in planning new studies we created a data struc-
ture of our systematization and will offer this to the research
community as a database. The database can be queried via a
companion website for the relevant information to conduct
power analysis *. An excerpt of two entries can be found in
table 2. Further entries are on the companion website. The
entries are categorized to help researchers query the database
and find similar studies, on which they can base their power
calculation. For those cases where no directly similar previous
study exists, we have created aggregated data based on our
systematization that researchers can use as rough guides.

Zhttps://powerdb.info
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4.1 Systematization Process

Based on a sample of the literature we had collected, we first
analyzed papers from a methodological point of view and
collected information on data collection, data analysis, as
well as meta information that served to clearly identify and
reference the paper. We identified similarities in the type of
collected data and iteratively developed a data structure to
represent this information.

In addition to the papers themselves, two sources further in-
formed our structure: We made sure to represent information
necessary to conduct power analysis, based on the G¥Power-
software [38], since G*Power is a commonly used and very
powerful tool for power analysis.

To help guide our work, we created a set of hypothetical
developer studies, for which we would want to run a priori
power calculations, e.g., Do Freelancers recruited from Free-
lancer.com and Upwork differ in their self-assessment of their
reverse engineering skill and in their performance while com-
pleting a short reverse engineering task?. Our aim was to
have a mix of hypothetical studies which were closely related
to previous work as well as some that had no relations. This
was done to a) ensure that it would be easy to find very spe-
cific data from closely related work as well as to b) ensure
that our categories were useful to guide researchers in un-
charted territory as best possible. Based on the case studies,
we added features to categorize variables. Finally, after laying
the theoretical foundation, we implemented a database and
started to enter information from the collected literature.

4.2 Data Structure

In the following we describe how we systematized the data
we collected, providing a general overview of the structure, as
well as details on those topics specifically relevant to power
analysis and finding the right data.

4.2.1 Overview

A general overview of the data structure can be seen in the
entity relationship diagram (ERD) in the appendix B.

For each paper in our set, we first collected meta informa-
tion about it. Each paper can have multiple studies assigned to
it. A study is a self-contained unit of a combination of data col-
lection and analysis, which is often presented in a separate sec-
tion in a paper. We separate data collection descriptions from
the participant samples involved. To support filtering and
generalization, Participant sample types, instances of which
could be “student”, “security expert”, “freelance developer”,
and data collection methods, where instances are, e.g., “inter-
view”, “survey” or “‘experiment/task-based evaluation”, are
represented as separate entities. These are more easily reused
across multiple studies and multiple papers. The results of

qualitative analyses cannot directly be used for power analysis

or to support meta-analysis since effect sizes are not calcu-
lated. However, because insights from qualitative analysis
often help inform further quantitative work, we also collected
some information on the qualitative analysis methods used.
Reporting of NHST-type analysis methods all share certain
properties, which we collected for all quantitative analysis
methods, i.e., the name of the hypothesis test, the p-values, and
the dependent and independent variables. For more informa-
tion on the representation of variables, see Section 4.2.2. We
categorized the different hypothesis tests used in our sample
according to the number and type of dependent and indepen-
dent variables, the study design, and, in the case of categorical
variables, the number of levels in the variable, see Table 1. In
the following, we focus on those hypothesis tests with one cat-
egorical independent variable with two levels. We collected
additional test-specific data for these tests, see Section 4.2.3.

4.2.2 Representation of Variables

For variables, we noted the name and a description of how the
variable was measured based on the publication and collected
information on several additional facets of the variables. For
example, the variable type attribute represents whether a vari-
able is continuous or categorical. Variable levels, i.e., groups,
are then provided for categorical variables.

