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Abstract
Password managers help users more effectively manage their

passwords, yet the adoption of password generation is

minimal. One explanation for this problem is that websites’

password composition policies (PCPs) can reject generated

passwords, creating a usability impediment. To address this

issue, we design a PCP language that websites use to

describe their PCP and that managers use to generate

compliant passwords. We develop this language using an

iterative process involving an extensive collection of PCPs

scraped from the Web. We provide libraries for adopting our

PCP language into websites and password managers and

build proof-of-concept prototypes to verify the real-world

feasibility of our PCP language. Using a 25-person user

study, we demonstrate that our language and libraries are

easy to pick up and correctly use for novice developers.

Finally, we replicate and extend past research evaluating Web

PCPs, showing that half of PCPs fail to require passwords

that resist offline attacks when considering that users prefer

certain character classes when selecting their passwords.

1 Introduction

Despite their problems [7–9, 27, 30, 34, 37], passwords

remains the dominant form of authentication [5]. Password

managers strengthen password-based authentication by

helping users generate, store, and enter passwords, making it

easier to adopt strong, unique passwords [19, 27]. Still,

research has shown that password manager users underutilize

password generation [19, 28]. One potential explanation for
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this phenomenon is that websites’ password composition

policies (PCPs) can reject generated passwords, decreasing

the usability and utility of the generator. [16, 25].

To address this issue, we design a PCP language that

websites can use to encode and publish their PCP, with

password managers downloading the PCP to ensure that they

only generate compliant passwords. To inform the design of

this PCP language, we extract 270 PCPs from a

geographically diverse set of 626 popular websites. Using

this dataset, we build an initial PCP language, then iteratively

refine it as we encode the gathered PCPs, stopping once all

PCPs in our data set can be efficiently and useably encoded.

Our final PCP language is more feature-rich than previous

efforts and is the first PCP language that can represent the

full range of PCPs found in our dataset.

To demonstrate the feasibility of our proposed language,

we (i) build proof-of-concept websites that publish their PCP

using our language; (ii) modify BitWarden, a popular

password manager, to download these PCPs and generate

compliant passwords; and (iii) create Python and JavaScript

libraries that make it easy to use our PCP language in server-

and client-side code. Next, we conduct an online usability

study with 25 participants, measuring their ability to author

PCPs using our language and tools. Our results show that

most participants can rapidly comprehend our language and

author PCP descriptions, even for complex policies.

Finally, we replicate and extend prior work analyzing Web

PCPs [10, 20]. In contrast to prior efforts that use a simple

heuristic that only considers the minimum length and

allowed characters for measuring PCP strength, our analysis

takes into account all requirements of the PCP. Additionally,

our analysis includes both upper- and lower-bound estimates

for PCP strength that take into account how users select

passwords [18, 36]. This improved analysis shows that most

PCPs in our dataset fail to require passwords that resist

offline attacks. Furthermore, for users that prefer passwords

comprised primarily of digits [18], nearly half of the

evaluated PCPs fail to require passwords that resist online

attacks.
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Research Artifacts: Our data, scripts, and prototypes are

available at https://userlab.utk.edu/publications/
gautam2022improving.

2 PCP Dataset

To inform the design of our PCP language, we gathered an

extensive corpus of PCPs deployed on the Web. Our sample

is demographically diverse, including websites from

highly-populated countries in each of the six inhabited

continents: Africa—Nigeria, Asia—India,

Europe—Germany and the United Kingdom (UK),

Oceania—Australia, North America—United States (US),

South American—Brazil. We also measured PCPs from

China, Iran, and Russia to see if their high levels of Internet

censorship [15] impacted PCP selection.

2.1 Sources

We used the Alexa and Quantcast lists of the most popular

websites to select websites for each country. In January 2019,

we downloaded the Alexa lists of the 250 most popular US

websites and the top 50 lists for the remaining nine countries

we examined. As we began to analyze these websites, we

noticed a high overlap between the websites listed for each

country. To obtain more unique websites for each country,

in February 2019, we downloaded the Quantcast lists of the

top 50 most popular websites for each country. We selected

Quantcast as its country-specific lists had minimal overlap

with global and US-specific websites from Alexa. We also

analyzed the websites listed in the Quantcast top 50 global

lists. In total, these lists identified 626 unique websites.

