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Abstract
We examined the policies of 120 of the most popular web-

sites for when a user creates a new password for their account.
Despite well-established advice that has emerged from the
research community, we found that only 13% of websites
followed all relevant best practices in their password policies.
Specifically, 75% of websites do not stop users from choos-
ing the most common passwords—like “abc123456” and
“P@$$w0rd”, while 45% burden users by requiring specific
character classes in their passwords for minimal security ben-
efit. We found low adoption of password strength meters—a
widely touted intervention to encourage stronger passwords,
appearing on only 19% of websites. Even among those sites,
we found nearly half misusing them to steer users to include
certain character classes, and not for their intended purpose
of encouraging freely-constructed strong passwords.

1 Introduction
Passwords remain the most common means of authenti-

cation on the web, despite their shortcomings. According to
industry estimates, close to half of data breaches involved au-
thentication failures [13, 14]. As such, the need to use strong
passwords remains unchanged [15]. To encourage this, web-
sites mainly use three types of interventions during password
creation: blocklists, password composition rules / policies
(PCPs), and strength meters (Fig. 1). All three interventions
have been extensively researched in the information security
community.

Prior research has generally concluded that blocklists and
strength meters—when configured correctly—lead users to
create stronger passwords without significantly burdening
them [3, 6, 16]. However, PCPs that require specific character-
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(a) A website preventing us from using a password (“passer2009”)
that was leaked in a data breach.

(b) An example of a password strength meter. Its colored bar and
text feedback changes in response to the entered password.

(c) A 3class8 character-class PCP, which requires passwords be at
least 8 characters in length with at least 1 lowercase, 1 uppercase,
and 1 number.

Figure 1: Examples of the three interventions we studied:
blocklists, PCPs, and password strength meters.

classes (i.e., lowercase, uppercase, digits, and symbols) are
not recommended. That’s because users fulfill requirements
in predictable ways like capitalizing the first letter or placing a
“!” at the end, negating the putative security benefits [17–19].
Additionally, character-class PCPs have consistently received
poor usability ratings; in those same studies, users needed
more attempts to create a compliant password and had dif-
ficulty recalling the password. Instead, websites should set
only a minimum-length requirement while complementing it
with a blocklist check or minimum-strength requirement [3].

The research is clear; what is less clear is whether these
best practices are actually being followed. There has been no
comprehensive study to understand how online services guide
their users in setting up passwords (although previous studies
have looked at narrow aspects of this question [5, 20]). We
aimed to fill this gap by examining password policies of 120
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Best practices from prior research Our key findings

Blocklists (§ 3) • Do check users’ passwords against lists of
leaked and easily-guessed passwords [1–
4].

• Do reject the password if it appears on a
blocklist, prompt the user to select a dif-
ferent password [1, 4].

• More than half (71 / 120) of websites do not check
passwords at all, allowing all 40 of the most common
passwords we tested (e.g., “12345678”, “rockyou”).

• 19 more websites block less than half of the most com-
mon passwords we tested.

Strength meters
and min-strength
reqs (§ 4)

• Do provide real-time password strength
estimates [5–7].

• Do set minimum-strength requirements
by estimating guessability (the number of
guesses it would take for an adversary to
crack the password) [3, 8–11].

• Only 23 / 120 websites used password strength meters.
• Of those 23, 10 websites misuse meters as nudges

toward character-class PCPs and do not incorporate
any notion of guessability.

Composition
policies (§ 5, § 6)

• Do not require specific character-classes;
let users freely construct passwords [2, 3,
7, 12].

• NIST: Do set a minimum-length of at least
8 characters [1].

• 54 / 120 sites still use character-class PCPs.
• We devised a new method to measure the security and

usability of all 120 PCPs. Based on our method, we
found that all PCPs performed poorly, none provided
≥ 60% security and usability simultaneously.

Table 1: We contrast our key findings with established best practices for encouraging strong passwords.

of the most popular English-language websites in the world.
By signing up for accounts and manually testing requirements
for password creation, we discovered each website’s blocklist
strategy, PCP, and strength meter implementation (if any). We
asked the following research questions:

1. Are websites preventing users from using the most com-
mon passwords? (§ 3)

2. Are websites using password strength meters to encour-
age strong passwords? (§ 4)

3. What PCPs are used by top websites? What are the
security-usability tradeoffs of those PCPs? (§ 5, § 6)

We considered a website to be following best practices if it
simultaneously satisfied the following security and usability
criteria:

• Security:

– Allowed 5 or fewer of the 40 most common leaked
passwords and easiest-to-guess passwords (e.g.,
“12345678”, “rockyou”) we tried.

– Required passwords be no shorter than 8 characters
OR employed a password strength meter that accu-
rately measured a password’s resistance to being
guessed by an adversary [7].

• Usability: Did not impose any character-class require-
ments.

We found that only 15 websites were following best prac-
tices. The remaining 105 / 120 either failed to adhere or
explicitly flouted those recommendations in their policies,

leaving users at risk for password compromise or frustrated
from being unable to use a sufficiently strong password. We
compare our key findings with the best practices for all three
interventions in Table 1.

We further devised a method to measure the security and
usability of PCPs using a large corpus of breached pass-
words. Past studies have typically examined a small number
of different PCPs due to constraints with hiring participants,
which motivated us to design a method that could scale to
the large number of PCPs we examined. These studies have
also systematically neglected to investigate PCPs with short
minimum-length requirements, which we frequently found
during our study (the following paragraph suggests a reason
why previous studies may have excluded these PCPs). While
we were able to analyze the PCPs of all 120 websites we vis-
ited, we note that our strategy has limitations and should be
used to complement findings from previous user studies. We
found that no PCP had more than 60% security and usability
simultaneously. These results further call into question some
of the recommendations on PCPs that have been taken at face
value, without any evidence.

While there is broad consensus on best practices in the
prior literature, it is sometimes unclear exactly where to draw
the line. For instance, the National Institute of Standards and
Technology (NIST) recommends an 8-character minimum-
length requirement in its current version of Digital Identity
Guidelines—a widely relied-upon resource by both practition-
ers and researchers [1]. Yet, that recommendation does not cite
any research. Even though we performed a thorough literature
search and failed to find any research that had investigated
the usefulness of setting an 8-character minimum-length, we
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decided to count that recommendation as a best practice. Here,
we have used our best judgment in defining what constitutes
best practice, erring on the side of being lenient. While our
exact number might change if we change our definition of
“best practices”, our qualitative finding—that most websites
are not following best practices—does not change.

Our findings reveal a disconnect between industry and the
research community. Passwords have been heavily researched,
yet few websites have implemented password policies that
reflect the lessons learned. Researchers should make sure
their findings have societal impact by engaging in outreach to
website operators about their password practices.

2 Overview of password best practices
Websites mainly have three different ways to encour-

age users to create more secure passwords, as outlined by
NIST [1]. Here we discuss previous research on the methods
and their best practices.

2.1 Blocklists work, but need to be carefully configured

One simple way for websites to encourage more secure
passwords is to keep a list of common insecure passwords
(e.g., “123456”, “!QAZ1qaz”) and deny users from choosing
passwords from that list (Fig. 1a). Prior research has found
that password blocklists work. Kelley et. al (2012) created
a blocklist of five billion passwords returned by a cracking
algorithm created by Weir et. al (2009), and tested it in a
subsequent user study [2, 21]. They found that users created
passwords that were significantly harder-to-guess, compared
to passwords created under four other widely-used but smaller
blocklists. Shay et al. (2015) found that blocklists generally
increase security without sacrificing password recall among
users [7]. Habib et al. (2017) also supported using blocklists,
and further recommended that websites also restrict users
from submitting simple modifications to blocklisted pass-
words [16].