Finally, a Variable can be tagged with one or multiple
Variable categories. These are broad categories of variables,
which frequently occur in studies in DCUS, and which serve
to ease the search for a specific variable or test and were used
to create generic guides for researchers when no specific prior
work exists. We generated these categories by open coding all
the variables in eight of the papers from our sample, which
we chose to cover a broad range of topics and both descriptive
and inferential work. One researcher did all the coding alone,
and the generated categories and the corresponding variables
were frequently discussed together in an iterative process with
a second researcher and modified when necessary. Since we
were assigning fixed categories to clear units of data, and
a second researcher was involved in the generation of the
variable categories, we consider this data simple to code and
independent recoding to be unnecessary [70, 84]. The eleven
categories which emerged from this process are:

usability Measures relating to overall usability, i.e., incor-
porating effectiveness, efficiency, and user satisfaction
according to ISO 9241-11 [59].

security Measures relating to IT security of produced soft-
ware / artifacts.

functionality Measures relating to the functionality of pro-
duced software / artifacts.

participant judgment Measures relating to participants’
choices or judgment of something.
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Type of IV #IV #1V Levels

Type of DV # DV Levels

Study design

Hypothesis test

Categorical One Two Categorical Two

Continuous -

Categorical One Two

One + Two + Continuous -

Categorical

Any One + Any Categorical Two

Any One + Any Any Any

fixed value - Continuous -

McNemar’s Test

Paired t-test,

Within Wilcoxon Signed Rank Test

Repeated Measures ANOVA,

Wit Friedman’s ANOVA (1 IV)

Between Logistic Regression

Any Generalized Linear Mixed Model

Z-Test

Table 1: Hypothesis tests appearing in DCUS papers. In this paper we focus on tests with single categorical IV and single DV
(highlighted in pink) for our assessment of reporting and effect sizes. Remaining tests have a green background. All tests in
our sample had a single dependent variable. Three tests did not fit into this categorization: Bernoulli trial, factor analysis and
k-means cluster analysis. DV = dependent variable, IV = independent variable

experience Participants’ level of experience in something,
e.g., programming.

behavior Measures of participants’ behavior. Can be either
self-reported or objectively measured.

system type Usually an assigned condition in a study, the
system / software / prototype, which participants work
with or test.

participant type Group to which a participant belongs, e.g.,
students, freelancing developers.

participant characteristic Any other participant trait, such
as the type of company a participant works for, a partici-
pant’s focus on security, etc.

task related variable Variables related to the tasks in a
study, e.g., which task the participants worked on or task
order.

study related variable Measures relating to administrative
aspects of the study, e.g., drop-outs, prompting, or addi-
tional communication with participants, e.g., via email
or a support system.

During the data input process, we added one additional cate-
gory:

artifact-related variable Variables related to artifacts par-
ticipants produced during or prior to the study, e.g., char-
acteristics of these or types of mistakes encountered in
submitted code or other artifacts.

4.2.3 Relevant Test-specific Information for Power
Analysis

We specifically focused on collecting information that would
be needed to conduct a priori power analysis, as well as addi-
tional values, which are typically reported with a hypothesis
test according to APA style [5]. For some tests, not all data
could be contained in a single entity, e.g., ANOVA, linear
regression, and logistic regression. For these, we created mul-
tiple related entities in our database, but the meta-analysis
will be carried out in future work since very few of these tests
were reported with enough detail for a robust analysis at this
point.

4.3 Data Input and Checking

Two assistant researchers were hired to aid the main author in
entering data into the database. Both had attended at least one
university course on statistical hypothesis testing and empiri-
cal methods. The main author also has experience teaching
empirical methods and statistics.
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The main author trained the other two researchers regarding
data extraction from the papers and how the data should be
entered into the database. The data entry tool provided a
checkbox that could be used to mark an entry when feeling
unsure, as well as a text field where the issue could be noted.
The two assistant researchers received feedback regarding
their data entry at set intervals. At the end of the data input
process, the main author went over all entered data again to
check for any missing data or inconsistencies. Uncertain cases
were discussed and resolved together with the co-authors.

5 Meta-Analysis

In the following, we analyze and further systematize the data
we gathered. For our meta-analysis of the current state of
research in DCUS, we focus on information related to power
analysis, e.g., we analyze effect sizes in this field and in-
vestigate whether reporting is sufficiently detailed to enable
power analysis using the data. We analyzed the data from
our database using the Python packages numpy, pandas, and
matplotlib and the R tidyverse [91, 119].

We analyzed a total of 54 developer papers, which encom-
passed 64 individual studies, of which 24 were quantitative,
24 were qualitative, and 16 used both quantitative and qualita-
tive analysis methods. On average, 105 (9 - 330, median=65,
SD=99.5) participants took part in quantitative and 14.8 (1
- 49, median=12, SD=12.3) in qualitative studies, and for
mixed methods studies on average, 103 (6 - 400, median=44,
SD=101.6) participants took part. This is similar to Caine’s
analysis of papers at CHI 2014, where the sample size was
also smaller for qualitative than quantitative work [20].