Next, we removed websites that do not support account

creation, delegate all authentication to single sign-on (SSO)

providers, or require resources we do not have to create an

account (e.g., a bank account). For the remaining 320

websites, we identify websites that use the same

authentication backend (e.g., google.com and youtube.com),

keeping only a single representative website. We then

extracted PCPs from the remaining 270 websites.

2.2 Analysis

To extract the PCP for each website, we took the following

steps. First, we would look for PCP components described

textually on the account creation web page or elsewhere on the

domain. Second, we would examine the HTML form, looking

for validation attributes that restricted what users could enter

for their password. Third, we evaluated any JavaScript used

to validate the password, identifying restrictions enforced

therein. Fourth and finally, we manually tried to enter various

passwords of different lengths and compositions.

2.3 Limitations
While our data collection resulted in a large and rich corpus,

we recognize there are limitations to our methodology. First,

while covering more features than past efforts [10, 14, 20],

our data is not comprehensive. Still, we believe our dataset is

sufficient for our purposes as we achieved saturation [2]—i.e.,

we stopped discovering new PCP features at the latter end of

our analysis.

Second, it is likely that we missed some PCP edge cases.

Only by investigating the server-side code would it be possible

to identify the exact PCP definitively. Automating the process

to check more password combinations would be problematic

as this would involve flooding the website with passwords.

3 PCP Description Language

Using our PCP dataset, we design a language for describing

PCPs. Our language has two key design goals: (1) describe

the PCPs in our dataset and (2) be simple to read and write

for administrators and machines. To achieve these goals, we

followed an iterative design process:

First, we created a draft version of our PCP language

based on prior research (§9) and PCP features in our dataset.

Second, we encode the PCPs in our data set using this

language. When we encountered a PCP that was onerous to

encode, we modified our draft PCP language to address pain

points. We would then re-encode all prior PCPs to ensure

that our change did not cause a usability regression. Third,

after encoding all PCPs, we reviewed our language with

others from our research group, focusing on improving the

language’s readability and identifying PCP features they had

encountered in the wild but are absent in our PCP dataset.

Based on their feedback, we updated our language and

re-encoded the PCPs in our dataset (continuing to look for

usability issues). After making a full pass encoding PCPs

without changing our language, we considered it finished.

3.1 PCP Language
A PCP in our language is composed of two components: (a)

a set of characters allowed in a password and (b) rules about

password composition.

The allowed characters are grouped into named, disjoint

sets of characters—a charset. By default, the PCP uses the

following four default charsets: lowercase English letters

(lower), uppercase English letters (upper), Arabic numerals

(digits), and the OWASP password symbols [26] (symbols).

Our language allows these default charsets to be modified,

new charsets to be added, and default ones to be removed.

Our language also provides an alphabet charset that, if used,

merges and replaces the default lower and upper charsets.

A PCP composition rule is a set of requirements that

passwords must comply with to be valid. If a PCP contains
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multiple rules, a password need only satisfy the requirements

for a single rule to be valid (the overwhelming majority of

PCPs only have one rule). For example, if one rule specified

that passwords must be eight characters long and contain

lowercase letters and symbols and another rule specified that

passwords must be fifteen characters long, fifteen character

passwords of only digits would be valid, whereas fourteen

character passwords of only digits would not.

The possible requirements in each rule are as follows:

• min_length is a positive integer specifying the

password’s minimum length (inclusive). All rules

require that min_length is set, with all other

requirements optional.

• max_length is a positive integer specifying the

password’s maximum length (inclusive).

• max_consecutive is a positive integer indicating the

maximum number of times the same character can

appear consecutively in a password. For example, to

prevent passwords such as AAA or ZZZ,

max_consecutive would be set to 2.

• prohibitted_substrings is a set of strings that may not

appear anywhere in the password. When used, this

commonly includes the website name and other related

words. For example, to prohibit the string "google",

prohibited_substrings would be set to ["google"].

• require is a list of charsets that must appear in the

password. For example, to require that a password must

have letters and digits, require would be set to

["alphabet", "digits"].

• require_subset is an object containing a list of charsets

(options) from which count of those options must

appear in the password. For example, to require that a

password must have digits and symbols, but not

necessarily both, require_subset would be set to

{"options": ["digits", "symbols"], "count": 1}. If not set,

options defaults to using all the PCP’s charsets; count
defaults to one.

