
This paper is included in the Proceedings of the
Eighteenth Symposium on Usable Privacy and Security

(SOUPS 2022).
August 8–9, 2022 • Boston, MA, USA

978-1-939133-30-4

Open access to the
Proceedings of the Eighteenth Symposium

on Usable Privacy and Security
 is sponsored by USENIX.

Let’s Hash: Helping Developers
with Password Security

Lisa Geierhaas and Anna-Marie Ortloff, University of Bonn;
Matthew Smith, University of Bonn, FKIE Fraunhofer;

Alena Naiakshina, Ruhr University Bochum
https://www.usenix.org/conference/soups2022/presentation/geierhaas

Let’s Hash: Helping Developers with Password Security

Lisa Geierhaas
University of Bonn

Anna-Marie Ortloff
University of Bonn

Matthew Smith
University of Bonn, FKIE Fraunhofer

Alena Naiakshina
Ruhr University Bochum

Abstract

Software developers are rarely security experts and often
struggle with security-related programming tasks. The re-
sources developers use to work on them, such as Stack-
Overflow or Documentation, have a significant impact on the
security of the code they produce. However, work by Acar et
al. [4] has shown that these resources are often either easy to
use but insecure or secure but hard to use. In a study by Naiak-
shina et al. [44], it was shown that developers who did not use
resources to copy and paste code did not produce any secure
solutions at all. This highlights how essential programming
resources are for security. Inspired by the Let’s Encrypt and
Certbot that support admins in configuring TLS, we created a
programming aid called Let’s Hash to help developers create
secure password authentication code easily. We created two
versions. The first is a collection of code snippets developers
can use, and the second adds a wizard interface on top that
guides developers through the decisions which need to be
made and creates the complete code for them. To evaluate the
security and usability of Let’s Hash, we conducted a study
with 179 freelance developers, asking them to solve three
password programming tasks. Both versions of Let’s Hash
significantly outperformed the baseline condition in which
developers used their regular resources. On average, Let’s
Hash users were between 5 and 32 times as likely to create
secure code than those in the control condition.

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2022.
August 7–9, 2022, Boston, MA, United States.

1 Introduction

It is well known that end-users struggle with password secu-
rity. Recent work in the field of Usable Security for Develop-
ers and many real-world compromises have shown that many
developers also struggle when tasked with implementing
password-based authentication systems [7, 18, 29, 40–44, 49].
Unlike end-users’ problems that can be dangerous enough,
although only one account is usually affected, millions of ac-
counts can be affected if developers make only one mistake.

There have been multiple studies to advance the understand-
ing of how the usability of APIs affects security during soft-
ware development [4, 22, 33, 40, 42, 43, 45, 68]. However, one
crucial aspect is the quality of the available documentation
that developers use to solve their tasks. These are often either
easy to use but insecure or secure but hard to use [5, 6, 27, 68]
with many examples showing that developers copy and paste
insecure code from online resources [4, 5, 24, 27]. Acar et
al. write [4]: “our results confirm that API documentation is
secure but hard to use, while informal documentation such as
Stack Overflow is more accessible but often leads to insecu-
rity.”

So copy and pasting of insecure code is a serious concern
to software security, with Fischer et al. [27] postulating that
Stack Overflow is harmful. However, studies by Naiakshina
et al. [43, 44] show that only the participants who used copy
and paste achieved any security. Those who did not use copy
and paste did not achieve any security. So while copy and
paste has been reliably identified as a serious security threat,
it is also an essential method for secure solutions. Thus the
goal needs to be to create programming resources that are
easy to use but also help developers create secure solutions.

In this paper, we create Let’s Hash, a programming resource
to aid developers in creating secure code for password-based
authentication. Our goal is to offer something as easy to use
as Stack Overflow but as secure as official documentation
or programming books. We created two versions of Let’s
Hash. The first is a simple website offering code snippets in a
similar style to Stack Overflow. With this version, developers

USENIX Association Eighteenth Symposium on Usable Privacy and Security 503

are still required to select and assemble the code snippets
themselves. The second adds a wizard on top, which lets
developers specify the security requirements, and the wizard
assembles all the necessary code, which is then ready to use.

Currently, Let’s Hash can help developers create code for
the following three tasks: hashing and salting passwords for
storage, creating and enforcing password policies, and comple-
menting password-based authentication with a second factor;
two-factor authentication (2FA). To evaluate the usability and
security of Let’s Hash, we conducted a usability study with
179 freelance developers, who were asked to work on three
short programming tasks in the context of password storage,
password policies, and 2FA. Participants were split into three
groups, one for each version of Let’s Hash and one control
group in which developers were allowed to use the resources
they usually use during development.

The results show a vast improvement. Participants using
Let’s Hash were between 5 and 32 times as likely to achieve
secure code than the control, depending on the task and ver-
sion of Let’s Hash. Post-hoc tests show that all improvements
between Let’s Hash and the control group are statistically
significant. With these results, we believe that Let’s Hash
can offer a valuable contribution and help improve password
security significantly.

2 Related Work

Authentication is a major part of security in IT, and it is sus-
ceptible to vulnerabilities in many ways. Attackers can gain
unauthorized access to systems by manipulating or circum-
venting the authentication process, e.g., by guessing com-
monly chosen passwords [35, 53, 60], or through password
leaks from databases [18, 29, 49]. End user focused research
explored the difficulties that users have with security mecha-
nisms in general [8,57,67], and specifically the authentication
process like choosing and remembering passwords [30,36,63]
or using alternative methods or second factors [17]. However,
there is only limited knowledge of how to support software
developers with secure programming [6, 33]. Recent work
found that developers lack security expertise and often base
their security decisions on misconceptions or outdated knowl-
edge [6, 33, 42, 43]. But there already exist examples of APIs
developed to support programmers with security, such as the
Secure Socket API [45].

Let’s Hash currently supports developers with password
storage, password policies, and two-factor authentication, so
we cover related work for each of these areas in the following.

2.1 Password Storage
For secure storage in a database, user passwords have to
be salted and hashed [32]. Software developers, however,
struggle with this task [7, 12, 29, 41–44, 68]. Previous stud-
ies showed that developers often search for programming

code on the Internet to copy and paste it to their applica-
tions [4, 27, 41, 42, 44]. While Fischer et al. [27] and Acar
et al. [4] found that this behavior can lead to functional but
insecure software, in a password-storage study with develop-
ers of Naiakshina et al. [44], all participants who submitted
secure programming code had copied and pasted it from the
Internet. The authors analyzed the used websites in detail
and found that participants adopted code from blog posts,
tutorials, and Stack Overflow. In [41], Naiakshina et al. con-
ducted a further study on password storage with developers.
If participants submitted insecure solutions, the authors pro-
vided links to websites of the Open Web Application Security
Project (OWASP) and the National Institute of Standards and
Technology (NIST), where advice and programming code
for secure user password storage was available. The results
showed that guiding developers to appropriate information
sources suitable to their programming use-cases can improve
software security. However, 47% of participants did not find
the appropriate security information without help from the
authors.

2.2 Password Policies
To ensure that users choose passwords that are hard to guess
for potential attackers, there are certain guidelines that are
often implemented as requirements, commonly referred to as
password policies [32, 46]. There have been multiple stud-
ies to examine the effect of enforcing such password poli-
cies [23, 56, 59, 61, 61, 62]. Requirements that target the
passwords’ composition, while common, do little to encour-
age users to pick better quality passwords. A combination
of minimum length and minimum strength is more effec-
tive [59]. Password strength meters have also been investi-
gated [23, 61, 62]. While stricter password policies can help
users create better passwords, they also increase user frus-
tration and reduce password retention [61]. Strength meters
offering constructive feedback performed better [61]. Seg-
reti et al. [56] investigated adaptive password policies, which
aimed to increase password diversity by comparing new pass-
words to the existing password database, resulting in policies
that changed as new passwords were added to the database.
They found that this improved security at little cost to usabil-
ity and that the additional feedback they provided on how to
improve password security did not make much of a difference
concerning usability [56]. To our knowledge, the implementa-
tion of password policies has not yet been investigated from a
developer’s point of view.

2.3 Two-Factor Authentication
Authentication can be made significantly more secure by
adding different factors [52]. Yubico Security keys (Yu-
bikeys) are an example of a hardware authentication device,
which supports two-factor authentication (2FA) standards,

504 Eighteenth Symposium on Usable Privacy and Security USENIX Association

like the Universal 2nd Factor (U2F) and Fast Identity Online
2 (FIDO2) protocols [20]. Alam et al. [9] investigated possible
pitfalls in implementing the new open source authentication
standard, FIDO2, by evaluating discussions about it on Stack
Overflow and assessing existing libraries and documentation.
They found that documentation is currently not very usable, li-
braries implementing the standard are often both insecure and
incomplete, and that developers have wrong mental models
of implementing the standard and threats that FIDO2 protects
against. The authors call for better support for developers to
mitigate these issues.

3 Let’s Hash

Let’s Hash was loosely inspired by Let’s Encrypt and Cert-
bot [2]. The mission of Let’s encrypt is to enable all ad-
mins to easily acquire and set up TLS certificates to combat
the many sites that did not offer TLS at all or suffered from
one of many misconfigurations. Our goal with Let’s Hash
is very similar. We want to enable all developers to easily
integrate secure password storage, password policy enforce-
ment, and two-factor authentication into their applications
without falling prey to the many mistakes that can be made.
The code snippets contained in Let’s Hash are presented in a
way that makes it easy for developers to copy and paste them
into their projects since it was shown in previous studies that
this is a common use-case (see Section 2). We designed Let’s
Hash according to websites like Stack Overflow [21] and blog
posts [13], by presenting the code snippets divided by topic,
but not split apart into single functions as is often seen in
documentation [28]. Unlike NIST and OWASP, where theory
and guidelines are detailed, Let’s Hash offers a code-centric
view, combining these guidelines with easily adaptable code.

Let’s Hash currently supports password storage, policy en-
forcement, and two-factor authentication. In the following, we
will highlight the most relevant aspects in these three areas.

3.1 Password Storage

There are a lot of different password hashing schemes
(PHSs), which can be used in the context of user password
storage (e.g., MD5, SHA-1, SHA-2, PBKDF2, bcrypt, scrypt,
Argon2) [50]. We evaluated them for security and usability
and included Argon2id as the most secure choice according
to recent academic results [10, 14, 48, 50] and bcrypt as a
more usable solution in contrast to Argon2id since it does
not require manual adaption to specific hardware and is rec-
ommended by OWASP [48]. Iterations are configured based
on the hashing algorithm. Currently, Let’s Hash offers pro-
gramming code snippets on secure user password storage in
two programming languages, Python3 and Java.