5.1 Variable Topics

We investigated the distribution of topics of the variables
investigated in our literature sample, as represented by the
variable categories defined in this work. Multiple categories
can apply to a single variable, and this was the case for 138
out of 413 variables.

Of those categories referring to components of usabil-
ity, e.g., related to either effectiveness, efficiency, or satis-
faction [59], Participant judgment was the most used variable
category (109 times). This may be the case since it applied
to all variables representing some sort of participant judg-
ment of an evaluated system or a task, e.g., preference [28],
confidence in task correctness [2], or criticality of data [100].
This was followed by security (44), as a specific form of ef-
fectiveness, which is due to our sample focusing on DCUS.
Functionality (24) as another form of effectiveness, usability
overall (14) and efficiency (12) appeared less frequently.

Of the other variable categories, which were not related to
usability, participant characteristic (93), behavior (69), and
experience (47) were the most frequent. Examples for par-
ticipant characteristic are type of participant, e.g., [65, 78],

although there is a separate category specifically intended
for this, demographics, like state of employment [76] or type
of organization [74], and other characteristics relating to par-
ticipants’ opinions or attributes [16, 105]. Experience, e.g.,
with technology like programming languages [e.g., 28, 95],
or specific tasks [e.g., 66, 75], often occurs together with par-
ticipant characteristic, as experience can also be considered
a defining characteristic of participants. In fact, the most fre-
quent co-occurrence (30) between variable categories was
between experience and participant characteristic. Variables
measuring behavior included variables tracking participants’
behavior during a study, e.g., the number of times they ex-
ecuted a program [54], number of visited websites [66], or
lines of code submitted [114], and variables assigned to par-
ticipants’ outcomes retrospectively by researchers [e.g., 114].
Behavior could also be self-reported [e.g., 80, 105]. More spe-
cific categories, i.e., participant type (9) and system type (27)
and artifact related variables (19) were not as frequent. There
was a surprising amount of variables associated with meta-
level aspects, such as task related (42) and study related vari-
ables (21), although some of these may be related to task
success.

5.2 Use of Hypothesis Tests

We were especially interested in the frequency of hypothesis
tests. In the studies in our sample, 7.30 hypothesis tests were
conducted per study on average (SD=12.35), and given that
a paper could encompass multiple studies, the number of hy-
pothesis tests per paper ranged from O (for purely descriptive
papers, like [37], or qualitative papers, like [53]) to 74 (M=8.6,
SD=13.2). One of the studies, which the authors identified as
qualitative, nevertheless contained 26 statistical hypothesis
tests. In this comparison of end-users’ and administrators’
mental models of HTTPS, Fisher’s exact tests were used to
compare the appearance of various concepts in the mental
models of the two participant types [65].

Since some studies included a large number of hypothesis
tests, with outliers at 75, 51, and 30 hypothesis tests in a sin-
gle study, we explored whether p-value correction methods
were used in our sample. Figure | shows that the majority of
studies (31/41) did not use corrections for any of the reported
p-values. This likely includes some studies where these cor-
rections were not necessary since the hypotheses tested were
about different outcomes or were explicitly considered ex-
ploratory [101]. However, all three studies with the largest
amount of tests did not include any corrections that we could
identify for their hypothesis tests. This means that the results
presented may be false positives.

The frequency of each of the different hypothesis tests
within our sample is displayed in the left half of Figure 2. The
most-used test (123 times) in our sample of papers was the
non-parametric Wilcoxon rank-sum (a.k.a. Mann-Whitney
U test), followed by two tests used for categorical data, the
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Figure 1: Scatterplot showing the frequency of corrected p-
values in relation to non-corrected p-values per study

Fisher’s exact and chi-squared Tests, which appeared 59 and
32 times respectively. We categorized the different hypothesis
tests used in our sample according to the number and type of
dependent and independent variables, the study design, and,
in the case of categorical variables, the number of levels in the
variable, see Table 1. All of the tests used only one dependent
variable. In the remainder of our meta-analysis, we focus
on those hypothesis tests with one categorical independent
variable with two levels.