Blocklists may consist of common passwords gathered
through different strategies, including commonly used pass-
words that have been exposed in data breaches and passwords
that are likely to be guessed easily by password cracking tools.
Websites may also have different approaches to checking pass-
words against the blocklist; for instance, some may perform
exact matching while others strip out symbols before match-
ing. While NIST recommends that websites block common
passwords, it is neither prescriptive on which lists to use nor
on the comparison method [1].

The National Cyber Security Centre (NCSC) provides more
concrete guidance [4]. In collaboration with Have I Been
Pwned? (HIBP)—an online service that allows users to check
whether their credentials have been compromised in data
breaches—the NCSC has released a list of the 100,000 most
common passwords for websites to use as a blocklist (which
we refer to as NCSC-HIBP-100k later on in the paper). NCSC
guidance reasons that blocking the top 100,000 passwords

prevents users from “making poor password choices, whilst
not making it too difficult for them to choose one.”

Tan et al. (2020) later investigated the security-usability
tradeoffs of blocklist requirements and found that blocklists—
while effective—can cause user frustration if not properly
configured [3]. They recommend blocking passwords that
appear in NCSC-HIBP-100k or blocking common passwords
that appear in a corpus of 10 million leaked passwords, both
of which we used in our experiments.

In this study, we empirically examine whether websites
follow the best practices for blocklists established by prior
work.

Compromised credential checking. In addition to block-
ing the most common passwords, some websites may em-
ploy compromised credential checking, which checks whether
a username-password pair has been exposed in a previous
breach [22, 23]. Websites can more accurately measure the
risk of account compromise to the user because they addition-
ally consider whether her full login credentials are already
available to cybercriminals.

We did not test for compromised credential checking by
websites in our study because it presents practical difficulties.
Using other people’s compromised credentials raises ethical
concerns, whereas using our own compromised credentials
may be unreliable due to the small sample size. While not
listed by NIST as a best practice, some websites in our study
may check for compromised credentials due to its known
effectiveness.

2.2 Min-strength requirements and strength meters are
both effective and user-friendly

A newer approach to encourage strong passwords is to
set minimum-strength requirements. When a user submits a
candidate password, the website estimates the strength for the
submission, and if it is greater than the minimum threshold,
the candidate password is accepted. A strength meter that
updates in real-time is often shown to nudge users as they
craft their passwords (Fig. 1b).

To measure strength, researchers recommend and typically
use adversarial guessing—the number of guesses needed to
crack a password (i.e., the guess number or guessability). Pre-
viously, strength was often modeled using Shannon entropy—
a function of the length and number of character-classes
present in a password, or its complexity. However, complexity
has since been deprecated since it is not a good proxy for
guessability (see Appendix F for further background).

Estimating password strength is difficult, especially con-
sidering that users expect near-instantaneous feedback when
setting a password. Previous research has found that among
the password-strength meters in use on the web, most actu-
ally measured complexity instead of guessability, and were
actually inconsistent with one another (de Carnavalet and
Mannan, 2014) [5]. There was an open-source implementa-
tion that were found to be reliable, however: zxcvbn outputs
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accurate strength estimates through 106 guesses, the threshold
for online attacks [24].

In 2017, Ur et al. designed a data-driven strength meter
that estimates password strength using a client-side neural-
network created in a prior study (Melicher et al., 2016) [10].
Their meter received positive feedback from participants in
the following user study, and was accurate when compared
with results from password cracking tools, which were used
as ground truth [6]. Tan et al. (2020) later updated the meter to
enforce blocklists and minimum-strength requirements, while
also making the meter freely available to use [3]. They con-
cluded that minimum-strength requirements are the best way
to encourage strong passwords, and recommend setting the
minimum-strength threshold to at least 106 to prevent online
guessing attacks [3]. Since their password-strength meter di-
rectly estimates guessability—as opposed to PCPs indirectly
using complexity as a measure of strength—websites need
only set a minimum-guesses threshold instead of character-
class requirements, such as 106 for online attacks and 1014

for offline attacks. They further highlight that the meter’s un-
derlying neural network can be “easily retrained to reflect
changing patterns in passwords over time” and that its con-
figurable integration with blocklists can penalize common
passwords.

2.3 Character-class PCPs should not be used

To enforce the use of strong passwords, websites have em-
ployed password composition policies (PCPs). PCPs are rules
which users must follow in creating their passwords. These
rules most often include a minimum password length require-
ment along with character-class requirements (Fig. 1c). PCPs
fall into two categories: ones with character-class require-
ments (which we’ll refer to as “character-class PCPs” through-
out the paper) and ones without (PCPs that only have a mini-
mum length requirement, which we’ll refer to as “minimum-
length PCPs”).

As a vestige of when password strength was modeled by
Shannon entropy, character-class PCPs force users to cre-
ate complex passwords.1 While prior empirical research has
found that passwords containing multiple character classes
were generally more resilient to password-guessing attacks,
employing character-class PCPs is a hardly ideal solution (Ko-
manduri et al., 2011), (Kelley et al., 2012) [2, 12]. Character-
class PCPs have poor usability; users have found it difficult
to comply with the complex rules and to remember the pass-
word they have created. Moreover, character-class PCPs do
not account for a significant subset of users, who respond
predictably to comply with character-class requirements (e.g.,
adding numbers at the end, capitalizing the first letter). These
behaviors reduce the benefits of adding complexity (Shay et

1Modeling password strength with Shannon entropy is different from
using guess numbers. Fig. 4 in § 6 illustrates this; character-class PCPs not
only reject most weak passwords, but most strong passwords as well. See
Appendix F for further discussion on the differences.

al., 2010), (Weir et al., 2010), (Ur et al., 2015) [18, 19, 25]
As studies that have found that increasing minimum-length

requirements while reducing character-class requirements
can lead to strong passwords without decreased memora-
bility, NIST has also updated its guidance to recommend
websites remove character-class requirements (Kelley et al.,
2012), (Shay et al., 2014) [2, 17]. It further recommended that
websites require passwords be at least 8 characters long [1].
Tan et al. (2020) actually found that character-class PCPs do
not make it harder for attackers using modern-day cracking
tools anymore, since users now tend to incorporate multiple
character-classes of their own accord. Still, they recommend
against using character-class PCPs because users still find
them annoying and some users will still fulfill requirements
in predictable ways [3].

Even with the updated recommendations, character-class
PCPs may remain ubiquitous, though they are largely unmea-
sured; the only previous study that explored PCPs on the web
was from 2010 [20]. In our study, we measured the state of se-
curity and usability of PCPs present on the web by extracting
them from websites we visited.

3 Study 1: password blocking
We measured whether popular websites prevent users from

choosing the most common insecure passwords and found
most of them insufficiently block users’ choices. We selected
common passwords to test based on two different strategies:
blocking the 100,000 most frequently-used passwords found
in password breaches (NCSC-HIBP-100k) and blocking pass-
words guessed early on by state-of-the-art cracking tools.