3.2 Password Policies
NIST and OWASP both recommend policies that do not re-
strict password composition (i.e., allowing all kinds of char-
acters but not enforcing a specific combination) and enforce
a length of at least eight characters [32, 47]. Additionally,
they advocate for using a strength checker, as is implemented
by the library zxcvbn [66]. The German Federal Office for
Information Security (BSI) advises users to choose their pass-
words according to popular composition rules - using upper-
and lowercase letters and special characters [16]. Let’s Hash
offers a JavaScript solution to enforce BSI recommendations,
ensuring a certain length and composition of a password. Ad-
ditionally, there is a code fragment for a password strength
checker using the aforementioned zxcvbn, as recommended
by NIST and OWASP.

3.3 Two-Factor Authentication
Let’s Hash offers a code fragment that generates a time-based
token that serves as a one-time password. This token can be
used as verification in conjunction with an app such as the
Google Authenticator, which is a popular way to use 2FA [31].
Currently, programming code is provided in Python3.

3.4 Let’s Hash Wizard
We have a two-component system. The code repository con-
tains the code snippets for all the above tasks and sub-tasks,
and a wizard assists developers in selecting and configuring
the right snippets. We wanted to explore a design of Let’s
Hash that included a wizard-like user interface (UI)-element
which required the user to interact with it.The wizard should
present developers with the code that best fits their specific
use-case by first taking them through a series of questions.
These questions let developers pick secure implementation
options according to the different recommendations provided
by NIST, OWASP, and BSI. After stepping through the wiz-
ard, the appropriate code snippets are selected, configured,
and presented to the developer ready to use.

Screenshots of the base version (LH) and the wizard (LH-
W) and details on the code snippets are available on Github.1

Let’s Hash will also be released as an open-source project.

4 Methodology

To evaluate if using Let’s Hash would increase security, we
designed and ran an online study with freelance developers re-
cruited from Freelancer.com as recommended by Naiakshina
et al. [41]. All participants were asked to complete three short
programming tasks on password storage, password policies,
and 2FA. After task completion, we asked participants to fill
out a survey assessing their experiences with the tasks and

1https://github.com/BeSecResearch/LetsHash-Supplemental

USENIX Association Eighteenth Symposium on Usable Privacy and Security 505

the information sources they used. The order of the tasks was
randomized. We divided the participants into three groups:

• Group LH: Participants were asked to complete the pro-
gramming tasks using version LH, the basic version of
Let’s Hash.

• Group LH-W: Participants were asked to complete the
programming tasks using version LH-W of Let’s Hash,
the version with an added wizard for configuration.

• Group C(ontrol): Participants were asked to complete
the programming tasks by using any information source
they normally use when programming. These partici-
pants did not have access to Let’s Hash.

4.1 Study Setup
For the study setup, we used the open-source tool Developer
Observatory [58], which has been used in previous security
studies about code development by Acar et al. [3, 7]. The tool
allowed us to let participants work on programming tasks
remotely. The participants could run and test the output of
their code in a sandbox-like environment accessed via their
browser. We provided them with function signatures and ex-
amples of expected results. This offered several advantages:
First, participants did not have to download anything. They
could directly access the consent form, the task description,
the programming code, and the link to the follow-up survey
in a browser of their choice. Second, participants did not need
to spend time setting up their IDE. They could write and test
the programming code within the tool. Third, we were able to
log study data without the participants having to submit any
of this data to us manually. In the following, we describe the
programming tasks in detail.

4.2 Task Design
The exact task descriptions can be found in Appendix A.
Examples of the study interface are available on Github.2

Task 1 (T1) - Password hashing: To keep the task as
simple as possible, we only asked participants to implement
a function for hashing and verifying passwords in Python.
The solution required outputting a hash value and the correct
verification of a given password. The task description as it
was presented to participants can be found in Appendix A.

Task 2 (T2) - Password policy: We asked participants to
implement a short JavaScript program checking a string for
adherence to a given password policy. Since it is still a widely
used practice in real life, we asked them to implement a policy
that would enforce composition rules in addition to a mini-
mum length. The solution of the task required an output that
correctly breaks down a given password’s adherence to the

2https://github.com/BeSecResearch/LetsHash-Supplemental

demanded policy. Appendix A contains the task description
as it was presented to participants.

Task 3 (T3) - Two-factor authentication: We asked par-
ticipants to implement a method that generates a time-based
code that can be used as an authenticator. The solution to the
task required an output containing the one-time code and its
verification. The task description that was presented to study
participants can be found in Appendix A.

4.3 Survey
In the survey, we asked participants of all groups about their
experience with programming in general and the given top-
ics in particular. They also indicated their perception of the
difficulty of the programming tasks and were asked general
demographic questions. Participants of groups LH and LH-
W additionally had to answer the System Usability Scale
(SUS) [37] for the version of Let’s Hash that they used. Par-
ticipants of the control group C were asked about the specific
resources they used to solve the tasks and whether they were
satisfied with them. The surveys for all the three groups can
be found in Appendix B.

4.4 Usability Evaluation
In accord with ISO 9241, we define usability as encompassing
effectiveness, efficiency, and user satisfaction [1].

Effectiveness: Every task submission was examined based
on two criteria: functionality and security. To count as func-
tional, the code submitted by the participants needed to run
and produce an output that offered the information specified
in the task description. Functionality was a prerequisite for
security.

To determine whether the submitted code for Task 1 was
secure, we adopted the security scale introduced by Naiak-
shina et al. in [43, 44] (see Appendix C). They used a scale
of up to seven points for hashing and salting user passwords.
We used the same scale, and only rated solutions as secure
that reached at least 6 out of 7 points. We were strict in our
evaluation because we were only interested in solutions that
offered up-to-date security. This meant using a random salt
and a key derivation function including an appropriate itera-
tion count or a memory-hard function [32, 43]. We did not
require 7 out of 7 points since the final point is for memory
hardness which is not yet industry standard and we did not
expect our participants to go beyond industry best practice.
For Task 2, the code was rated as secure if the policy rules
specified in the task description were correctly implemented
without errors. The code for Task 3 was only rated as secure
if the algorithm used to generate the second factor actually
generated a time-based one-time code and used a salt that
was randomly generated. The programming code was evalu-
ated manually and independently by two computer science
researchers. Differences were resolved through discussion.

506 Eighteenth Symposium on Usable Privacy and Security USENIX Association

Efficiency: The number of clicks and time taken to solve
a task are often used as efficiency variables in usability stud-
ies [26,34,38,39,55]. To evaluate how participants interacted
with Let’s Hash, we tracked the time (in seconds) they actively
spent on the website and the clicks they needed to find the cor-
rect code fragments to use. We assumed that a long time and
more clicks might affect the usability of the website [38, 39].

User satisfaction and perceived usability: We calculated
the SUS score [37] for the two versions of Let’s Hash. We
used the SUS as one factor to compare the usability of the
two versions of Let’s Hash.

Additionally, we evaluated the answers to several open sur-
vey questions to gain insight into the participants’ workflow
as well as their general attitude towards IT security and Let’s
Hash. Since all answers were relatively short, and we were
interested in specific themes, such as positive or negative atti-
tudes towards Lets Hash, we used deductive thematic analysis
to categorize and report on the participants’ answers [15].
One researcher coded the entirety of the answers given, and a
second researcher recoded them using the same codebook. Af-
terward, intercoder agreement was calculated per document.
The minimum agreement was κ = 0.76, and the maximum
agreement was κ = 1 (M=0.94). For the groups LH and LH-
W, the questions were about the user experience with Let’s
Hash and how the website compares to other resources the
developers would usually use to program. Participants of the
control group C were asked to list the resources they used
for the programming tasks. We categorized the answers into
three types of resources: Stack Overflow, official documenta-
tion, and other, which included various blog posts and other
resources.

Usability and security: To investigate the relationship be-
tween security and usability, we conducted Wilcoxon-Rank-
Sum Tests for each of the different tasks, comparing submis-
sions with errors (non-functional or insecure) with secure
non-erroneous submissions, with respect to usability mea-
sures, such as SUS, time spent on Let’s Hash and clicks. We
corrected p-values using the Bonferroni-Holm procedure.

4.5 Error Analysis

We analyzed the types of errors we found in the participants’
submissions to find out more about the kinds of errors that
Let’s Hash helps prevent and which ones still occur. To do
this, we conducted a qualitative analysis. Each submitted
solution for a task that was not both functional and secure
was manually reviewed with regard to the types of errors it
included. During the coding process, we assigned multiple
different error types to a single submission, and ended up with
a maximum of three different error types per submission. We
estimated a lower limit of κ = 0.84 by ordering the error types
per submission alphabetically and only taking into account
the first one and an upper limit by counting the raters as in
agreement, when they agreed over at least one of the assigned

error types, which resulted in κ = 0.91.
We were also interested in errors occurring even though

participants used Let’s Hash. There are 53 non-functional or
non-secure task solutions from groups LH and LH-W. We
manually investigated whether these included copied code
from Let’s Hash. Both researchers judged 8 of them to be
copied from Let’s Hash, agreeing on 5 of them, and disagree-
ing on 3. The secure submissions in groups LH and LH-W
were also tested on whether they had copied their code from
Let’s Hash or not. Due to the high amount of files for these
cases this process was semi-automated. Details are in Ap-
pendix D.

All differences concerning the error types and the code-
copying were resolved through further discussion, and full
agreement was reached.

4.6 Hypotheses and Statistical Analysis
We were interested in the security of code developed with
the help of Let’s Hash. Additionally, we wanted to study
Let’s Hash’s usability, encompassing efficiency and effective-
ness [1]. Therefore, we examined four main hypotheses in
our study: one on the security score between the groups LH
and LH-W and the control group C, denoted by S(ecurity),
and three concerning the differences between groups LH
and LH-W, denoted by D(ifference). While we hoped that
LH-W would improve both security and usability over LH,
there is not enough theoretical foundation to justify one-tailed
hypotheses, so all hypotheses were tested two-tailed at the
standard p=.05 level throughout.

• H-S: The groups LH and LH-W, that are working with
Let’s Hash, produce code that is more Secure than that
produced by the control group C, that had no access to
Let’s Hash but could use any other source.

• H-D1: The System Usability Scale (SUS) Differs be-
tween the two versions of Let’s Hash.