5.3 Completeness of Statistical Reporting

Ideally, each of these hypothesis tests would be reported in
sufficient detail to be able to conduct power analysis using
the data reported in the paper. However, this is not the case, as
shown in Figure 3. Of those tests for which we can make this
classification, the paired t-test was reported with sufficient
information in all cases. However, it was reported only once.
For the other tests, the completeness of reporting varied be-
tween 11.1% and 74.2% of sufficient reporting (mean=47.5%,
$d=28.2%). The most frequently reported test, the Wilcoxon
rank-sum test, was reported with sufficient information 38.2%
of the time, or in 47 of 123 cases. Overall, this shows that
reporting practices, even for these simple tests, are not suffi-
cient to do power analysis using them as a basis about half of
the time.

5.3.1 Power Meta-Analysis

To assess whether the field of DCUS suffers from underpow-
ered studies similar to other fields as mentioned in section 2.2,
we conducted a power meta-analysis based on Ellis [35, p.74].
This should not be confused with a post hoc power analysis
since we did not use the effect sizes or p values reported in
the papers. Instead, we only used the reported sample sizes
and used G*Power to calculate the power to detect small,
medium, and large effects (Cohen’s d equivalent of 0.2, 0.5,
and 0.8 [22]). This was possible for five of our seven types of

hypothesis tests. We excluded Fisher’s exact tests and McNe-
mar’s tests from this analysis since G*Power required input of
effect size based on concrete data from the study, i.e., success
proportions for the Fisher’s exact test and the total proportion
of discordant pairs for McNemar’s test. Since post hoc power
analysis using values directly from studies like this is not use-
ful [35], we concentrated on the other five types of tests. We
set a0 = 0.05 for all analyses and assumed two-tailed tests. For
the non-parametric tests, we used the minimal A.R.E. setting
in G*Power to get a conservative estimate of the achieved
power. Next, we calculated an average over all achieved power
values at each level of effect size per included study, and then
an overall average [35]. We considered a power of 0.8 to be
the lower bound of what should commonly be aimed for [22]°.

Overall, our database contained 20 studies that reported
enough statistical data to do this meta-analysis for at least
one test. We found that nine of these had sufficient mean
and median power to detect large effects, one had sufficient
mean, and two had sufficient median power to detect medium
effects and none of the studies had sufficient mean or me-
dian power to detect small effects. Conversely, eleven of the
studies did not have 0.8 power to detect even large effects.
However, over all the studies, the mean power to detect large
effects was only slightly lower than the 0.8 we considered suf-
ficient (mean=0.743, median=0.773). The mean power to de-
tect medium effects was 0.455 (median=0.396), and for small
effects, it was 0.132 (median=0.104). This again highlights
the importance of a priori power analysis since developer
studies are complex and resource intensive to run, and many
do not have sufficient power under the common assumptions
of oo = 0.05 and power of 0.8.

6 Systematic A Priori Power Analysis

Conducting an a priori power analysis requires researchers
to know or guess the standardized effect sizes (e.g., Cohen’s
d) they expect or want to detect. Alternatively, they can also
know or guess a non-standardized effect size (such as 1 point
on a 7-point scale) and additional information, such as the
standard deviation of the groups. In a mature field with many
studies examining similar variables (e.g., blood pressure),
expected effect sizes might be common knowledge. However,
in the absence of closely related prior work, as is often the
case in relatively new fields, such as DCUS, a more realistic
approach is for the researcher to decide what the smallest
practically relevant effect size is, that they want to be able to
detect [35], also called the smallest effect size of interest. This
can be determined by theoretical considerations but also by
juxtaposing the benefit of the desired outcome with the costs
to achieve this outcome or by considering practical limitations,
such as the number of available participants [67]. In any case,
researchers need experience and deep knowledge of their field

3 Although deviations from this are perfectly fine when done consciously.

348 Nineteenth Symposium on Usable Privacy and Security

USENIX Association



number

number of tests of papers

Wilcoxon rank-sum test -
Fisher's exact test -
Chi-squared test -
Logistic regression -
Pearson correlation -
Wilcoxon signed-rank test 4
Z-test