3.1 Method

3.1.1 We tested 120 of the top websites

Figure 2: A breakdown of the 262 websites we attempted to
study. We skipped 59 websites that did not fit our selection
criteria. 83 websites either could not be analyzed or were
already represented among our corpus of 120 websites.

In this study, we are concerned with password policies at
the most popular English-language websites so our findings
could be verified by all co-authors (who are all fluent in En-
glish). We focused on popular websites because previous
research has shown that they generally have better security
policies [20], which means that our results can be seen as
an underestimate of conformity with best practices. Further,
we wanted to hold these specific websites to account because
they affect more users. Using an actively maintained ranked
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list provided by other researchers [26],2 we tested the top
120 websites that were accessible to us. We skipped some
websites for the reasons shown in Fig. 2; we reached our total
of 120 websites after trying the top 262 listed entries.

Before the tests, we extracted the PCP on each website and
encoded them in a regular expression (detailed in § 5.1). This
allowed us to select PCP-compliant passwords for testing.

3.1.2 Testing common passwords leaked in breaches
We sampled 20 passwords from the NCSC-HIBP-100k list,

which was ordered from most common to least common. We
started by removing passwords that did not fit the website’s
PCP (with the aforementioned regular expressions) and sam-
pling candidates to test at each website. In order to evenly
represent the most frequently-leaked passwords along with
the long tail of rest of the passwords in the list, we used a strat-
ified sample based on powers-of-10 (1-10, 11-100, 101-1,000,
1,001-10,000, and 10,001-100,000). We randomly sampled
candidates weighted by their position on the list ( 1

position ),
which gave us—in expectation—four passwords in each stra-
tum. In order to ensure fair comparisons, websites with iden-
tical PCPs were tested with the same 20 passwords (e.g., all
websites with a 1class8 PCP were tested with “babygirl23”,
“lifeisgood”, etc.) We refer to these tested passwords as
leaked passwords hereinafter.

Using the accounts we had set up, we attempted to change
our password to each of the leaked passwords. If the change
was successful, we logged out and logged back in with the
new password to confirm, then noted that the password was
accepted.

3.1.3 Testing common easy-to-guess passwords
In addition to restricting leaked passwords, websites should

discourage users from selecting common passwords that are
easily guessed (e.g., block “Blink182”, which can be guessed
in ∼ 9 tries, or “Hello123”, which can be guessed in ∼ 316
tries). Here we tested the first 20 passwords that were guessed
by state-of-the-art cracking tools at each website. We refer
to these tested passwords as easiest-guessed passwords here-
inafter.

We used Password Guessability Service (PGS)—offered
by the Passwords Research Team at Carnegie Mellon
University—to find these passwords to test [27]. PGS sim-
ulates a real attacker guessing passwords; it leverages mul-
tiple (5, at the time of our study) cracking tools to arrive
at the user-provided plaintext password, returning the guess
number (i.e., the number of guesses needed to find the pass-
word) as the password’s strength rating. PGS also offers the
min_auto configuration, which returns the minimum guess
number for each password across all 5 tools. Previous research
has found that the min_auto approach provides a conservative
estimate for the performance of an unconstrained professional
attacker [27]. Therefore, we referred to the min_auto guess

2Available at https://tranco-list.eu/list/VJ5N. Generated on
29 July 2021.

number for all of the passwords in this study.
Since PGS requires its users to provide passwords in plain-

text in order to receive results, we selected passwords to use
from the Xato 10-million password dataset [28]. To the best
of our knowledge, the dataset—which we will refer to as the
Xato passwords hereinafter—represents the largest and most
recent corpus of real-world passwords accessible to academic
researchers, and has been widely used in previous work [3, 6,
16, 24]. We did search for newer password dumps to comple-
ment the Xato passwords, but found they were either available
only on the dark web or offered in hashes rather than plaintext
(to prevent large-scale cracking) [29, 30].

With all of the Xato passwords rated, we used the 20 pass-
words with the lowest guess numbers as our easiest-guessed
passwords, and tested whether websites allowed them to be
used. As with our testing of leaked passwords, we only se-
lected passwords that fit the website’s PCP. We excluded pass-
words that were already in the leaked passwords, and selected
the password with the next-lowest guess number instead. Here,
we also tested the same 20 passwords across websites with
identical PCPs to ensure fairness (e.g., all websites with a
DigSym6 PCP—6+ characters with 1 digit or symbol—were
tested with “jordan23”, “jessica1”, etc.). Every selected
password could be guessed within 104.9 guesses, well within
the threshold of online guessing attacks.

3.2 Results

1. Most websites do not block leaked or easiest-guessed
passwords at all. 71 / 120 websites accepted all 40 pass-
words we tested. By allowing both leaked and easiest-
guessed passwords, these websites put their users at risk
of password compromise and subsequent account hijack-
ings. Additionally, accounts at other websites may be
at risk for compromise too; users often practice poor
security hygiene by reusing their passwords across the
web, so this misconception that their password was not
blocked and therefore suitable can have widespread in-
security.

These 71 websites span different industries, including
e-commerce (Amazon), social media (TikTok), enter-
tainment (Netflix), and news (Wall Street Journal). Ama-
zon, for instance, allowed us to change our password
to “123456”, the most common password on the web.
TikTok—despite requiring users to choose a 3class8
password—allowed us to use “p@ssw0rd” (guessed by
PGS in 7 tries, the fourth-most common 3class8 pass-
word) on our account.

2. Additionally, several websites had insufficient block-
ing. In addition to the 71 websites which accepted all
40 passwords, 19 sites accepted more than half of the
leaked or easiest-guessed passwords tested. In some of
these cases, this was likely due to insufficient block-
lists. For example, IBM seemed to only block choices
containing the word “password”, which only blocked 1
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(“Password1”) of the 40 passwords we tested on its site.
Samsung only blocked number sequences (e.g., “123”),
and Salesforce only blocked “password”. While this
may prevent users from using the most guessable pass-
words, the majority of the most common passwords still
get accepted.

3. 10 websites seemed to be using a shorter leaked pass-
words blocklist. We found 10 websites that blocked
most of the tested leaked passwords from the higher-
rank strata (e.g., 1-10, 11-100) but then allowed a major-
ity of leaked passwords from the lower-rank strata (e.g.,
10001-100000). This could indicate that these websites
are using a truncated version of the NCSC-HIBP-100k
list to check passwords, sacrificing security for usability.
Spotify, for instance, blocked all leaked passwords up
to the 101-1000 stratum but allowed all passwords be-
yond that point, which suggests that it only checks for
the top 1000 leaked passwords. Our finding here is tenta-
tive, however, since we assumed websites were using the
NCSC-HIBP-100k list. Table 5a in Appendix D shows
the breakdown by stratum for the 10 websites.

4. 7 websites blocked easiest-guessed passwords, but
not leaked passwords. 7 websites disproportionately
accepted more leaked passwords than easiest-guessed
ones (Microsoft: 14 leaked accepted / 0 easiest-guessed
accepted, LinkedIn: 14 / 0, WeTransfer: 19 / 4, Roblox:
18 / 6, Reddit: 16 / 4, Twitter: 12 / 2, and Indeed: 9 / 1).