• H-D2: There is a Difference in the number of clicks
needed to reach the desired code fragments using the
two different versions of Let’s Hash.

• H-D3: There is a Difference in time that participants
need to reach the desired code fragments using the two
different versions of Let’s Hash.

We used the freely available software Gnu R [51] for statis-
tical analyses.

4.7 Pilot Study
We ran a pilot test before the main study to test the tech-
nical setup and ensure that we had correctly configured the
Developer Observatory tool and the website Let’s Hash. We
recruited three participants. These were students who worked

USENIX Association Eighteenth Symposium on Usable Privacy and Security 507

Table 1: Demographics of 179 participants
Gender Male: 92% Female: 8% Prefer not to say: 0.6%
Ages Mean: 28.6 Median: 27 SD: 7.5
Education and Occupation University Degree: 80% Employed at company: 28%
Country of Origin India: 22% Pakistan: 9% Other: 69%
Experience Python3: JavaScript: Overall:
(Programming language) Mean: 3.2 Median: 3 Mean: 4.3 Median: 4 Mean: 6.4 Median: 5

SD: 2.3 SD: 3.3 SD: 5.0

as research assistants in security-related fields within com-
puter science. All participants were male and aged between
20 and 40 years. The pilot study indicated that the setup of the
Developer Observatory and Let’s Hash worked as intended.
The participants did not raise any serious issues, and we only
made minor changes based on their feedback.

4.8 Power Analysis
We performed a power analysis based on our four main hy-
potheses to calculate the required sample size for this study.
We used G*Power to perform two analyses [25], one for H-S,
and one for H-D1, H-D2, and H-D3. We calculated a required
sample size of at least 49 participants per group.

For H-S, we performed a Fisher’s exact test, comparing
the groups LH and LH-W against group C. For this power
calculation, we merged groups LH and LH-W, since both
versions of Let’s Hash only differed in the existence of a
wizard, but the code fragments were the same on both versions.
We assumed that the code developed by LH and LH-W would
be secure in 90% of the solved tasks, but the code for group C
only in 60%. We based these percentages on the results of
Acar et al., where a similar task on password storage was part
of a user study with GitHub users [7]. Using these parameters,
a desired error probability α of 0.05 and a desired power of
0.95 resulted in a sample size of 116 participants, 77 total for
groups LH and LH-W, and 39 for group C.

With H-D1, H-D2, and H-D3, we aimed to figure out if
the added wizard had a noticeable effect on the usability of
Let’s Hash. To compute a required sample size, we used the
two-tailed Wilcoxon-Mann-Whitney test with two groups of
equal sizes. Since Klug stated that ”the average SUS score is
68 with a standard deviation of 12.5” [37], we set our baseline
value accordingly for H-D1. We used mean values of 68 and
78 for the two groups, which would for instance improve the
usability of Let’s Hash from ”Ok” to ”Good” [11]. The stan-
dard deviation was set to 12.5 for both. This led to an effect
size of 0.8. For H-D2 and H-D3, we used the same effect size
for comparability since we were not aware of standardized
measures for the number of clicks or the time spent on a web-
site such as Let’s Hash. Using this effect size and the same
values for α and power as in our first analysis we calculated
a required sample size between 28 and 49 participants per
group, depending on the distribution, so we selected 49 to be

on the safe side.

4.9 Participants

For our study, we needed developers with experience in
Python and JavaScript. We used the support service of Free-
lancer.com for participant recruitment as suggested in [19,42].
All freelancers who finished the tasks and survey received
40C for participation.

294 participants were invited to take part in our study to
have enough participants to account for drop-outs and other
issues. All 294 participants provided informed consent. Of
these, 239 completed the tasks and the survey, 55 quit the
study midway. The data of 60 participants was not considered
for analysis for varying reasons. 31 of them were removed
because we found inconsistencies in the recorded tracking,
which showed that multiple participants had access to the
wrong version of the website Let’s Hash or even to both
versions. Some of these inconsistencies were caused by a bug
in the Developer Observatory tool, which was reported by us
upon discovery. 15 participants could not be tracked by Let’s
Hash at all and had to be disregarded for that reason, 13 were
excluded due to technical problems, 9 leading to data loss
and 4 with incorrect condition assignment, and 1 participant
was removed for speeding through the survey and giving
nonsensical answers. Overall, 179 participants produced valid
results, 58 in group LH, 57 in group LH-W, and 64 in group C
exceeding our 49 target.

The majority of the participants were male (92%), while
only 8% were female, and one person preferred not to disclose
their gender, which is fairly typical for these platforms. They
reported ages between 18 and 70 years (M=28.6, SD=7.5) and
between 0 and 30 years of programming experience overall
(M=6.4, SD=5.0), with slightly less experience in Python3 and
JavaScript. Most participants were not from countries where
English is the only primary language, with Indians (22%) and
Pakistanis (9%) representing the largest groups of nationali-
ties in our sample. The remaining 69% of participants were
from a variety of different countries, none of which amounted
to more than 4%. Further demographics information about
the participants is in Table 1.

508 Eighteenth Symposium on Usable Privacy and Security USENIX Association

Table 2: Distribution of correct solutions by task and group
Task LH LH-W C
1 Functionality 97% 95% 81%

Security 93% 82% 33%
2 Functionality 95% 91% 70%

Security 91% 75% 36%
3 Functionality 97% 88% 59%

Security 86% 79% 16%

5 Limitations

As usual for usability studies, several limitations have to be
considered in the context of this study. Firstly, we did not con-
duct the study in a lab setting. Due to requiring a high number
of software developers and the ongoing COVID-19 pandemic,
we conducted an online study. Consequently, we had less con-
trol and were not able to track participants’ processes when
working on the tasks.

Secondly, we used Freelancer.com for study recruitment,
which limited the pool of possible participants to people reg-
istered on this platform. The vast majority of the recruited
freelancers were not native English speakers, which might
have lead to misunderstandings due to a language barrier.
However, real-world projects are often outsourced to free-
lancers under similar conditions.

Thirdly, due to our study setting, our tasks were rather
short, did not include finding the resource and we provided
implementation stubs to prevent using developers’ time un-
duly. Thus, participants might not have put as much effort
into the task, or have applied different priorities than in a real
task. However, results from a lab study have shown to be
comparable to those in a field study in the context of pass-
word storage [41, 42]. Our work provides the basis for further
investigation.

Finally, the tracking of time participants spent on Let’s
Hash and the number of clicks they needed to achieve their
goal was not as accurate as we would have wished due to the
remote nature of the study. We could not capture the actual
screen and had to attempt to log the time on the server-side. In
some cases during testing, clicks were either not registered or
counted twice. Additionally, we only recorded the interactive
time spent on Let’s Hash. If participants stopped scrolling,
clicking, or moving their mouse for more than a minute, the
timer stopped increasing. We wanted to avoid recording time
during which users had the website open in a tab, but they
were not actually looking at it, for example, because it was
minimized. Considering this, these values should be taken as
a best-effort approximation.

Figure 1: Secure solutions, divided by task and group.

6 Ethics

This study was conducted in Germany and is compliant with
the EU General Data Protection Regulation, a directive con-
cerning the collection and storage of data. It also has Institu-
tional Review Board (IRB) approval. All data was collected
anonymously. Participants were asked to agree to a consent
form that informed them about the study procedure and their
rights, for example, to withdraw at any point during the study.
Furthermore, we complied with the privacy policies of Free-
lancer.com, which meant we were not permitted to ask par-
ticipants for their email addresses for further research or to
inform them about study results.

7 Results

For evaluation, we compared the results of participants using
Let’s Hash and information sources of their own choice, as
well as the two versions of Let’s Hash.

7.1 Participants’ Submissions

The participants who finished the study self-reported taking
a median time of one hour to solve the programming tasks.
Table 2 shows an overview of the evaluation of participants’
submissions concerning functionality and security. We only
rated security if the programming code was functional and in-
cluded only functional solutions in our statistical tests compar-
ing security. All participants combined produced functional
solutions for Task 1 in 91%, Task 2 in 85% and Task 3 in 80%
of the cases, and secure solutions for Task 1 in 68%, Task 2
in 66% and Task 3 in 59% of the cases.

7.1.1 Functionality

Of all the participants who produced valid data, 168 submit-
ted programming code that we considered functional for at

USENIX Association Eighteenth Symposium on Usable Privacy and Security 509

Table 3: Overview over the results of the 3-way FET for H-S
Hypothesis IV DV p-value cor - p-value
H-S: T1 LH vs. LH-W vs. C Achieved security <0.001* <0.001*
H-S: T2 LH vs. LH-W vs. C Achieved security <0.001* <0.001*
H-S: T3 LH vs. LH-W vs. C Achieved security <0.001* <0.001*

T1: Task on secure password storage, T2: Task on password policy, T3: Task on 2FA;
IV: Independent Variable; DV: Dependent Variable; FET: Fisher’s Exact test

cor - p-value: p-value, Bonferroni-Holm corrected; tests marked with *: statistically significant.

Figure 2: Distribution of SUS values.
One bar covers a range of n+5 points.

least one of the tasks. The task with the most functional so-
lutions overall was Task 1. For this task, 162 participants
submitted a functional solution. Of these, 157 participants
indicated that they had previous experience with storing pass-
words in a database. For Task 2, 152 participants submitted a
functional solution, and 143 participants indicated they had
previous experience with implementing password policies
in the context of a login form. The task that produced the
least amount of functional solutions was Task 3. 144 partic-
ipants submitted a functional solution for Task 3. Of these,
96 participants indicated that they had previous experience
with implementing 2FA. Compared to the two other tasks,
2FA seems less frequently demanded among the population
on Freelancer.com.

7.1.2 Security

The task with the most secure solutions overall was Task 1
with a total of 122 secure solutions, followed by Task 2 with
119 secure solutions. Task 3 had the least amount of secure
solutions with only 105.

7.2 Hypotheses

7.2.1 Security

Figure 1 shows the proportions of secure solutions, divided
by groups and tasks. We conducted separate 3-way Fisher’s
Exact tests for each programming task to test H-S. We cor-
rected p-values for multiple testing using the Bonferroni-

Figure 3: Distribution of counted clicks.
One bar covers a range of n+5 clicks.