Independent t-test -
ANOVA -

Correlation (unspecified) -
Kruskal-Wallis test -
Other logistic regression -
Bernoulli trial -

Spearman correlation
Linear regression -
Binomial test 4

Poisson regression -
McNemar's test q
Friedman's ANOVA -
Polychoric correlation -
Other linear regression -
Kendall's tau 4

Factor analysis

K-means cluster analysis -
Paired t-test 4
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Figure 2: Left side: Frequency of type of hypothesis test in the sample, Right side: Number of papers using this hypothesis test in
the sample

DVs in test IVsin test Participants ~ Test ES Descriptive stats  Paper
Attempted security (yes, no) Priming  (priming, non- computer : Proportion
o science OR=19.02; ;10 7

priming) FET p [76]
security, behavior study-related variable students d&=1.62  (priming);
"participants who attempted to manipulated in experiment. (N=40) Proportion
store user passwords securely, "Priming - Participants were p2=0.1
but struggled and then deleted explicitly told to store the user (non-
their attempts from their solu- passwords securely in the In- priming)
tions (this was coded as at- troductory Text and in the
tempted but failed, or ABF). Task Description."
[...]"
Secure (secure, insecure) Warning displayed (yes, no)  Python ) Proportion
security system type, study related developers  FET OR=36: 10,727 [47]

variable (N=53) d=222 (yes);
"In addition, we used a binary whether a warning was dis- Proportion
variable called secure which was  played (could only happen p2=0.0455

(no)

given if participants used at least
a hash function in their final so-
lutions and thus did not store the
passwords in plain text."

in PyCrypto patch condition).
"PyCrypto control condition,
or the PyCrypto patch condi-
tion, where we tested our se-
curity warning"

Table 2: Examples of information from the database which can be used for power analysis. The two examples are tests, where
there was sufficient data to conduct power analysis. ES=effect size, FET=Fisher’s exact test
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of reporting

Figure 3: Stacked Barchart depicting the proportions suffi-
ciently complete reporting for those tests at the focus of our
analysis

to estimate effect sizes and this is one aspect that makes power
analysis difficult [23]. In addition, used effect sizes [35] and
power analysis procedures vary between different types of
statistical tests [38].

Our systematization of knowledge aims to ease this pro-
cess. Ideally, related studies have already been published, and
standardized effect sizes are reported or can be calculated. In
this case, the researcher needs to be able to find them. For this,
they can query our database introduced in Section 4. Some
types of information systematized in the database which are
helpful for the search include variable categories, variables
themselves and participant sample type. The participant sam-
ple type can help researchers identify prior work with a similar
demographic to their planned study.

Table 2 shows an excerpt of the data which can be returned
by the database. The first row contains all the data needed to
perform a power analysis for a Fisher’s exact test. A researcher
could find it by any of the keywords or categories listed. The
second row contains all the information to perform a power
calculation for a different Fisher’s exact test. The full data
set is available on our companion website 4. For each test,
variables, effect sizes, relevant information to calculate them,
the participant sample, and the source paper are listed and
sorted by variable category.

Ideally, there will be several similar studies in the database,
on which researchers can then base their effect size estimates
on. However, this is currently unlikely since the field is still
very young and diverse. But even if this is not the case, find-
ing results for some of the variables of interest or a specific
demographic can help refine effect size estimates.

“https://powerdb.info

6.1 Effectsize Meta-Analysis

As a final step in our systematization, we conducted a meta-
analysis of the standardized effect sizes from tests where we
had enough information for power analysis. With this, we
aimed at providing a broad overview of effect sizes in DCUS
which can be used to sanity check power analyses. While it is
preferable to find exact or at least close matches, we also want
to support researchers where this is not possible. Without
related work, researchers basically have to guess standardized
effect sizes or things like expected proportions or standard
deviations. To at least give a frame of reference against which
to judge these guesses, we examined the range of effect sizes
present in the field of DCUS. We used the categories from
Section 5.1 to aggregate the data for our guide.