These 7 websites might have been using a minimum-
strength requirement instead, since passwords they ac-
cepted generally had higher guess numbers than the pass-
words they rejected. If true, none of the websites set their
minimum-strength requirement to prevent the threat of
online guessing attacks (106 guesses). For example, Mi-
crosoft accepted one leaked password cracked with 251
guesses, and WeTransfer allowed one leaked password
cracked with 32 guesses. Table 5b in Appendix D shows
the minimum-strength cutoffs we found in our testing.

5. Few websites prevented us from setting leaked
and easiest-guessed passwords. Only 15 websites—
including Google, Adobe, Twitch, GitHub, and
Grammarly—blocked all 40 passwords we tried. 7 more
websites—including Apple, Canva, and VK—performed
moderately well, allowing 5 or fewer tested passwords.

6. Websites that allowed leaked and easiest-guessed
passwords hold sensitive user information. 38 of the
71 websites that allowed all 40 passwords store user pay-
ment information such as credit card or banking details,
including Amazon, Netflix, GoDaddy, and Squarespace.
64 / 71 websites store PII about users, including Line,
Intuit, Zoom, and MySpace. For each of the websites we
analyzed, we checked whether it stored sensitive infor-
mation using the test account we created earlier.

While some websites could be low-risk, the majority of
websites (70 / 120) we studied collect payment informa-
tion and thus are potentially high-risk.

Appendix G presents a risk categorization of these 120
websites based on PII and payment information collection,
along with the number of accepted leaked and easiest-guessed
passwords.

4 Study 2: strength meters
In 2014, de Carnavalet and Mannan investigated 11 pass-

word strength meters that were used in practice, and found
most were estimating password complexity instead of guess-
ability [5]. We wanted to know if there had been any changes;
are meters at top sites now estimating guessability when a user
chooses a password? To answer this, we reverse-engineered
their patterns by testing different passwords.

4.1 Method

We considered all form elements on the password update
page that updated in real-time to give feedback about the
strength of the input on the password field. We then ran two
tests on each of the strength meters to learn its patterns. First
we investigated whether the meter was consistent in discour-
aging insecure choices; we tested the 100 easiest-guessed
passwords from Xato that fit the website’s PCP and noted
the feedback received on each password. Next we tried to
reverse-engineer the mechanics of the meter through bound-
ary testing. We tested passwords with different lengths and
number of character-classes, as well as passwords that were
not compliant with the website’s PCP. We selected passwords
from Xato and also used passwords generated from password
managers—Lastpass and 1Password—and noted movement
patterns along the strength meter.

4.2 Results: most websites are not using strength meters
to measure guessability

(a) “bkmmafwexucnvnsgppdk”
(1 class, randomly generated)
rated as Weak (1/3).

(b) “Passw0rd” (3 classes)
rated as Strong (3/3).

Figure 3: Despite having a 1class6 PCP, Facebook’s password
strength meter is driven by adding more character-classes, and
not password strength.

1. Password strength meters are not widely used. We
found only 23 websites using password strength meters
of any sort. Despite previous research touting the added
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Password strength
meters at websites with:

Our finding(s) Implications on users Prevalence

Minimum-length PCPs • Encourages complex passwords over
passwords that are harder-to-guess.
Rates easiest-guessed passwords that
have more character-classes higher than
passwords with high guess numbers but
fewer character-classes.

• Discourages users’ choices by nudging
them toward fulfilling character-class
PCPs.

• Password strength feedback does not
reflect password guessability.

• Possible usability issues similar to
when fulfilling character-class PCPs.

6 / 18

Character-class PCPs • Encourages more complexity than
required. Meter tops out only if pass-
words include more character-classes
than required by the PCP.

• Password strength feedback does not
reflect password guessability.

• Potential usability issues when a can-
didate password meets all stated re-
quirements but does not fill the meter.

4 / 5

Table 2: Of the 23 websites that used password strength meters, 10 used those meters to encourage more complex passwords. 6
websites with minimum-length PCPs were actually using their meters as proxies for character-class PCPs.

security and usability benefits of using strength meters
and robust open-source implementations like zxcvbn,
most websites have not updated their password change
procedures.

Regarding recommended strength meters, we found only
two websites using zxcvbn; Dropbox (the organization
behind the meter) and CPanel. The rest of the websites
were using black box implementations that may not have
been rigorously tested by the research community.

2. 10 / 23 websites misuse strength meters to measure
complexity instead. Rather than measuring password
guessability, we found meters were actually being used
as proxies for character-class PCPs. We break down our
results by PCP here and in Table 2:

6 / 18 websites with minimum-length PCPs use
strength meters as character-class PCP nudges.
Their strength meters would only increase if a pass-
word had more character-classes than the one entered
prior, and not if it had a higher guess number. Despite
Facebook’s 1class6 PCP, its 3-point strength meter—
shown in Fig. 3—considered all-lowercase passwords
weak; “zcdplgbtqldecfrzdqrw” (randomly generated)
was considered Weak (1/3) while “Password1” was
considered Strong (3/3). The strength meter at Yelp
(1class6 PCP) unconditionally considered 16-character
passwords strong, while requiring shorter passwords con-
tain all four character-classes to be considered as such;
“123456789123456789” (guess number∼ 631) was con-
sidered Great (4/4) while “WzNGVE5uuWHd” (randomly
generated) was considered only Good (3/4). Since these
meters measured complexity instead of estimating guess-
ability, their readings were not reflective of how diffi-

cult it would be for an adversary to crack the password.
Furthermore, users are nudged into creating complex
passwords at these sites. The other 12 websites with
minimum-length PCPs—including Google, Yahoo, and
Twitch—had strength meters that more closely corre-
sponded with password guessability; they rated all 100
passwords we tested as weak (<50% on their respective
meters), and we did not find any insecure patterns when
testing passwords with different character-classes and
length.

4 / 5 websites with character-class PCPs use their
meters to encourage further complexity. They re-
served the highest ratings on their meters for passwords
that went beyond the required character-classes. Ap-
ple’s strength meter, for instance, would only reach
100% if the password was 16-characters long and con-
tained a symbol, despite its corresponding 3class8 PCP
not requiring symbols. Aliexpress’s 3-point meter only
topped out if all 4 character-classes were included, de-
spite a 2class6 PCP; “jmDy&!py$Df&ˆtw*iBYy” (ran-
domly generated 3-class) was rated Middle (2/3), yet
“Abc123!@#” (guess number ∼ 53) evaluated to High
(3/3). Since users may already be led by these sites
to believe that compliance with character-class require-
ments would automatically yield strong passwords, they
may find it frustrating when their password does not
top up the strength meter. We only found one website—
ScienceDirect—which did not encourage further com-
plexity, only because its meter already filled up com-
pletely upon PCP-compliance.

3. 12 / 23 websites were inconsistent between meter
feedback and password acceptance. We then raised
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the question: is the feedback from the meter on the
user-side consistent with the ultimate decision by the
website to accept or reject a user’s chosen password on
the server-side? Here, we used findings from our pass-
word blocking analysis—in which we had selected the
20 easiest-guessed Xato passwords that were compliant
with a website’s PCP and tested whether the website
would accept them (§ 3)—and compared them with feed-
back given by the website’s password strength meter.
We now focused on feedback given by the website’s
strength meter right before submitting each password
to the server. For each password, if feedback from the
strength meter was negative (i.e., <50% of the scale), we
coded user-side feedback as “unacceptable,” otherwise,
we coded the feedback as “acceptable.”3

12 / 23 websites had varying levels of inconsistency. 5
websites rated all 20 passwords as “unacceptable,” yet
the server allowed all of them to be used; these websites
rely solely on their strength meters, and do not perform
additional checks before updating passwords. At CPanel,
all 20 tested passwords were “unacceptable” (we found
it was using zxcvbn), yet the server only rejected 13,
which had all-letters or all-repeating-digits (e.g., rejected
“66666666” but accepted “12345”).