Holm-correction since we conducted three tests for this hy-
pothesis. All p-values for the main analyses, including the
corrected ones, are below 0.001, as can be seen in Table 3.
Our analyses indicated that for all of the tasks, there was a sig-
nificant difference with respect to security between the three
groups. We then conducted post-hoc 2-way Fisher’s Exact
tests to compare the groups individually (see Table 5) and
included these in our correction. We found that for all of the
tasks, the solutions achieved with the help of Let’s Hash were
significantly more secure than those achieved with resources
of the participants’ own choosing. This shows that the pri-
mary goal of our work was achieved. Let’s Hash significantly
increases the odds of developers creating secure solutions by
a large margin.

7.2.2 Usability

To compare the usability of the two Let’s Hash versions, we
evaluated the SUS, the number of clicks, and the time spent
actively on each version of the website. Since neither of the
groups LH or LH-W had a normal distribution in SUS values,
time spent, or amount of clicks used on the website Let’s Hash,
we performed Wilcoxon-Rank-Sum tests. The results of our
statistical analyses of H-D1, H-D2, and H-D3 are available in
Table 4.

For H-D1, we did not find a significant difference in usabil-
ity as measured by SUS between the version with (M=78.6,
median=80, SD=15.1) and the version without a wizard
(M=79.1, median=87.5, SD=19.3). In general, both versions
of Let’s Hash achieved results that were close to being con-

510 Eighteenth Symposium on Usable Privacy and Security USENIX Association

Table 4: Overview over the results of the WRS tests for H-D1, H-D2 and H-D3
Hypothesis IV DV W r p-value
H-D1 LH vs. LH-W Achieved SUS 1500 0.08 0.3926
H-D2 LH vs. LH-W Amount of clicks 1804 0.08 0.3996
H-D3 LH vs. LH-W Time spent on website 1329 0.17 0.0704

IV: Independent Variable; DV: Dependent Variable; WRS: Wilcoxon-Rank-Sum test;
W : Wilcoxon-W ; r: Effect size (Pearson’s r)

Table 5: Overview over the results of the post-hoc 2-way FETs for H-S
IV (Group) Task DV OR CI p-value cor - p-value
LH vs. LH-W Password Storage Achieved security 0.252 [0.024, 1.408] 0.09 0.19
LH vs. LH-W Password Policy Achieved security 0.183 [0.018, 0.95] 0.03* 0.08
LH vs. LH-W 2-Factor Authentication Achieved security 1.079 [0.255, 4,798] 1 1
C vs. LH-W Password Storage Achieved security 9.668 [3.483, 30.399] <0.001* <0.001*
C vs. LH-W Password Policy Achieved security 4.115 [1.521, 11.958] 0.002* 0.009*
C vs. LH-W 2-Factor Authentication Achieved security 23.886 [6.985, 100.032] <0.001* <0.001*
C vs. LH Password Storage Achieved security 38.372 [8.543, 359.027] <0.001* <0.001*
C vs. LH Password Policy Achieved security 22.456 [4.873, 212.115] <0.001* <0.001*
C vs. LH 2-Factor Authentication Achieved security 22.208 [6.884, 84.436] <0.001* <0.001*

FET: Fisher’s Exact test; IV: Independent Variable; DV: Dependent Variable; O.R.: Odds ratio; C.I.: Confidence interval
cor - p-value: p-value, Bonferroni-Holm corrected, including nine post-hoc tests and three main 3-way analyses; tests marked with *: statistically significant

sidered excellent in usability [11, 54]. Figure 2 shows the dis-
tribution of SUS values for both versions of Let’s Hash. The
majority of ratings designate the usability of both versions
as good (>71), although there was slightly more variance
in ratings for group LH, which used the website without a
wizard.

For hypothesis H-D2, we also did not find a significant
difference in clicks needed between group LH (M=25.6, me-
dian=17.5, SD=25.1) and group LH-W (M=26.2, median=24,
SD=21.5). Figure 3 shows the distribution of the counted
clicks. Again, the distributions are roughly similar, but more
participants issued very few clicks in group LH-W, and more
participants issued high numbers of clicks (>60) in group LH.

To test H-D3, we compared the time actively spent on
the website. Participants of group LH spent slightly more
time on their version of the website (M=233.8, median=179,
SD=200.5) than those in group LH-W (M=176.3, me-
dian=115, SD=156.4), but the difference was not significant.
The time participants spent on Let’s Hash is available in Fig-
ure 4. Participants spent a median of fewer than 3 minutes on
version LH and fewer than 2 minutes on version LH-W.

7.2.3 Hypothesis Takeaways

The main takeaway of the hypotheses analysis can be sum-
marized as follows: Using either version of Let’s Hash as a
resource during code development has a large and significant
positive effect on the security of the developed code.

To our surprise, the usability of the two versions was rated
almost identically, and thus, there were no statistically signif-
icant differences between the two, implying that the wizard
did not improve usability as we had expected. Even more sur-

Figure 4: Distribution of time spent on Let’s Hash.
One bar covers a range of n+60 seconds.

prisingly, LH has higher security odds than the LH-W. While
the difference was not statistically significant, we still find
it interesting and discuss it further in the following section.
For now, we conclude that the plain Let’s Hash resource im-
proves the odds for a secure solution between 17 and 32 times
compared to the control and does not have any downsides
compared to LH-W, so the extra effort for the wizard does not
seem justified or necessary. Although further research into
the reasons why is recommendable.

7.3 Error Analysis

Despite the excellent results, some participants created inse-
cure code despite using Let’s Hash. This section analyzes
these errors and examines the usability judgments of partici-
pants making errors despite using Let’s Hash. We found eight

USENIX Association Eighteenth Symposium on Usable Privacy and Security 511

Figure 5: Types of errors in non-functional code, divided by
task and group.

different types of errors in the participants’ submissions, three
related to functionality, and five types concerning security.
Even for non-functional submissions, we also documented
security errors.

Control group submissions proportionally more often had
multiple error types, which led to them lacking in security
and/or functionality. This is in addition to boasting more
errors overall, as has already been established and shows that
the insecurity and/or non-functionality of code was often due
to multiple types of errors and not merely one cause.

The errors participants made that would lead to their code
being non-functional were categorized as ’no implementa-
tion’ when there was no attempt at a solution, ’incomplete
implementation’ when the participants did not finish the task
and ’broken implementation’ when the code contained severe
programming errors. As can be seen in Figure 5, ’broken
implementation’ was the most common error, with 11 cases
overall in LH and LH-W and 38 cases in group C. We included
’no implementation’ as a category under the assumption that
participants were likely not unwilling to solve the task, but
instead overwhelmed. The security errors were ’plain text’,
’outdated algorithms’ and ’use of custom algorithms’, which
all refer to the cryptographic algorithms implemented by par-
ticipants in tasks 1 and 3. For example, some participants
used the outdated md5 to hash the password in Task 1, which
we classified accordingly as ’outdated algorithms’. Another
type of error concerning these two tasks is ’incorrect random-
ization’, when the salt or shared secret was either too short,
or not sufficiently randomized to be considered secure. Fig-
ure 6 shows that this was the most common security error
type for the functional cryptographic tasks in all groups, with
18 overall occurrences in groups LH and LH-W and 55 in
group C. One instance of this error was a participant who
used their own first name as the shared secret in Task 3. None
of these errors apply to Task 2 since there was no cryptogra-

Figure 6: Types of security errors in functional code, divided
by task and group.

phy involved in this task. Instead, the security error consisted
of participants implementing a function that appeared to de-
liver the requested results but was not consistent. This leads
to issues such as passwords being erroneously classified as
adhering to policy. We refer to these errors as ’logic error’.

7.3.1 Non-functional Submissions

The frequency of different types of errors for those submis-
sions which were classified as non-functional is depicted in
Figure 5. It shows that non-functional solutions also suffer
from security errors, in addition to purely functionality-related
errors. This is especially common in the control group. In
general, a wider range of different errors occurred in the con-
trol group compared to the two Let’s Hash groups. The most
striking example was in the Password Storage task, where
LH and LH-W participants’ submissions were non-functional
because they did not implement anything, but group C sub-
missions exhibited a wide range of functional and security
errors.

7.3.2 Functional, but Non-secure Submissions

The frequency of different error types for submissions which
were functional, but insecure is shown in Figure 6. Like for
non-functional solutions, there were fewer different types of
errors in the Let’s Hash groups. For example, for the password
storage task, there were five different types of security errors
in the control group, but only two types of security in the LH
and three types in the LH-W group. Some types of errors, the
plain text and logic errors, were more common in functional
solutions than non-functional solutions.

512 Eighteenth Symposium on Usable Privacy and Security USENIX Association

7.3.3 Errors Despite Using Let’s Hash

In groups LH and LH-W, most errors occurred when partici-
pants did not use the code provided by Let’s Hash. Of 53 tasks
where participants submitted erroneous solutions, 45 did not
use copied code from Let’s Hash. In contrast, of 292 correct
tasks in the groups LH and LH-W, only 19 were not copied.
Overall, the most common task in which participants did not
choose to use copied code was Task 2. This may be because
the code had to be adapted more than in the other two tasks,
since participants would have had to change the definition of
a variable. Common mistakes that participants made when
they did not copy code from Let’s Hash were using outdated
algorithms like md5 (3 cases) or hard-coding the salt (12
cases). One participant submitted a solution for Task 3 which
did not contain a cryptographic algorithm at all. There were
only eight submissions for tasks where participants copied
code from Let’s Hash but still created an insecure solution.
Four of those had functionality errors which we classified as
broken implementation. These errors mainly were caused by
participants not adapting the code correctly from the web-
site, or introducing faulty syntax, like indentation errors. The
remaining four occurrences all fall into LH-W. Three of the
errors were in the password storage task, and all included in-
correct randomization. Two of those participants had removed
the generation of the salt from the function hash_password()
and instead used a static variable, and one of the participants
lowered the amount of rounds for the salt’s generation to 4
instead of the recommended minimum of 16. The remaining
error occurred in the password policies task and was a logic
error, specifically in the implementation of the function com-
position(), which would allow a password without any special
characters to pass the check, violating the policy requested
in the task description. This error was introduced because
the participant either removed or did not copy a part of the
function.