To enable comparison and aggregation, we used the effect
sizes directly reported in the paper where possible and con-
verted them to Cohen’s d, as this is one of the most widely
used effect sizes in our sample. In other cases, we first used
the provided data to calculate an effect size, which we then
converted to Cohen’s d. For converting d to odds ratio (OR),
we used the formula from Haddock et al. [51], and a cor-
rection factor of 1.09, which is an average over the correc-
tion factors Poom and af Wahlberg recommend for sample
sizes between 20 and 100 [89], since developer studies mostly
feature smaller sample sizes. To convert between d and 0,
we used Rosenthal’s formula [92] as described by Burns et
al. [18]. Finally, as described above, sufficient data was not
reported for many tests, and we exclude such tests from our
analysis.

When judging the size of effects, effect sizes of Cohen’s
d=0.2 are generally regarded as small, d=0.5 as medium, and
d=0.8 as large effect sizes [22]. When converted to other
effect sizes, this yields OR=1.37, 2.21, 3.57 as small, medium,
and large effect sizes displayed as odds ratios, $=0.10, 0.24,
0.37 for the effect size ¢ used with y>-tests.

While we did not encounter the correlation coefficient r
used as an effect size in this analysis, we nevertheless note
for researchers encountering r, that effect sizes of r=0.1, 0.3,
and 0.5 are considered small, medium and large effects re-
spectively [22].

In our DCUS sample, the reported effect sizes ranged from
equivalents of Cohen’s d=0.004 to Cohen’s d=2.22 (M=0.55,
median=0.47, SD=0.42). We excluded two effect sizes from
a Fisher’s exact test in [76] and a McNemar’s test in [106],
where the reported success proportion in one of the groups
was zero, and thus the effect size approaches infinity. Figure 4
shows the distributions of effect sizes separately for the vari-
able categories of the dependent variables. So if researchers
have to make educated guesses for their power analysis, they
can compare their values with the violin plots to judge where
in the spectrum they lie.

Three variable categories were not assigned to depen-
dent variables with a present effect size: experience, system
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Figure 4: Violinplots for the distribution of effect sizes for
tests, faceted by the variable categories of the dependent vari-
able

type, and participant type. These categories were more fre-
quently applied to independent variables. We did not plot
data for variable categories where fewer than five effect sizes
were reported. This is the case for four variable categories:
usability (N=2), participant characteristics (N=1), task re-
lated (N=1), and study related variables (N=3). All of the
five remaining variable categories exhibit a large variance of
effect sizes, which range from negligible and small to large
and very large effects. Median effects for tests with artifact-
related variables as the dependent variable are in the medium
range, and for all other categories and overall, the median
effects are in the small range. However, in the cases of behav-
ior, security, and participant judgment as well as overall, they
border on medium according to Cohen [22]. We will update
the online version when enough tests have been reported with
the necessary statistical details.

6.2 Publication Bias Correction

There is one final important warning that needs to be high-
lighted. Irrespective of whether single entries from the
database are used or our aggregation violin plots, researchers
must be mindful of the effect of publication bias on reported
effect sizes [58]. Since papers with statistically significant
results are more likely to be published and studies in DCUS of-
ten have fairly poor power it should be expected that reported
sample effect sizes are larger than true population effect sizes
(see Ellis, p.79ff. [35]). Ideally, our database would also in-
clude work that is methodologically sound but did not get

published due to statistically non-significant tests. However,
since we could not think of any feasible way of including this
at scale, we recommend taking this publication/sampling bias
into account.

Consequently, when planning a study using effect sizes
from related work or from our systematization or even a pre-
study, it is recommendable to either correct the acquired effect
size estimates [60, 111] or increase the desired sample size to
be able to detect slightly smaller effects than ones reported
in prior work. While this correction still requires some guess-
work, it is a lot easier than having to guess blindly.

7 Power Analysis and Reporting Recommen-
dations

While we hope that our systematization and database will
already be a useful aid to researchers, it is still incomplete. A
big hindrance in conducting our work was the fact that many
tests were not reported with sufficient statistical information.

The American Psychological Association’s publication
manual contains a very comprehensive list of recommenda-
tions on how statistical tests should be reported [5]. Based
on the APA and our findings in DCUS we want to highlight
some recommendations for statistical reporting that we be-
lieve would be particularly helpful for future power analysis.

Report standardized effect sizes Wherever possible, report
standardized effect sizes in addition to p values. Ellis
provides an overview of effect sizes in Table 1.1 [35],
and the guides in the appendix C have notes on effect
sizes for seven commonly used hypothesis tests.