Only 11 / 23 websites were consistent between their
strength meter feedback on the user-side and acceptance
on the server-side. 8 of those sites—including W3C,
Tumblr, and TechCrunch—rated all 20 passwords as
“unacceptable,” and all 20 were ultimately rejected. The
other 3 sites were consistent in the opposite manner; they
rated all 20 passwords “acceptable,” and all 20 were ulti-
mately accepted. Overall, these inconsistencies can lead
to insecurity stemming from users unknowingly setting
easiest-guessed passwords, as well as frustration when a
user is told a password is good enough but is rejected.

Our key finding is that despite the usefulness of password
strength meters being established in the research literature,
adoption has remained low, and 10 / 23 of the sites that have
them—6 of which have minimum-length PCPs—actually mis-
use them as proxies for character-class PCPs.

5 Study 3: composition policies
5.1 Method

5.1.1 We extracted the PCPs on 120 of the top sites
Using the aforementioned Tranco list (§ 3.1), we visited

the top 120 websites that were accessible to us. At each web-
site, we created an account and subsequently navigated to the
password change page to reverse-engineer the website’s PCP.
We chose to use the password change page over the account

3Fortunately, we did not have to deal with any ambiguity between scale
readings and labels on the meters we saw; all points below 50% had negative
feedback, and all points 50% and above had neutral or positive feedback.

creation page in order to avoid the need to repeatedly create
new accounts and enter sign-up information (e.g., usernames,
email addresses, names).

We noted the static creation rules that loaded on the form,
then extracted dynamic rules by varying the password input
with sample strings we had prepared in advance. We varied
our sample strings to include strings with 1 class only (all
lowercase letters, all digits, etc.) and strings with multiple
classes (uppercase, lowercase, digits, and symbols). For sym-
bols (i.e., special characters), we limited our permutations
to the 33 ASCII characters that could be typed on a stan-
dard U.S. keyboard (shown below; note presence of the space
character):

!"#$%&’()*+,-./:;<=>?@[\]^_‘{|}~

We prioritized completeness in our method. For each PCP,
we input and submitted non-compliant sample strings to make
sure the website was enforcing its shown PCP. We also
tested classes and characters that were not explicitly stated
(e.g., for a hypothetical “include at least one number”
character-class PCP we tested a sample string with only
numbers to make sure there was no letter requirement, for a
vague “include a special character such as !#@( ”
PCP we tested all 33 symbols and occasionally found web-
sites that 1) counted other symbols towards the requirement,
2) allowed but did not count other symbols towards the re-
quirement, or 3) disallowed other symbols entirely. The entire
extraction task was done by hand and recorded in a spread-
sheet (see Appendix C for a discussion of our attempts at
an automated pipeline) by one of the co-authors and verified
for correctness by a second co-author. After verification, we
encoded the raw text of each website’s PCP into a regular ex-
pression (which was also verified by at least two co-authors).
The regular expressions were later used for other analyses in
our study. We ended up with 73 different regular expressions
(hence, 73 distinct PCPs among the 120 websites).

5.2 Results: character-class PCPs are still widely used

Character-class requirement Websites (N=54)

Lowercase letters 31 (57.4%)
Uppercase letters 30 (55.6%)
Letters (case-insensitive) 19 (35.2%)
Digits 53 (98.1%)
Symbols (special characters) 37 (68.5%)

Table 3: Character-class requirements on the 54 websites
with character-class PCPs. Nearly all require that passwords
include a digit.

Our findings are as follows:

1. Character-class PCPs are still widely used. 54 web-
sites (45%) still require users to include specific charac-
ter classes in their password, despite recommendations
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against these requirements. As found in previous studies,
character-class PCPs impose a huge usability cost for
a minimal security benefit [17, 19]. Table 3 shows the
breakdown of the required character-classes. Almost all
character-class PCPs require a digit, and symbols were
the second-most popular requirement.

2. Websites with character-class PCPs are more likely
to allow the most common insecure passwords. Cross-
referencing our findings from § 3.2, we found that 38
of the 54 websites (70.4%) with character-class PCPs
accepted all 40 of the leaked and easiest-guessed pass-
words we tried, compared with 33 of the remaining 66
websites (50%) with minimum-length PCPs. This may
suggest that websites believe that complexity require-
ments are sufficient in getting users to create strong
passwords, so they do not need to check passwords on a
case-by-case basis.

3. The most common minimum-length requirement is
now 8 characters. In 2010, Bonneau and Preibusch
found that 52% of websites studied were using 6-
character minimum length—followed by 4 characters
(14%) and 5 characters (10%)—and that less than
5% of websites studied had an 8-character minimum
length [20]. In our results over a decade later, we found
that 66 / 120 websites studied (55%) have an 8-character
minimum length, followed by 6 characters (35 / 120) and
5 characters (7 / 120). Perhaps this is a result of updated
guidance from NIST in 2017, which now recommends
an 8-character minimum length for passwords, up from
its previous recommendation of 6 characters [1, 31].

4. 9 websites had inconsistencies between the PCP and
text shown. 1 website mentioned only a minimum-
length requirement, but we were unable to save our
password unless it contained a digit or a symbol. 2
other websites similarly failed to mention an additional
character-class requirement in their text, which we un-
covered through our testing. On the flip side, 4 web-
sites did not enforce all of the character-class require-
ments mentioned. For example, Canva seemed to re-
quire us to include “a mix of letters, numbers &
symbols” in our password, but we found that there were
actually no character-class requirements. 1 website men-
tioned that whitespace characters were not allowed, but
still accepted our password containing it. Lastly, 1 web-
site with a 2class8 PCP had no text at all. We were only
able to reverse-engineer its PCP after opening up devel-
opment tools on our browser to view the server responses
and making multiple attempts with different character-
class combinations. Overall, these inconsistencies can
lead to a confusing user experience.

Our key finding is that character-class PCPs are still be-
ing used on 45% of popular websites, burdening users while

providing minimal security benefit. Even with the research
against these complexity requirements, websites continue to
force users to include extra characters like digits or symbols
in their passwords, which some users may respond to in pre-
dictable ways. Furthermore, over 70% sites that continue to
use character-class PCPs do not have any other password
checks in place, allowing leaked and easiest-guessed pass-
words to be used.

We document several additional findings in Appendix E.

6 Study 4: PCP security and usability
In previous studies on PCPs, researchers typically con-

ducted user studies by recruiting thousands of participants
online (e.g., on Amazon Mechanical Turk) to perform pass-
word creation tasks on a testbed website. They would then
analyze the passwords created for each PCP, such as mea-
suring the complexity (entropy) of passwords created under
each condition, the fraction of passwords guessed at a given
guessing threshold, number of failed attempts, user sentiment,
time taken to create a compliant password, and password re-
call rate [2, 12, 16]. These studies have influenced changes
in password best practices over the past decade, particularly
with the recommendation against character-class PCPs [1].