7.3.4 Usability and Errors

We found significant differences in usability between tasks
with errors and those without for Task 1 concerning clicks,
and for Task 3 concerning SUS, time (in seconds) and
clicks. Participants with erroneous submissions issued signif-
icantly fewer clicks on Let’s Hash both for Task 1 (M=9.4,
SD=8.5) and Task 3 (M=9.1, SD=10.4) than participants
with secure submissions (Task 1: M=28.2, SD=23.8; Task 3:
M=29.4, SD=23.7), W=1116.5, corrected-p=.004 for Task 1,
W=1557.5, corrected-p<.001 for Task 3. Participants who
submitted wrong solutions also spent significantly less
time on Let’s Hash for Task 3 (M=93.5, SD=76.9) than
those with secure solutions (M=229, SD=189), W=1418, cor-
rected p=.004. Finally, participants with secure solutions rated
Let’s Hash with as significantly more usable (SUS score
M=81.3, SD=16.0) than those with errors in their submis-
sions (M=67.3, SD=19.1), W=1393, corrected p=.006. This

suggests that the participants who made mistakes despite hav-
ing Let’s Hash at hand may have abandoned this resource
early on in their coding process before being able to solve
their problem. The full results of this analysis are available
on Github.3

7.4 Participants’ Feedback on Resources
In general, feedback on Let’s Hash as a resource for code
development was positive. 57 participants gave detailed feed-
back, and of those, 40 participants reported that they found
the website easy to use, and 28 participants said they found it
pleasant, enjoyed the UI, and wished to use it again. Requested
changes included the addition of more languages (both pro-
gramming languages and spoken languages), tutorials on how
to use the code, the ability to run the code directly on Let’s
Hash in a sandbox-like environment, and improvements to the
UI. The most requested change was additional information
on the presented code and security-related challenges, which
was mentioned by 34 participants. This request suggests that
in their usual workflow, most developers do look for at least
some background information when incorporating code found
online into their work. Furthermore, 56 of the 115 participants
who worked with Let’s Hash reported that they found Let’s
Hash to be generally easier to use than their usual resource,
citing reasons such as easy navigation and a well-structured
presentation of the code. One participant mentioned that he
would trust Let’s Hash more than his usual resource in terms
of security since it is “not a forum post.”

68 participants from groups LH and LH-W indicated that
the main resource they would usually use is Stack Overflow.
41 said they would use the official documentation, but almost
none of them cited other resources and those that did mostly
indicated they would usually “search on google.”

Participants of group C also most commonly mentioned
Stack Overflow and official documentation. Both resources
were mentioned by more than 20 of the 65 participants
(>30%), and 18 of them (28%) indicated that Stack Overflow
was their main resource. Other websites that were mentioned
in group C were various blogs and some online schools like
W3Schools [65] or Vitosh Academy [64].

8 Discussion

We found that Let’s Hash significantly improved the security
of our participants’ code. Although all participants were asked
to solve the three authentication tasks securely, most secure
solutions were submitted by participants using Let’s Hash
− regardless of which Let’s Hash version they were using.
While for both groups LH and LH-W, the submitted solutions
were secure in at least 82% of the cases for Task 1, 75%
for Task 2 and 79% for Task 3, 72% of participants in the

3https://github.com/BeSecResearch/LetsHash-Supplemental

USENIX Association Eighteenth Symposium on Usable Privacy and Security 513

control group submitted insecure programming code, with
33% secure solutions for Task 1, 36% for Task 2, and 16%
for Task 3, which is alarming. These results suggest a large
positive effect of Let’s Hash on software security.

We also compared the efficiency and perceived usability
of the two Let’s Hash versions. With the configuration wiz-
ard, we wanted to take a burden off developers and provide
them with a better overview of current recommended security
practices for the three security-sensitive authentication tasks.
However, we did not find a significant difference between the
two Let’s Hash versions concerning participants’ perceived
usability, which we measured with a SUS score. The usability
was fairly high for both versions. So it seems participants
were satisfied with using either Let’s Hash version. In the
follow-up survey, 24% of participants also reported that they
felt supported by Let’s Hash and would use it again. Most
importantly, participants indicated that they trusted Let’s Hash
more than their usual resources. The fact that trust can impact
the chosen resources and thus indirectly affect software secu-
rity was already reported in [42]. We believe that trust and a
high measurement of perceived usability are key factors for
the successful establishment of Let’s Hash.

Furthermore, we did not find a significant difference in the
number of clicks and the time participants needed to solve
the tasks with either version of Let’s Hash. With an average
of fewer than 26 clicks and 3 minutes to solve the tasks with
either Let’s Hash version, participants completed the tasks in
a short time with little effort. With a success rate in terms of
functionality of at least 95% for Task 1, 91% for Task 2, and
88% for Task 3, almost none of the participants gave up.

That there was no significant difference in clicks or time
between the Let’s Hash versions is especially interesting since
participants using version LH-W had to interact with a wizard
and decide between different requirements for the tasks. This
wizard requires some development and maintenance effort.
The fact that we did not observe a significant difference in the
effectiveness, efficiency, and perceived usability between the
two Let’s Hash versions suggests omitting the wizard might
be prudent. Then, the secure code snippets will be directly
presented to developers, as they were in version LH. In ei-
ther case, users can simply copy and paste the presented code
into their projects. Having a central resource that is known
to contain up-to-date code may help to mitigate the diffi-
culties that developers have when looking for and assessing
resources [4, 27]. We hope that by expanding Let’s Hash, its
relevance will increase over time. One such addition could
be an implementation of a Single-Sign On (SSO). We plan to
publish Let’s Hash and build an open-source community for
researchers and developers.

9 Conclusion

Previous work showed that developers struggle to adhere to se-
curity best practices. Programming resources aimed at helping

developers work often are either complex, hard to understand
and to use but secure, or easy to use but outdated and poorly
maintained concerning security. To improve software security,
we developed Let’s Hash, a resource to support developers in
implementing the security-critical authentication tasks: user
password storage in a database, password policies, and 2FA.

The difference in security achieved with either version of
Let’s Hash compared to the developers’ usual resources was
highly significant. We further found that the two versions of
Let’s Hash did not differ significantly in either SUS score,
time spent, or the number of clicks needed. The participants’
perceived usability of both Let’s Hash versions was excellent,
and the participants’ feedback was highly positive.

Our results indicated that Let’s Hash has a great poten-
tial to improve the security of code that developers produce
while also decreasing the effort needed. Consequently, we
plan to deploy Let’s Hash as a resource for developers and
researchers. Future efforts could include incorporating addi-
tional topics, like SSO, or programming languages and more
background information. Also, it might be helpful to explore
how to best highlight security-critical parts of the code that
should not be altered to mitigate some of the errors partici-
pants made while using Let’s Hash. To keep Let’s Hash well
maintained, we will be releasing it as an open-source project
on GitHub, and we hope to build a community.

Acknowledgments

This work was partially funded by the Werner Siemens Foun-
dation, and the ERC Grant 678341: Frontiers of Usable Secu-
rity. The authors would like to thank Martin Welsch, Manfred
Paul and Ben Swierzy for their help in developing and eval-
uating Let’s Hash. We thank our anonymous reviewers and
shepherd for helping us improve our paper.

References

[1] Ergonomics of human-system interaction - part 11: Us-
ability: Definitions and concepts. Technical Report ISO
9241-11:2018, March 2018.

[2] Josh Aas, Richard Barnes, Benton Case, Zakir Du-
rumeric, Peter Eckersley, Alan Flores-López, J Alex Hal-
derman, Jacob Hoffman-Andrews, James Kasten, Eric
Rescorla, et al. Let’s encrypt: an automated certificate
authority to encrypt the entire web. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 2473–2487, 2019.

[3] Yasemin Acar, Michael Backes, Sascha Fahl, Simson
Garfinkel, Doowon Kim, Michelle L. Mazurek, and
Christian Stransky. Comparing the usability of cryp-
tographic apis. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 154–171, 2017.

514 Eighteenth Symposium on Usable Privacy and Security USENIX Association

[4] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L Mazurek, and Christian Stransky. You
get where you’re looking for: The impact of information
sources on code security. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 289–305. IEEE, 2016.

[5] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L Mazurek, and Christian Stransky. How
internet resources might be helping you develop faster
but less securely. IEEE Security & Privacy, 15(2):50–60,
2017.

[6] Yasemin Acar, Sascha Fahl, and Michelle L Mazurek.
You are not your developer, either: A research agenda for
usable security and privacy research beyond end users.
In 2016 IEEE Cybersecurity Development (SecDev),
pages 3–8. IEEE, 2016.

[7] Yasemin Acar, Christian Stransky, Dominik Wermke,
Michelle L Mazurek, and Sascha Fahl. Security devel-
oper studies with github users: Exploring a convenience
sample. In Thirteenth Symposium on Usable Privacy
and Security (SOUPS 2017), pages 81–95, 2017.

[8] Anne Adams and Martina Angela Sasse. Users are not
the enemy. Commun. ACM, 42(12):40–46, December
1999.

[9] Aftab Alam, Katharina Krombholz, and Sven Bugiel.
Poster: Let history not repeat itself (this time) – tackling
webauthn developer issues early on. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 2669–2671,
New York, NY, USA, 2019. Association for Computing
Machinery.

[10] Joël Alwen and Jeremiah Blocki. Towards practical
attacks on argon2i and balloon hashing. In 2017 IEEE
European Symposium on Security and Privacy (EuroS
P), pages 142–157, 2017.

[11] Aaron Bangor, Philip Kortum, and James Miller. De-
termining what individual sus scores mean: Adding
an adjective rating scale. Journal of usability studies,
4(3):114–123, 2009.

[12] Jason Bau, Frank Wang, Elie Bursztein, Patrick Mutch-
ler, and John C Mitchell. Vulnerability factors in new
web applications: Audit tools, developer selection &
languages. Stanford, Tech. Rep, 2012.

[13] Ruan Bekker. Salt and hash example using
python with bcrypt on alpine, 2018. Last re-
trieved April 30, 2021 from https://blog.
ruanbekker.com/blog/2018/07/04/salt-\
and-hash-example-using-python-with-bcrypt-\
on-alpine/.

[14] Jeremiah Blocki, Benjamin Harsha, and Samson Zhou.
On the economics of offline password cracking. In 2018
IEEE Symposium on Security and Privacy (SP), pages
853–871, 2018.

[15] Virginia Braun and Victoria Clarke. Using thematic anal-
ysis in psychology. Qualitative research in psychology,
3(2):77–101, 2006.

[16] BSI. Bundesamt für sicherheit in der informa-
tionstechnik, 2021. Last retrieved April 21,
2021 from https://www.bsi.bund.de/DE/
Themen/Verbraucherinnen-und-Verbraucher/
Informationen-und-Empfehlungen/
Cyber-Sicherheitsempfehlungen/
Accountschutz/Sichere-Passwoerter-erstellen/
sichere-passwoerter-erstellen_node.html.