Report non-standardized effect sizes and descriptives
Since standardized effect sizes can be unintuitive, also
report descriptive statistics showing the effect size, e.g.,
there was a 1-point difference on a 7-point scale so
that interested researchers can calculate effect sizes
themselves. Report frequencies within all groups when
comparing nominal variables, as effect size calculations
commonly use these. Report descriptive statistics
for each group of the independent variable(s) when
comparing ordinal or interval variables. Report at least
means, standard deviations, and group sizes. If this
becomes too extensive, move this information to the
appendix or supplemental material. Make sure that the
descriptives make sense, e.g., a mean is not a good
summary statistic for a bimodal distribution.

Make fully anonymized data sets available when needed
If presenting all the descriptive statistics and frequencies
is too extensive, e.g., for regression analyses with
multiple independent variables, ideally, the anonymized
data can be made available.

Hypothesis confirmation vs exploratory analysis State
whether pre-defined hypotheses are being tested or
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whether an exploratory analysis is being conducted
[107].

8 Limitations

Our paper selection process focuses on the top-tier venues
in which developer papers are published. Our sample does
not include workshop papers or unpublished work, thus the
publication and sampling bias needs to be taken into account
as described above.

Additionally, even though descriptive data is useful when
assessing effect sizes and conducting power analysis, we only
included descriptive data in our database which was directly
associated with a hypothesis test. The sheer amount of de-
scriptive data reported in some papers, and the variety of ways
it is reported, which included visualizations only partially en-
abling inference of exact numbers, tables, within the text or
in the appendix, makes it hard to find a general structure for
storing this type of data. We defer this to future work.

Our work focuses only on a priori power analysis as de-
scribed in Section 2.2. Power, and as such, power analysis
is situated within the NHST framework, and the analyses
of the field and recommendations in this work apply within
NHST. NHST results in point estimates about coefficients or
effect sizes and a priori power analysis serves to determine
the number of participants needed to detect such an effect
at a specified significance level. The practice of focusing on
the value of point estimates, rather than the precision of the
estimates has also been criticized [69]. Even when planning a
study with adequate power to detect an effect, the confidence
intervals around it can be wide, leading to little precision
of the effect size. Different analysis methods also exist, e.g.,
Bayesian analysis [63, 64]. Additionally, some statistical anal-
yses, like regression, are not used merely in NHST to falsify
hypotheses, but also to make predictions, and different judg-
ment criteria would apply in these cases [19]. In predictive
analysis, i.e., what is often known as machine learning, the
influence and explanatory power of individual variables in-
cluded in the model is not as important as the accuracy of
the prediction [17, 19]. Other criteria for what constitutes
good reporting may apply in these cases than what we have
covered in this work. However, NHST is commonly used in
DCUS specifically and HCI in general. We did not in fact
encounter any Bayesian analyses in our sample of analyzed
DCUS papers and given that recruiting software developers
is hard [4], having sufficient data for large-scale predictive
analyses is likely rare in this field. In conclusion, we believe
that our contributions align with common methods used in
DCUS at the time.

Finally, we only conducted our meta-analysis on tests with
a single categorical IV and a single DV. Thus, our work is
limited to assisting in the power analysis of the following
tests: Fisher’s exact test, chi-squared test, McNemar’s test,
Wilcoxon rank-sum tests, Wilcoxon signed-rank tests, and

paired and independent t-tests. We will extend this in future
work. However, in combination with simplifications even the
current data might offer benefits for the assessment of more
complex tests[68, 87].

9 Conclusion

In this work, we systematized 467 tests and 413 variables from
a data set of 54 DCUS papers published in top-tier venues.
We examined their methodology and reporting of statistical
results, as well as their power to detect effects of different
sizes, which was not sufficient for small effects, and only
sufficient for large effects in about half of the papers, where
enough information was reported to analyze the power. We
provide domain-specific effect size ranges for different cate-
gories of variables, which can serve as a fall-back for effect
size estimation in a priori power analysis, with effect sizes
in DCUS averaging at Cohen’s d=0.55, when considering
all variable categories. The raw data on which these ranges
are based is included in a searchable database of extracted
information from these papers, which other researchers can
use to reproduce our analyses and facilitate their own power
analyses. The brief guides in the appendix can supply fur-
ther assistance in conducting power analysis for some simple
but often-used hypothesis tests. When reporting statistical
results, authors should include effect sizes, both standardized
and non-standardized, as well as descriptive statistics for each
condition as a way to foster the use of power analysis in
sample size planning and to enable the re-analysis of results
through meta-analysis.