While it would certainly be useful to perform the same
kind of password creation study for real-world PCPs, this
was not feasible due to the large number of experimental
conditions. As mentioned in § 5, we uncovered 73 unique
PCPs among the 120 studied. For reference, in a previous
user study, the authors recruited 5,099 participants who were
assigned to 15 different PCPs; in order for us to replicate
that power, we would have to recruit nearly 5 times as many
participants [3]. These previous studies have also recognized
the same limitations, and have kept the number of PCPs tested
relatively small [2, 16, 17].

We therefore devised a different approach to measure the
security and usability of PCPs studied. As we will show, our
method has both advantages and limitations. Therefore our
findings are tentative, and are ultimately intended to comple-
ment the findings from previous studies by providing insight
into PCPs in practice.

6.1 Method

The fundamental insight of our method is to consider a PCP
as a binary classifier, whose goal is to reject weak passwords
and accept strong, hard-to-guess passwords. Here, we defined
a password as weak if PGS could guess it in an online attack
(within 106 guesses), and strong otherwise.

6.1.1 We assumed a corpus of passwords created with-
out constraint

Users have different ways of generating passwords that
are not influenced by a website’s PCP [32]. Some examples
include:

• Using a fixed password for all websites (password reuse)
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• Using a password manager to automatically generate
passwords

• Using a fixed heuristic (e.g., dictionary word + digit)

For our analysis we needed a sample of these “uncon-
strained passwords” to make unbiased comparisons of security
and usability across PCPs. Our sample used here is the Xato
10-million passwords set (56% / 44% split between strong and
weak passwords) [28]. Even though it did not meet our require-
ment of passwords generated without constraint—because
users were already subject to the PCPs of the breached web-
sites in this set—we still used it for analysis. We discuss the
implications of using the Xato passwords later on.

6.1.2 We used sensitivity as a proxy for security
We assumed that whenever a user sets a new password at

each of the 120 websites we studied, they initially generate
one using an unconstrained strategy. If allowed by the PCP,
the user will then confirm and set the password. Any PCP
will allow some fraction of weak passwords through, how-
ever, which is why we measured the sensitivity of the PCP.
We consider sensitivity—the percentage of weak passwords
rejected—as a proxy for security. A website that simply al-
lows any password to be used (i.e., no PCP), for example,
would have 0% sensitivity.

One advantage of using sensitivity is that it is unaffected
by outliers. Some generated passwords may have extremely
high guess numbers and thus skew the average strength of
passwords accepted by a PCP, for example. Since we used
PGS to obtain guess numbers for the Xato passwords, we also
benefited from accurate password strength ratings, as opposed
to using entropy [25]. Our method to measure security has
one disadvantage, however. Unlike in an intervention study,
we don’t know how users will react to any of the 120 PCPs,
such as whether users go on to create strong passwords [12].

6.1.3 We used specificity as a proxy for usability
Some users—given their strategy for unconstrained pass-

word generation—will be frustrated by the PCP and be forced
to pick a different strategy and password. While the usability
cost would be justified if their password was actually weak, it
would not be justified if it was strong. In the case of a pass-
word manager being incompatible with a PCP, they may be
forced to pick a password manually, making it both weaker
and less memorable (see § 2). Here, we used specificity to
measure this usability cost. We used this measure as a proxy
for usability of the PCP.

Specificity is an objective measure that complements other
usability measures, like recall, user dropout, and time taken to
enter a password. The main disadvantage to using specificity,
however, is our inability to gauge user sentiment. That is,
users may not necessarily feel frustrated by the PCP if their
unconstrained password generation strategy is unsuccessful,
especially if they have repeatedly encountered the same kind
of PCP and have (predictable) adaptation strategies, or if their
password manager accommodates them [33].

6.1.4 Limitations of using Xato passwords
Finally, we revisit the assumption about having a corpus

of unconstrained passwords. Unfortunately, the Xato pass-
words set does not satisfy this requirement. While it is incred-
ibly diverse—with weighted samples of over 1,000 password
dumps collected over at least 5 years—most of the passwords
were probably created by users reacting to some PCP [34].
One advantage to using the dataset, however, is that it doesn’t
contain passwords that required cracking [34]. This means
that there is no bias towards weaker passwords.

Ultimately, using the Xato passwords in our security / us-
ability evaluation means that we will overestimate usability
(e.g., the segment created under the same PCP as the one
being tested will have 100% usability) and underestimate se-
curity (e.g., the segment created under the same PCP as the
one being tested will have 0% security). We reiterate that
our findings in this section should be regarded as tentative;
yet the strong limitations of PCPs that they reveal call into
question the usefulness of PCPs and call for further research
using different corpora and/or methods. For instance, a future
user study could ask users to create passwords under no con-
straint (i.e., “include at least 1 character”) and make
that password set available for other researchers to use.

6.2 Results
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Figure 4: Scatter plot of security v.s. usability of PCPs for
120 websites. Each data point was plotted with 10% opacity,
so more opaque areas reflect higher concentrations of PCPs
with close scores.

Fig. 4 shows the scores of all websites we examined plotted
along security and usability scores. Most of the 120 websites
fall into one of three clusters: good security but poor usability
(on the top left), good usability but poor security (bottom
right), and average security and usability (in the middle of
the graph). For comparison to a baseline, we also plotted
a hypothetical PCP that rejects a random proportion α of
passwords (and accepts 1−α of passwords), the diagonal
line represents that PCP’s security and usability scores for
0 ≤ α ≤ 1. Our findings are as follows:
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1. No PCP simultaneously had more than 60% secu-
rity and usability. They either rejected too many strong
passwords or accepted too many weak ones. Note that a
hypothetical random PCP that blocks 50% of passwords
has 50% security and usability simultaneously.

2. PCPs fall on different parts of the security-usability
spectrum. Our results suggest a classic security-
usability tension among PCPs. 69 / 120 websites we
studied take opposite stances on the tradeoff; 33 have le-
nient policies (poor security cluster) and 36 have overly-
stringent policies (poor usability cluster). Unsurprisingly,
the PCPs within each of the 2 clusters are very similar to
one another, with 1class6 being the majority PCP in the
poor security cluster and 3class8 the majority in the poor
usability cluster. We hypothesize that any PCP cannot
be usable without allowing some weak passwords, and it
cannot be secure without rejecting some strong password
candidates.

1class8 policies make up most of the PCPs with middling
acceptance rates, rejecting only 62% of weak passwords
and accepting only 58% of strong passwords. While
considered to be a best practice, our results suggest that
the PCP alone is insufficient in preventing users from
choosing weak passwords; websites need to have addi-
tional safeguards—such as blocklists—to filter out the
remaining 38%. This was not the case at nine 1class8
websites, including SoundCloud, Eventbrite, and Trello;
they allowed all of the leaked and easiest-guessed pass-
words we tried, like “1234qwer”,“1234567890”, and
“babygirl23” (cross-referencing our findings from § 3).

3. Most websites with insecure PCPs do not prevent
insecure password choices. 22 / 33 websites in the
poor security cluster—including Amazon, Fox News,
Etsy, and Dropbox (all with a 1class6 PCP)—do not
block users from choosing passwords like “abc123” and
“qwerty”—which we found with our password blocking
analysis (§ 3)—and two more have insufficient blocking
strategies (Slack and Yelp).