[17] Jessica Colnago, Summer Devlin, Maggie Oates, Chelse
Swoopes, Lujo Bauer, Lorrie Cranor, and Nicolas
Christin. “it’s not actually that horrible” exploring adop-
tion of two-factor authentication at a university. In Pro-
ceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, pages 1–11, 2018.

[18] Nik Cubrilovic. Rockyou hack: From bad to
worse, 2009. Last retrieved February 19, 2021 from
https://techcrunch.com/2009/12/14/rockyou\
-hack-security-myspace-facebook-passwords/.

[19] Anastasia Danilova, Alena Naiakshina, Johanna Deuter,
and Matthew Smith. Replication: On the ecological
validity of online security developer studies: Exploring
deception in a password-storage study with freelancers.
In Sixteenth Symposium on Usable Privacy and Security
(SOUPS 2020), pages 165–183. USENIX Association,
August 2020.

[20] Sanchari Das, Andrew Dingman, and L Jean Camp. Why
johnny doesn’t use two factor a two-phase usability
study of the fido u2f security key. In International Con-
ference on Financial Cryptography and Data Security,
pages 160–179. Springer, 2018.

[21] C. Dutrow and M. Amery. Salt and hash a password in
python, 2019. Last retrieved April 30, 2021 from https:
//stackoverflow.com/questions/9594125/
salt-and-hash-a-password-in-python.

[22] Manuel Egele, David Brumley, Yanick Fratantonio, and
Christopher Kruegel. An empirical study of crypto-
graphic misuse in android applications. In Proceedings
of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 73–84. ACM, 2013.

[23] Serge Egelman, Andreas Sotirakopoulos, Ildar Mus-
lukhov, Konstantin Beznosov, and Cormac Herley. Does

USENIX Association Eighteenth Symposium on Usable Privacy and Security 515

https://blog.ruanbekker.com/blog/2018/07/04/salt-\and-hash-example-using-python-with-bcrypt-\on-alpine/
https://blog.ruanbekker.com/blog/2018/07/04/salt-\and-hash-example-using-python-with-bcrypt-\on-alpine/
https://blog.ruanbekker.com/blog/2018/07/04/salt-\and-hash-example-using-python-with-bcrypt-\on-alpine/
https://blog.ruanbekker.com/blog/2018/07/04/salt-\and-hash-example-using-python-with-bcrypt-\on-alpine/
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Informationen-und-Empfehlungen/Cyber-Sicherheitsempfehlungen/Accountschutz/Sichere-Passwoerter-erstellen/sichere-passwoerter-erstellen_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Informationen-und-Empfehlungen/Cyber-Sicherheitsempfehlungen/Accountschutz/Sichere-Passwoerter-erstellen/sichere-passwoerter-erstellen_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Informationen-und-Empfehlungen/Cyber-Sicherheitsempfehlungen/Accountschutz/Sichere-Passwoerter-erstellen/sichere-passwoerter-erstellen_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Informationen-und-Empfehlungen/Cyber-Sicherheitsempfehlungen/Accountschutz/Sichere-Passwoerter-erstellen/sichere-passwoerter-erstellen_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Informationen-und-Empfehlungen/Cyber-Sicherheitsempfehlungen/Accountschutz/Sichere-Passwoerter-erstellen/sichere-passwoerter-erstellen_node.html
https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-Verbraucher/Informationen-und-Empfehlungen/Cyber-Sicherheitsempfehlungen/Accountschutz/Sichere-Passwoerter-erstellen/sichere-passwoerter-erstellen_node.html
https://techcrunch.com/2009/12/14/rockyou\-hack-security-myspace-facebook-passwords/
https://techcrunch.com/2009/12/14/rockyou\-hack-security-myspace-facebook-passwords/
https://stackoverflow.com/questions/9594125/salt-and-hash-a-password-in-python
https://stackoverflow.com/questions/9594125/salt-and-hash-a-password-in-python
https://stackoverflow.com/questions/9594125/salt-and-hash-a-password-in-python

my password go up to eleven? the impact of password
meters on password selection. In Proceedings of the
SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’13, page 2379–2388, New York, NY,
USA, 2013. Association for Computing Machinery.

[24] Sascha Fahl, Marian Harbach, Henning Perl, Markus
Koetter, and Matthew Smith. Rethinking ssl develop-
ment in an appified world. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security, pages 49–60, 2013.

[25] Franz Faul, Edgar Erdfelder, Albert-Georg Lang, and
Axel Buchner. G* power 3: A flexible statistical power
analysis program for the social, behavioral, and biomed-
ical sciences. Behavior research methods, 39(2):175–
191, 2007.

[26] Juan M Ferreira, Silvia T Acuna, Oscar Dieste, Sira
Vegas, Adrian Santos, Francy Rodriguez, and Natalia
Juristo. Impact of usability mechanisms: An experiment
on efficiency, effectiveness and user satisfaction. Infor-
mation and Software Technology, 117:106195, 2020.

[27] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar,
M. Backes, and S. Fahl. Stack overflow considered
harmful? the impact of copy paste on android applica-
tion security. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 121–136, 2017.

[28] Flask. Flask-bcrypt, 2020. Last retrieved April 30, 2021
from https://flask-bcrypt.readthedocs.io/en/
latest/.

[29] Dinei Florêncio, Cormac Herley, and Paul C
Van Oorschot. An administrator’s guide to inter-
net password research. In 28th Large Installation
System Administration Conference (LISA14), pages
44–61, 2014.

[30] Alain Forget, Sonia Chiasson, and Robert Biddle. Help-
ing users create better passwords: Is this the right ap-
proach? In Proceedings of the 3rd Symposium on Usable
Privacy and Security, pages 151–152, 2007.

[31] Google. Google authenticator, 2020. Last retrieved
March 23, 2020 from https://github.com/google/
google-authenticator.

[32] Paul A Grassi, James L Fenton, EM Newton, RA Perlner,
AR Regenscheid, WE Burr, JP Richer, NB Lefkovitz,
JM Danker, Yee-Yin Choong, et al. Nist special publi-
cation 800-63b: Digital identity guidelines. Enrollment
and Identity Proofing Requirements. url: https://pages.
nist. gov/800-63-3/sp800-63a. html, 2017.

[33] Matthew Green and Matthew Smith. Developers are not
the enemy!: The need for usable security apis. IEEE
Security & Privacy, 14(5):40–46, 2016.

[34] Aleksander Groth and Daniel Haslwanter. Efficiency,
effectiveness, and satisfaction of responsive mobile
tourism websites: a mobile usability study. Informa-
tion Technology & Tourism, 16(2):201–228, 2016.

[35] Troy Hunt. Have i been pwned. Last retrieved, 23, 2019.

[36] Saranga Komanduri is a Phd. Helping users create better
passwords. 2012.

[37] Brandy Klug. An overview of the system usability scale
in library website and system usability testing. Weave:
Journal of Library User Experience, 1(6), 2017.

[38] Philip Kortum and Claudia Ziegler Acemyan. The re-
lationship between user mouse-based performance and
subjective usability assessments. In Proceedings of the
Human Factors and Ergonomics Society Annual Meet-
ing, volume 60, pages 1174–1178. SAGE Publications
Sage CA: Los Angeles, CA, 2016.

[39] Gitte Lindgaard and Cathy Dudek. User Satisfaction,
Aesthetics and Usability, pages 231–246. Springer US,
Boston, MA, 2002.

[40] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bod-
den. Jumping through hoops: Why do java developers
struggle with cryptography apis? In Proceedings of the
38th International Conference on Software Engineering,
ICSE ’16, pages 935–946, New York, NY, USA, 2016.
ACM.

[41] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and
Matthew Smith. On conducting security developer stud-
ies with cs students: Examining a password-storage
study with cs students, freelancers, and company de-
velopers. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, pages 1–13,
2020.

[42] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,
Emanuel von Zezschwitz, and Matthew Smith. "if you
want, i can store the encrypted password" a password-
storage field study with freelance developers. In Pro-
ceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, pages 1–12, 2019.

[43] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-
nau, Marco Herzog, Sergej Dechand, and Matthew
Smith. Why do developers get password storage wrong?
a qualitative usability study. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 311–328, 2017.

[44] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-
nau, and Matthew Smith. Deception task design in devel-
oper password studies: Exploring a student sample. In
Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018), pages 297–313, 2018.

516 Eighteenth Symposium on Usable Privacy and Security USENIX Association

https://flask-bcrypt.readthedocs.io/en/latest/
https://flask-bcrypt.readthedocs.io/en/latest/
https://github.com/google/google-authenticator
https://github.com/google/google-authenticator

[45] Mark O’Neill, Scott Heidbrink, Jordan Whitehead, Tan-
ner Perdue, Luke Dickinson, Torstein Collett, Nick Bon-
ner, Kent Seamons, and Daniel Zappala. The secure
socket {API}:{TLS} as an operating system service. In
27th USENIX Security Symposium (USENIX Security
18), pages 799–816, 2018.

[46] OWASP. Open web application security project, 2021.
Last retrieved April 26, 2021 from https://owasp.
org/.

[47] OWASP. Owasp authentication cheat sheet, 2021.
Last retrieved February 20, 2021 from https:
//cheatsheetseries.owasp.org/cheatsheets/
Authentication_Cheat_Sheet.html.

[48] OWASP. Owasp password storage cheat sheet,
2021. Last retrieved February 20, 2021 from https:
//cheatsheetseries.owasp.org/cheatsheets/
Password_Storage_Cheat_Sheet.html.

[49] Sarah Perez. Recently confirmed myspace hack could
be the largest yet, 2016. Last retrieved February 19,
2021 from https://techcrunch.com/2016/05/31/
recently-confirmed-myspace-hack-could-be-\
the-largest-yet/.

[50] PHC. Password hashing competition, 2019. Last
retrieved February 20, 2021 from https://www.
password-hashing.net/.

[51] R Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Comput-
ing, Vienna, Austria, 2020. https://www.R-project.
org/.

[52] Joshua Reynolds, Trevor Smith, Ken Reese, Luke Dick-
inson, Scott Ruoti, and Kent Seamons. A tale of two
studies: The best and worst of yubikey usability. In 2018
IEEE Symposium on Security and Privacy (SP), pages
872–888. IEEE, 2018.

[53] RockIt. The most common passwords 2020,
2020. Last retrieved February 19, 2021
from https://rockit.cloud/2020/03/18/
the-most-commonly-used-password-in-2020-is/.

[54] Jeff Sauro. 5 ways to interpret a sus score, 2018. Last
retrieved April 25, 2021 from https://measuringu.
com/interpret-sus-score/.