10 Future Work

As stated in the limitations section, we currently only cover
a subset of all tests. In future work, we plan to extend this
list to include more tests. The current implementation of
our database does not have a custom user interface and is
operated using SQL or other query tools to access and un-
derstand the data within. Ongoing work aims to improve the
usability of querying the database. We also plan to extend
our approach to the whole field of usable security and privacy.
While DCUS faces particular challenges when recruiting par-
ticipants, we believe end-user studies would also benefit from
a priori power analysis. To aid in this extension and general
upkeep we plan on developing a public-facing interface to
the database so researchers can add their own papers. In the
future, the database could also be used to explore other as-
pects of methodology use, such as the number of coders and
use of inter-rater reliability in qualitative work, whether the
behavior is measured objectively or subjectively using the
categorization of variables, or to conduct sensitivity analysis,
i.e., to analyze the power to detect effects.
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B Database Structure

Figure 5 shows a simplified ERD of the database.
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Figure 5: Simplified ERD of the database, not all attributes and entities are depicted.
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C A Guide to Power Analysis for Hypothesis Tests with One Categorical Independent Variable
with Two Groups

Four parameters are relevant to power analysis: Power, the significance criterion (i.e. the o error level), the reliability of the sample results or sensitivity of the
test, and the effect size [22]. The power of a statistical test is the probability of the test correctly rejecting the null hypothesis, i.e. that a statistical test yields a
significant result, when the alternative hypothesis is true [35]. Power can also be represented as 1 — 3, wherein B is the Type II error, i.e. wrongly rejecting the
null hypothesis. This means that if a test has a statistical power of 0.8, as is an often used, acceptable value [22, 30], an actual effect will be detected 80% of the
time. The significance criterion or significance level represents the threshold of maximum accepted probability of making a Type I error, i.e. wrongly assuming
the alternative hypothesis, detecting an effect, when there actually is none [22]. Using the widely accepted threshold of 0.05 for statistical significance means
that only in 5% of cases, an effect is detected in the sample, even though in the population, it does not exist. Reliability refers to how well a sample estimate
represents the corresponding population parameter [22]. Reliability is influenced by different factors, depending on the type of estimated parameter, such as the
quality of the measurement instrument, and controlling sources of variance in the data, which might distract from the effect you are trying to measure [35]. The
largest and invariably present influencing factor, however, is sample size [22], such that larger samples produce more consistent and reliable estimates than
smaller ones. Finally, the effect size measures the amount of impact of an independent variable on dependent variables, rather than only judging the presence or
absence of an effect [35]. There are generally two types of effect sizes: Non-standardized, or simple effect sizes, which represent the size of effect in the units of
the outcome variable, and standardized effect sizes which represent the effect size relative to the variability in the sample or population [10]. When comparing
two means, e.g. with a t-test, the difference in mean completion time between two different interface variants represents a simple effect size, measured in units of
time, e.g. minutes, while a standardized effect size for this scenario, such as Cohen’s d, takes into account the standard deviation in the two groups. Standardized
effect sizes are commonly classified as either belonging to the d-family, such as Cohen’s d in the example above, or as belonging to the r-family, such as the
correlation coefficient Pearson’s r [92].

These four parameters are interdependent, such that when three of them are available, it is possible to calculate the fourth. Such calculations are referred to as
power analysis. In general, there are four different kinds of power analysis, each used to determine one of the parameters from the other three, although it is also
possible to determine both o and power if a ratio for a and [3 is given together with the other two parameters - this is termed compromise power analysis [38].
The other four flavors are summarized, e.g. by Cohen [22] in Chapter 1.5.

The tutorials on the companion website’ provide an overview of the data necessary to conduct power analysis for basic hypothesis tests, where to find this
data in our database, and how to use it to conduct power analysis using G*Power or R.
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