Our key finding is that PCPs are unsatisfactory in one or more
ways. None of the 120 PCPs had more than 60% security
and usability simultaneously. We hypothesize that there is
no perfectly secure and usable PCP; all composition policies
must make a tradeoff between user convenience (minimum-
length PCPs) and strong passwords (character-class PCPs).
Future studies should further investigate this hypothesis with
different password corpora and methods. While websites with
lenient PCPs can moderate the security gap with additional in-
terventions like blocklists, we see this is not typically the case.
A majority of these sites allow leaked and easiest-guessed
passwords to be used.

7 Limitations

7.1 Limitations of analyzing the most popular websites

In these studies, we focused on the most popular websites.
Since we did not additionally examine password policies of
websites at the long tail (due to the work required to manually
visit each website), we cannot be confident that our findings
generalize to all websites. But note that previous research
suggests that long-tail websites are likely to have even weaker
security policies [20].

In Appendix B, we detail the access failures encountered at
142 websites in the ranked list we used. While future research
can make an effort to study some of their password policies
(like at government websites), we don’t believe their exclusion
here affects our overall finding: most top websites are not
following best practices in their password policies. Moreover,
83 / 142 excluded websites did not collect passwords, shared
authentication with a website we already analyzed, or were
unreachable (e.g., DNS, measurement links).

7.2 Limitations in the PCP security / usability analysis

In the PCP security / usability analysis, we rated the
strength of all 10 million Xato passwords using PGS under
no policy, which served as our ground truth. As PGS conser-
vatively simulates an adversary cracking passwords, it also
offers to configure guess number calculations under a par-
ticular PCP, since the adversary—who knows the website’s
PCP—can constrain their search space to guess passwords
more efficiently (the default option is no policy). Uploaded
passwords that were compliant with the selected policy (17
options at the time of writing) would then be guessed with
modified approaches using each of the cracking tools [27].
Since we did not select a policy to use, our results may lead to
slight overreportings of both the fraction of strong passwords
accepted and the fraction of weak passwords rejected for some
of the PCPs. Obtaining more accurate ground truth measures
would be challenging: PGS limits submissions to 30,000 pass-
words in order to ensure fair use of their free service, and their
cracking tools can take a few weeks to complete.4

We did, however, further investigate the ramifications of
using the no-policy guess numbers in our security / usabil-
ity analysis, and found our main findings still hold true. We
found that the false positive risk—the probability that a pass-
word rated strong was actually weak—was less than 4.56%
at the 106 guesses threshold we used, for all 120 PCPs.5 We
randomly sampled 30,000 compliant passwords—weighted
by their frequency—for each PCP and obtained their “PCP-
aware” guess numbers from PGS in order to make the pair-
wise comparisons.

4The Passwords Research Team allowed us to submit all 10 million Xato
passwords at once—for cracking under no policy—as a courtesy.

5Here we are concerned with the probability of a positive result being
false [35]. This is different from the type 1 error rate (the false positive rate).
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7.3 Limitations in scale

Our study required a significant amount of manual work to
learn all of the password policies. For example, in our block-
list analysis alone, we attempted 4,800 password changes
to determine whether websites allowed leaked and easiest-
guessed passwords (∼200 hours of work). Since we manually
visited each website to reverse-engineer their password policy,
we were only able to test 120 of the top English-language
websites. We hence did not try to draw statistically valid con-
clusions about differences between industry sectors (e.g. news
vs. social media websites) because of the small number of
websites. We leave those topics (e.g., how the rates of com-
pliance with best practices might vary by rank, geographic
location, or sector) as future research directions.

We initially attempted two automated approaches which we
ultimately abandoned due to concerns with completeness and
data quality. We include our experiences in Appendix C to
hopefully serve as useful notes for those who want to extend
our work.

8 Other related work
Some previous empirical works have partially looked at

password policies in practice. Bonneau and Preibusch (2010)
extracted the PCPs of 150 websites across 3 different site cate-
gories: identity providers, content providers, and e-commerce
sites [20]. They found that identity providers were signifi-
cantly more likely to have minimum-length requirements (>1
character password), character-class requirements, and basic
dictionary checks whenever a user changes their password.
Overall, they found poor adoption of industry standards for
password implementations, such as using TLS, CAPTCHA,
and rate-limiting password guesses.

de Carnavalet et al. (2015) studied the password strength
meters used at 11 popular websites [5]. They extracted or
reverse-engineered the meter implementation at each site to
local scripts and ran large-scale automated tests to get strength
readings of known passwords, running a total of 53 million
tests. They found most meters were only measuring password
complexity, with only one implementation—zxcvbn—going
beyond to penalize dictionary words. They also found that
among the password strength meters in use on the web, most
of them were inaccurate and inconsistent; passwords rated
weak were often rated strong at other websites, and vice versa.

We built on the work done in both studies to deliver new
additional insights. For password strength meters, we found
websites with minimum-length PCPs that were using their
strength meters as character-class nudges (§ 4). We also fo-
cused on investigating consistency between meter feedback at
the client and password acceptance at the server by attempt-
ing to set the 20 easiest-guessed passwords we tested, and
found more than half of websites were inconsistent. For PCPs,
we resurveyed the landscape over a decade later, and found
changes in the types of requirements used (§ 5). We also de-

veloped a new method to measure the security and usability of
PCPs, and tentatively found none of them had decent security
and usability simultaneously (§ 6).

9 Conclusion
Even with the gains in user authentication methods over

the past two decades, passwords remain essential for online
access, and replacing them in the near future seems improba-
ble [36]. For these reasons, online services—especially the
websites in which we found flaws—need to focus on password
security and usability. Websites with insufficient blocklisting
strategies, an outdated character-class PCP, or a misconfigured
password strength meter should review the best practices sum-
marized in Table 1 and make adjustments to their password
policies. We further encourage them to review the research
behind the guidelines in order to avoid misconfigured inter-
ventions that are inconsistent with one another (e.g., § 4).

We also suggest future research that directly engages with
system administrators, in order to understand their mindset
on password security. Researchers may then be able to un-
cover the reasons for the disconnect between industry and the
academic community, and take steps towards reconciling the
disparity. Some hypotheses include:

• Password policy is security theater: measures such as
character-class PCPs, even if ineffective, may give users
a false sense of security, and websites use them for this
reason.

• Websites have shifted their attention to adopting other
authentication technologies, such as multi-factor authen-
tication (MFA), and believe that it is unnecessary to
strengthen their password policies. (Note that there are
severe weaknesses in SMS-based MFA, so this view
might be overoptimistic [37, 38]).

• Websites need to pass security audits, and the firms who
do these audits, such as Deloitte, recommend or mandate
outdated practices.

• Websites face some other practical constraint that the
academic community does not know about.

We have made our dataset available for other researchers
at: https://passwordpolicies.cs.princeton.edu/.
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A Visualization of best practices
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Figure 5: Websites following best practices are in the shaded green area. Unlabeled areas contain 0 websites.

Fig. 5 shows the breakdown of websites we considered to be following best practices. We considered a website to be following
best practices if it allowed 5 or fewer of the 40 most common leaked passwords and easiest-to-guess passwords we tried, required
passwords be no shorter than 8 characters, and did not impose any character-class requirements. We also considered websites
with a shorter minimum-length requirement as following best practices if they satisfied the other two recommendations and
further employed an accurate password strength meter to guide users to choosing strong passwords.