[55] Jeff Sauro and James R. Lewis. Average task times
in usability tests: What to report? In Proceedings of
the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’10, page 2347–2350, New York,
NY, USA, 2010. Association for Computing Machinery.
https://doi.org/10.1145/1753326.1753679.

[56] Sean M. Segreti, William Melicher, Saranga Komanduri,
Darya Melicher, Richard Shay, Blase Ur, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, and Michelle L.
Mazurek. Diversify to survive: Making passwords
stronger with adaptive policies. In Thirteenth Sympo-
sium on Usable Privacy and Security (SOUPS 2017),
pages 1–12, Santa Clara, CA, July 2017. USENIX As-
sociation.

[57] Steve Sheng, Levi Broderick, Colleen Alison Koranda,
and Jeremy J Hyland. Why johnny still can’t encrypt:
evaluating the usability of email encryption software. In
Symposium On Usable Privacy and Security, pages 3–4.
ACM, 2006.

[58] Christian Stransky, Yasemin Acar, Duc Cuong Nguyen,
Dominik Wermke, Doowon Kim, Elissa M. Red-
miles, Michael Backes, Simson Garfinkel, Michelle L.
Mazurek, and Sascha Fahl. Lessons learned from using
an online platform to conduct large-scale, online con-
trolled security experiments with software developers.
In 10th USENIX Workshop on Cyber Security Experi-
mentation and Test (CSET 17), Vancouver, BC, August
2017. USENIX Association.

[59] Joshua Tan, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. Practical recommendations for stronger,
more usable passwords combining minimum-strength,
minimum-length, and blocklist requirements. 2020.

[60] Dan U. Passwords, passwords everywhere,
2019. Last retrieved February 19, 2021
from https://www.ncsc.gov.uk/blog-post/
passwords-passwords-everywhere.

[61] Blase Ur, Felicia Alfieri, Maung Aung, Lujo Bauer,
Nicolas Christin, Jessica Colnago, Lorrie Faith Cranor,
Henry Dixon, Pardis Emami Naeini, Hana Habib, et al.
Design and evaluation of a data-driven password meter.
In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, pages 3775–3786, 2017.

[62] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel
Lee, Michael Maass, Michelle L. Mazurek, Timothy Pas-
saro, Richard Shay, Timothy Vidas, Lujo Bauer, Nico-
las Christin, and Lorrie Faith Cranor. How does your
password measure up? the effect of strength meters on
password creation. In 21st USENIX Security Symposium
(USENIX Security 12), pages 65–80, Bellevue, WA, Au-
gust 2012. USENIX Association.

[63] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M Seg-
reti, Richard Shay, Lujo Bauer, Nicolas Christin, and
Lorrie Faith Cranor. " I Added’!’at the End to Make It
Secure": Observing Password Creation in the Lab. In
Eleventh Symposium On Usable Privacy and Security
(SOUPS 2015), pages 123–140, 2015.

USENIX Association Eighteenth Symposium on Usable Privacy and Security 517

https://owasp.org/
https://owasp.org/
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://techcrunch.com/2016/05/31/recently-confirmed-myspace-hack-could-be-\the-largest-yet/
https://techcrunch.com/2016/05/31/recently-confirmed-myspace-hack-could-be-\the-largest-yet/
https://techcrunch.com/2016/05/31/recently-confirmed-myspace-hack-could-be-\the-largest-yet/
https://www.password-hashing.net/
https://www.password-hashing.net/
https://www.R-project.org/
https://www.R-project.org/
https://rockit.cloud/2020/03/18/the-most-commonly-used-password-in-2020-is/
https://rockit.cloud/2020/03/18/the-most-commonly-used-password-in-2020-is/
https://measuringu.com/interpret-sus-score/
https://measuringu.com/interpret-sus-score/
https://doi.org/10.1145/1753326.1753679
https://www.ncsc.gov.uk/blog-post/passwords-passwords-everywhere
https://www.ncsc.gov.uk/blog-post/passwords-passwords-everywhere

[64] Vitosh. Vitosh academy, 2021. Last retrieved April 25,
2021 from https://www.vitoshacademy.com/.

[65] W3Schools. W3schools online web tutorials, 2021.
Last retrieved April 25, 2021 from https://www.
w3schools.com/.

[66] Daniel Lowe Wheeler. zxcvbn: Low-budget password
strength estimation. In 25th USENIX Security Sympo-
sium (USENIX Security 16), pages 157–173, 2016.

[67] Alma Whitten and J Doug Tygar. Why johnny can’t
encrypt: A usability evaluation of pgp 5.0. In USENIX
Security Symposium, volume 348, pages 169–184, 1999.

[68] Chamila Wijayarathna and Nalin A. G. Arachchilage.
Why johnny can’t store passwords securely? a usabil-
ity evaluation of bouncycastle password hashing. In
Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering
2018, EASE’18, page 205–210, New York, NY, USA,
2018. Association for Computing Machinery.

A Task descriptions

These are the task descriptions as they were presented to
participants:

Create a method to hash and salt passwords for storage in a
database.

You are asked to develop a method in a web-application backend
that prepares a password for storage in a database. Assume that
a user has chosen a password that gets handed to your function
hash_password() as a string. Implement this function in such
a way that it returns the password securely hashed and salted.
Additionally, please implement a function verify(), which compares a
password to a hash and returns True if they match, False if they do not.

The programming language for this task is Python3. Please
only use the website LetsHash as a resource when solving this task.

When is the problem solved?
The problem is solved when you have successfully implemented the
function to fulfill the required specifications, and the output printed
by the main function reads:
“Your hash: <a hash value>
The correct password is s3cr3t: True
The correct password is s3cr4t: False”

Create a method to check if a password adheres to a given policy.

You are asked to develop a method in a web-application frontend that
ensures that the password a user chooses meets the company policy.
According to this policy, a password must
- be between 8 and 64 characters
- have at least one upper- and one lowercase letter
- have at least one special character - have at least one number
Please implement the functions length() and composition() so they

return True if the password matches the criteria given, and False if it
does not.

The programming language for this task is JavaScript. Please only
use the website LetsHash as a resource when solving this task.

When is the problem solved?
The problem is solved when you have successfully implemented the
functions to fulfill the required specifications, and upon clicking
“Run and Test”, you receive an alert that reads:
“The password meets the requirement for length: true
The password meets the requirement for composition: false
The password is considered valid: false”

Create a method to set up a second factor for user authentication.

You are asked to develop a method in a web-application backend
that offers users of a login system a second factor for authentication.
Please implement the function generate_second_factor() so that it
takes a shared secret as a parameter and returns a time-based one-time
password (totp).

The programming language for this task is Python3. Please
only use the website LetsHash as a resource when solving this task.

When is the problem solved?
The problem is solved when you have successfully implemented the
function to fulfill the required specifications, and the output printed
by the program reads:
“Your code: <a time-based one-time code>
Your code is verified: True”

B Surveys

Some questions of the surveys were specific to either the
groups LH and LH-W, or group C. These questions are
marked accordingly.

Survey
Thank you very much for working on the tasks assigned to

you during this study! There are a few questions we would
like to ask you to wrap things up.

• (Q1): Please answer the following questions by indicat-
ing a number on the scale from "1 - Not at all familiar"
to "7 - Very familiar".

– How familiar are you with Python? 1-7

– How familiar are you with Javascript? 1-7

– How familiar are you with password storage in a
database? 1-7

– How familiar are you with the implementation of
two factor authentication (2fa)? 1-7

– How familiar are you with the implementation of
password policies? 1-7

518 Eighteenth Symposium on Usable Privacy and Security USENIX Association

https://www.vitoshacademy.com/
https://www.w3schools.com/
https://www.w3schools.com/

• (Q2): Have you ever looked up how to implement pass-
word policies as they are recommended by any of the
following institutions before this study? You can choose
more than one answer.

– No, I have never looked up recommendations on
password policies.

– I have looked up NIST‘s recommendations on pass-
word policies.

– I have looked up OWASP‘s recommendations on
password policies.

– I have looked up another institution‘s recommen-
dations on password policies. Please specify: (Free
text)

• (Q3): Please rate the correctness of the following state-
ments by indicating a number on the scale from "1 -
Does not describe me" to "7 - Describes me very well".

– I am familiar with the implementation of login
forms. 1-7

– I am familiar with the implementation of password
strength checkers. 1-7

– I have a good understanding of security concepts.
1-7

• (Q4): How long were you actively working on the task
to solve it? Please indicate the time in full hours. (Free
text)

• (Q5): Please answer the following question by indicating
a number on the scale from "1 - Very easy" to "7 - Very
hard". Overall, the task was... 1-7

• (Q6): Please rate the correctness of the following state-
ment by indicating a number on the scale from "1 - Not
close at all" to "7 - Very close". How close was the task
to reality compared to the projects that you develop in
everyday life? 1-7

• (Q7): Did you have any prior experience with storing
passwords in a database? You can choose more than one
answer.

– No.

– Yes, in university.

– Yes, on a job.

– Other - please specify: (Free text)

• Only groups LH/ LH-W (Q8): If yes: Please rate the
correctness of the following statement by indicating a
number on the scale from "1 - Not at all helpful" to "7 -
Very helpful". Would the website you have used in this
study have been helpful in solving problems you had
then? 1-7

• (Q9): Did you have any prior experience with imple-
menting password policies? You can choose more than
one answer.

– No.

– Yes, in university.

– Yes, on a job.

– Other - please specify: (Free text)

• Only groups LH/ LH-W (Q10): If yes: Please rate the
correctness of the following statement by indicating a
number on the scale from "1 - Not at all helpful" to "7 -
Very helpful". Would the website you have used in this
study have been helpful in solving problems you had
then? 1-7

• (Q11): Did you have any prior experience with imple-
menting two-factor authentication? You can choose more
than one answer.

– No.

– Yes, in university.

– Yes, on a job.

– Other - please specify: (Free text)

• Only groups LH/ LH-W (Q12): If yes: Please rate the
correctness of the following statement by indicating a
number on the scale from "1 - Not at all helpful" to "7 -
Very helpful". Would the website you have used in this
study have been helpful in solving problems you had
then? 1-7

• Only groups LH/ LH-W (Q13): What could be im-
proved about the website? (Free text)

• (Q14): Please answer the following questions by indicat-
ing a number on the scale from "1 - Never" to "7 - Every
time".