B Access failure details

Reason Websites
(N=142)

Inaccessible 69
No registration page 26
No passwords for auth 3
Government website 2
University website 4
Purchase required 7
Never received registration SMS 1
Non-U.S. phone number required 1
Site unreachable from browser 25

Explicit material 6
Non-English 38
Shared reg page w/ already-visited site 29

Table 4: Breakdown of the websites we skipped in our study.

We tried visiting the top 262 websites on the Tranco list in
order to obtain the 120 websites for our study. Table 4 lists
the reasons we skipped the other 142 websites.

C Lessons from our attempts at automation
Some readers may wonder why we pursued manual data

sourcing methods in this study instead of an automated ap-
proach, since doing so may have enabled us to scale up the
number of websites tested. As a matter of fact, we initially
attempted two automated approaches which we ultimately
abandoned due to concerns with completeness and data qual-
ity. We include our experiences in this writeup to hopefully
serve as useful notes for those who want to extend our work.

We first tried building and using a Selenium-based web
crawler to automatically extract PCPs from websites. Our
crawler consisted of scripts tasked with parsing and navigat-
ing the sites of given domains to find the registration form
and the PCP on the form. We leveraged search engine key-
word searches to find registration pages (e.g., “join”, “create”,
“signup”), as well as pattern detection of HTML tags and key-
words to find and extract the PCP. However, we soon found
that it was practically infeasible to develop any general so-
lution; the unstandardized registration flows across websites
required us to constantly add code to handle an extremely
wide range of UI designs.

Our second approach utilizing MTurk was more successful,
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Fraction of accepted leaked passwords by stratum

1-10 11-100 101-1,000 1,001-10,000 10,001-100,000

bit.ly 0/2 1/3 1/4 1/6 3/5
chase.com 0/1 1/3 1/4 5/7 4/5
espn.com 0/2 1/3 2/4 6/6 5/5
facebook.com 0/2 1/3 0/4 3/6 4/5
instagram.com 0/2 1/3 0/4 3/6 4/5
slack.com 0/2 1/3 1/4 6/6 5/5
spotify.com 0/2 2/3 1/4 4/6 5/5
surveymonkey.com 0/2 2/3 1/4 4/6 4/5
tripadvisor.com 0/2 0/3 0/4 6/6 5/5
yelp.com 0/2 1/3 4/4 5/6 4/5

(a) Looking at accepted leaked passwords by stratum, we hypothesized 10 websites
were using shorter verisons of the NCSC-HIBP-100k list.

Hypothesized minimum-
strength threshold

indeed.com 103

linkedin.com 102.3

microsoft.com 102.4

roblox.com 101

reddit.com 101

twitter.com 103.4

wetransfer.com 101.5

(b) Minimum-strength thresholds we hypothesized
were being used at seven websites. For reference,
the threat of online guessing attacks ends at 106

guesses.

Table 5: We found 10 websites that seemed to be blocking passwords based on a shorter common passwords list, and found 7
websites that seemed to be blocking passwords that did not meet a minimum-strength requirement.

but still produced data of dubious quality. We developed and
published two separate MTurk Tasks to workers on the market-
place: one to identify registration pages from a given domain,
and a second to extract the PCP from a given registration
page. For each Task, the Worker—our hired user—was given
the domain or registration page, and given a form to input
information found such as the minimum-length requirement
and character-class requirements. We also included quality
assurance questions on the forms to confirm that the Worker
had understood the given task and was paying attention. De-
spite the additional quality assurance measures, we found
widespread inconsistency in the clarity of information col-
lected across websites and even at the same website (we made
sure to create two Tasks for each website). We concluded that
our assurances were not rigorous enough, and that we had
also underestimated the difficulty of educating Workers about
extracting PCPs.

D Password blocking trends from § 3
Table 5 shows two trends we found in our password block-

ing study (§ 3). In Table 5a, we hypothesized 10 websites
were using shorter versions of the most common passwords
list we used. In Table 5b, we hypothesized 7 websites had a
minimum-strength requirement.

E Additional findings from § 5
1. Symbol definitions varied among the 37 websites re-

quiring them. 13 websites counted all 33 symbols we
used towards their requirement, and half of the websites
counted all but one symbol. The remaining websites
below the median counted far fewer symbols, however,
including 1 website that counted only #, $, &, and @ (4
symbols), and 2 websites that counted only 9 and 10
symbols, respectively. The most commonly excluded

symbol was the space character, which counted at only
15 / 37 websites, followed by the ’, ", and ‘ characters,
each counted as symbols at 28 / 37 websites.

13 websites placed even more restrictions on certain sym-
bols by outright disallowing them in passwords, includ-
ing the 2 websites that counted only 9 and 10 symbols;
any symbol that did not count was not allowed to be in
the password.

2. 1class8 is the most common PCP. 24 / 120 websites
(20%) were using this PCP, followed by 1class6 (22 /
120). 3class8 is the most common character-class PCP
(and third-most popular overall), we found it on 17 web-
sites, followed by 4class8 and DigSym6, each found be-
ing used on 10 websites.

3. Some websites were using maximum-length require-
ments that are too short. 17 websites had a maximum-
length requirement below 64 characters—the baseline
recommended by NIST—including 1 website with a 14-
character maximum length, 3 with a 15-character maxi-
mum, and 4 with a 20-character maximum [1]. Setting
too short of a maximum length hurts security by pre-
venting users from choosing long passwords that are
hard-to-guess.

F Additional background
F.1 Password security is better modeled through adver-

sarial guessability

Password strength has traditionally been measured using
Shannon entropy, a function of the counts of lower- and up-
percase letters, digits, and symbols (LUDS). While previously
recommended by NIST, entropy—also commonly referred to
as complexity—turned out to be a poor proxy for password
security [31]. Researchers soon found mismatches between
password entropy scores and time needed for attackers to
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crack a password (or a set of passwords) [25]. The informa-
tion security community has since favored using guessability
as a measure of password security [8, 9].

Guessability more closely resembles the only practically
important sense of password strength: the actual number of
guesses an adversary would require to correctly guess the
password. Unlike Shannon entropy, guess number metrics
can factor in contextual information such as common pass-
words, human predictability and composition rules presented
at password creation [25]. However, the attack method and
configuration matters: many previous studies—facing time
and resource constraints—have only been able to model spe-
cific attackers by using only one attack method with limited
training data. A necessary drawback to the guessability ap-
proach is its inherent subjectivity. Whereas entropy is an
objective measure, there is no objective guess number for any
password; adversarial guessing is a strategic problem and dif-
ferent strategies will produce different results over the same
password set input. For this reason, comparisons between
studies using different guessing algorithms can be difficult at
best, and moot at worst.

In an effort to harmonize future studies, in 2015, the Pass-
words Research Team at Carnegie Mellon University released
Password Guessability Service (PGS)—a free service that
rates the strength of submitted passwords [27]. PGS simulates
a real attacker guessing passwords; it leverages multiple (5
at the time of our study) cracking tools to arrive at the user-
provided plaintext password. Using each tool, PGS calculates
the guessability (i.e., the guess number) as the password’s
strength rating. PGS also offers the min_auto configuration,
which returns the minimum guess number for each pass-
word across all 5 tools. Previous research has found that the
min_auto approach provides a conservative estimate for the
performance of an unconstrained professional attacker [27].
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G Overall findings for all 120 websites
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