– How often do you ask for help when faced with
security problems? 1-7

– How often are you asked for help when others are
faced with security problems? 1-7

– How often do you need to add security to the
software you develop in general (apart from this
study)? 1-7

• (Q15): Please answer the following questions by indicat-
ing a number on the scale from "1 - Not knowledgeable
at all" to "7 - Very knowledgeable".

– How would you rate your background/knowl-
edge with regard to secure password storage in
a database? 1-7

USENIX Association Eighteenth Symposium on Usable Privacy and Security 519

– How would you rate your background/knowledge
with regard to the implementation of two factor
authentication (2fa)? 1-7

– How would you rate your background/knowledge
with regard to the implementation of password poli-
cies? 1-7

• (Q16): How often have you stored passwords in a
database in the software you have developed (apart from
this study)? (Free text)

• (Q17): How often have you implemented two factor
authentication (apart from this study)? (Free text)

• (Q18): How often have you implemented a login form
with a password strength checker (apart from this study)?
(Free text)

• (Q19): What is your most-used resource for implement-
ing security in your software development?

– Stackoverflow
– Official documentation
– Other - please specify: (Free text)

• Only groups LH/ LH-W:

– (Q20-LH): Please rate your agreement to the fol-
lowing questions on a scale from "1 - Strongly
disagree" to "7 - Strongly agree".

* I needed a lot of background knowledge to
complete the task. 1-7

* The website provided well-structured informa-
tion. 1-7

* The website provided all necessary informa-
tion to solve the task. 1-7

* I spent a lot of time trying to navigate the
website. 1-7

* The assistance provided by the website to ease
navigation was sufficient. 1-7

* I would recommend this website to a col-
league who needs assistance with the imple-
mentation of password storage. 1-7

* I would recommend this website to a col-
league who needs assistance with the imple-
mentation of two factor authentication. 1-7

* I would recommend this website to a col-
league with questions regarding the implemen-
tation of password policies. 1-7

* I would use this website if I had to work on a
similar task in a professional setting/ working
on tasks within my job. 1-7

– (Q21-LH): Have you used only the website that
was provided to you by this study? If not, which
additional resources did you use to solve the tasks?

* I have only used the website that was provided
to me

* I have used other resources as well: (Free text)

– (Q22-LH): Please answer the following question
by indicating a number on the scale from "1 - Much
better" to "7 - Much worse". Compared to your
most used resource, how would you rate the ease
of use of the website you worked with during this
study when it comes to accomplishing your tasks
functionally? 1-7

– (Q23-LH): Please explain your decision: (Free
text)

– (Q24-LH): Please answer the following question
by indicating a number on the scale from "1 - Much
better" to "7 - Much worse". Compared to your
most used resource, how would you rate the ease
of use of the website you worked with during this
study when it comes to accomplishing your tasks
securely? 1-7

– (Q25-LH): Please explain your decision: (Free
text)

– (Q26-LH): Please rate your agreement to the fol-
lowing statements about the website that was pro-
vided for you during this study on a scale from "1 -
Strongly disagree" to "5 - Strongly agree".

* I think that I would like to use this website
frequently. 1-5

* I found the website unnecessarily complex.
1-5

* I thought the website was easy to use. 1-5

* I think that I would need the support of a tech-
nical person to be able to use this website. 1-5

* I found the various functions in this website
were well integrated. 1-5

* I thought there was too much inconsistency in
this website. 1-5

* I would imagine that most people would learn
to use this website very quickly. 1-5

* I found the website very cumbersome to use.
1-5

* I felt very confident using the website. 1-5

* I needed to learn a lot of things before I could
get going with this website. 1-5

• Only group C:

– (Q20-C): Which resources did you use to solve
the tasks? Please be as specific as possible (for
example, provide links to any websites you used).
(Free text)

– (Q21-C): Which of the resources you listed in the
last question was your main resource? (Free text)

520 Eighteenth Symposium on Usable Privacy and Security USENIX Association

– (Q22-C): Please answer the following question by
indicating a number on the scale from "1 - Very
good" to "7 - Very bad". How would you rate the
ease of use of the website(s) you worked with dur-
ing this study when it comes to accomplishing your
tasks functionally? 1-7

– (Q23-C): Please explain your decision: (Free text)

– (Q24-C): Please answer the following question by
indicating a number on the scale from "1 - Very
good" to "7 - Very bad". How would you rate the
ease of use of the website(s) you worked with dur-
ing this study when it comes to accomplishing your
tasks securely? 1-7

– (Q25-C): Please explain your decision: (Free text)

– (Q26-C): Please rate your agreement to the fol-
lowing questions on a scale from "1 - Strongly
disagree" to "7 - Strongly agree".

* I needed a lot of background knowledge to
complete the task. 1-7

* The website(s) I used provided well-structured
information. 1-7

* The website(s) I used provided all necessary
information to solve the task. 1-7

* I spent a lot of time trying to navigate the
website(s) I used. 1-7

* I would use the same website(s) if I had to
work on a similar task in a professional setting/
was working on tasks within my job. 1-7

– (Q27-C): Please rate your agreement to the fol-
lowing statements about the website that was your
main resource during this study on a scale from "1
- Strongly disagree" to "5 - Strongly agree".

* I think that I would like to use this website
frequently. 1-5

* I found the website unnecessarily complex.
1-5

* I thought the website was easy to use. 1-5

* I think that I would need the support of a tech-
nical person to be able to use this website. 1-5

* I found the various functions in this website
were well integrated. 1-5

* I thought there was too much inconsistency in
this website. 1-5

* I would imagine that most people would learn
to use this website very quickly. 1-5

* I found the website very cumbersome to use.
1-5

* I felt very confident using the website. 1-5

* I needed to learn a lot of things before I could
get going with this website. 1-5

• (Q28): Please select your gender.

– Male

– Female

– Prefer not to say

– Other: (Free text)

• (Q29): Please state your age. (Free text)

• (Q30): What is your current main occupation?

– Freelance developer

– Industrial developer

– Industrial researcher

– Academic researcher

– Undergraduate part-time student

– Undergraduate full-time student

– Graduate part-time student

– Graduate full-time student

– Other: (Free text)

• (Q31): What is your nationality? (Free text)

• (Q32): How did you gain your IT skills? (Free text)

• (Q33): What was your main source of learning about
IT-security? (Free text)

• (Q34): Do you have a university degree? (Yes/ No)

• If yes:

– (Q35): What was/is your subject? (Free text)

– (Q36): Were/Are you taught about IT-security at
university? (Free text)

– (Q37): Were/Are you taught about IT-security in
addition to your regular studies? (Yes/ No)

– (Q38): If yes: Where were/are you taught about IT-
security in addition to your regular studies? (Free
text)

• (Q39): Are you working at a company? (Yes/ No)

• If yes:

– (Q40): How old is your organization? Please spec-
ify in years. (Free text)

– (Q41): What is the total number of employees in
your organization?

* 1-9

* 10-249

* 250-499

* 500-999

USENIX Association Eighteenth Symposium on Usable Privacy and Security 521

* 1000 or more

– (Q42): How many members are there in your team?
(Free text)

– (Q43): Which field of activity does your company
belong to? You can choose more than one answer.

* Game development

* Development of network and communication
software

* Web development

* Development of middleware, system compo-
nents, libraries and frameworks

* Development of other tools for developers,
such as IDEs and compilers

* Other: (Free text)

– (Q44): Does your company have a security focus?
(Yes/ No)

– (Q45): Does your team have a security focus in its
current field of activity?

* Yes

* No

* I work alone and my field of activity has a
security focus

* I work alone and my field of activity has no
security focus

– (Q46): Do you also have to work on security-
relevant tasks in your field of activity? (Yes/ No)

– (Q47): Were/Are you taught about IT-security in
addition to your regular work? (Yes/ No)

– (Q48): If yes: Where were/are you taught about
IT-security in addition to your regular work? (Free
text)

• (Q49): What type(s) of software do you develop? You
can choose more than one answer.

– Web applications

– Mobile/App applications

– Desktop applications

– Embedded Software Engineering

– Enterprise applications

– Other - please specify: (Free text)

• (Q50): How many years of experience do you have with
software development in general? (Free text)

C Security Score

For the security evaluation of the code, we used an adapted
version of this security score from Naiakshina et al. [43]:

• (Q51): How many years of experience do you have with
Python development? (Free text)

• (Q52): How many years of experience do you have with
Javascript development? (Free text)

• (Q53): If you have any comments or suggestions, please
leave them here: (Free text)

1. The end-user password is salted (+1) and hashed (+1).

2. The derived length of the hash is at least 160 bits long
(+1).

3. The iteration count for key stretching is at least 1000
(+0.5) or 10000 (+1) for PBKDF2 and at least 210 =
1024 for bcrypt (+1).

4. A memory-hard hashing function is used (+1).

5. The salt value is generated randomly (+1).

6. The salt is at least 32 bits in length (+1).

D Automated Detection Of Copied Code

This section describes the process which was used to
semi-automatically determine whether participants from the
groups LH and LH-W submitted code which they had copied
off of Let’s Hash.

Since participants would sometimes copy everything, in-
cluding comments, while others only copied the exact lines
that were needed, exact string matching would have been too
strict for our purposes. We used approximate string matching,
coded in python, to calculate a matching ratio. If the resulting
ratio dropped below a threshold of 80% for the cryptographic
tasks, or 50% for the task on password policies, the files were
examined manually. The thresholds were chosen on the basis
of manual spot sampling. The threshold for the password pol-
icy task was much lower than for the other two tasks because
this task involved some changes to the code that participants
had to make to be able to use it, while the code for the other
two tasks could be used as is.

522 Eighteenth Symposium on Usable Privacy and Security USENIX Association

	Introduction
	Related Work
	Password Storage
	Password Policies
	Two-Factor Authentication

	Let's Hash
	Password Storage
	Password Policies
	Two-Factor Authentication
	Let's Hash Wizard

	Methodology
	Study Setup
	Task Design
	Survey
	Usability Evaluation
	Error Analysis
	Hypotheses and Statistical Analysis
	Pilot Study
	Power Analysis
	Participants

	Limitations
	Ethics
	Results
	Participants' Submissions
	Functionality
	Security

	Hypotheses
	Security
	Usability
	Hypothesis Takeaways

	Error Analysis
	Non-functional Submissions
	Functional, but Non-secure Submissions
	Errors Despite Using Let's Hash
	Usability and Errors

	Participants' Feedback on Resources

	Discussion
	Conclusion
	Task descriptions
	Surveys
	Security Score
	Automated Detection Of Copied Code