• charset_requirements is a map between charset names

and requirements for the named charset. For example,

to add additional requirements for digits,

charset_requirements would be set as such:

{"digits": {requirements}}. Possible requirements

include:

– min_required is a positive integer specifying the

minimum number of times this charset must appear

in the password.

– max_allowed is a positive integer specifying the

maximum number of times this charset may appear

in the password. For example, if set to two for the

digits charset, passwords containing 111 or 123
would be rejected.

{
"charsets": {

"name": "characters", . . .
},
"rules": [{

"min_length": Z
+,

"max_length": Z
+,

"max_consecutive": Z
+,

"prohibited_substrings": ["substring", . . .],

"required": ["charset_name", . . .],
"require_subset": {

"options": ["charset_name", . . .],
"count": Z

+

},

"charset_requirements": {
"charset_name": {

"min_required": Z
+,

"max_allowed": Z
+,

"max_consecutive": Z
+,

"required_locations": [Z+, . . .],
"prohibited_locations": [Z+, . . .],

}, . . .
}

}, . . .]
}

Listing 1: JSON schema for our PCP language

– max_consecutive is a positive integer indicating the

maximum number of times this charset can appear

consecutively in a password. For example, if set to

two for the alphabet charset, passwords containing

abc or ddd would be rejected.

– required_locations is a list of indices for the

password at which this charset must appear.

Passwords are zero-indexed and negative indices

are supported (i.e., reverse string indexing). For

example, to require a password that starts and ends

with a symbol, required_locations for the symbols

charset would be set to [0, -1].

– prohibited_locations is a list of indices for the

password at which this charset must not appear.

Passwords are zero-indexed and negative indices

are supported (i.e., reverse string indexing). For

example, to prevent a password from having the

last two characters as digits, prohibited_locations
for the digits charset would be set to [-1, -2].

A JSON schema for our final PCP language is given in

Listing 1. Examples of real-world PCPs encoded using our

language are given in Listing 2.

Examining the JSON-encoded PCPs in our dataset, we find

that they are 17–205 characters long, with a median length of

36 characters. These small sizes are evidence that our PCP

efficiently encodes passwords. Lastly, we note that while

we used JSON to encode policies, they could also easily be

encoded in a wide range of data-interchange formats (e.g.,

YAML, protobuf).
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# Passwords of length six to twleve (walmart.com)
{"min_length": 6, "max_length": 12}

# Password must include at least one digit, symbol, and
alphabetic character (facebook.com)

{
"min_length": 6,
"require": ["digits", "alphabet", "symbols"]

}

# Custom definition for symbols that are allowed
(macys.com)

{
"charsets": {"symbols": "!\"#\$%&'()*+:;<>?@[]^`{}~"},
"rules": [{"min_length": 7, "max_length": 16}]

}

# Password must have at least one alphabetic character
and either a digit or a symbol (bbc.com)

{
"min_length": 8,
"max_length": 50,
"require": ["alphabet"],
"require_subset": {

"count": 1,
"options": ["digits", "symbols"]

}
}

# Password can be eight characters if it contains a
lowercase character and a digit. Otherwise, it must
be fifteen characters long. (github.com)

{
"rules": [

{"min_length": 8, "require": ["lower", "digits"]},
{"min_length": 15}

]
}

Listing 2: PCP examples encoded in our language

4 PCP-Compliant Password Generation

To demonstrate the feasibility of our proposed language, we

(1) created libraries for using our PCP language, (2) built

proof-of-concept websites that publish their PCP using our

language, and (3) modified a password manager to generate

PCP-compliant passwords.

4.1 Library Implementations

We constructed Python1 and JavaScript2 libraries to support

our PCP language. These libraries enable the programmatic

creation of PCPs, encoding PCPs to JSON, and parsing PCPs

from JSON. They also automatically validate PCPs to ensure

they are both semantically correct—e.g., that min_length is

appropriately set and that character sets do not overlap—and

logically consistent—e.g., that a policy does not

simultaneously require and prohibit a character class.

These libraries also support checking passwords against

a PCP. Finally, they can evaluate the strength PCPs, giving

administrators an idea of how likely a PCP is to result in

1https://pypi.org/project/password-policy/
2https://www.npmjs.com/package/password-composition-

policy

passwords that resist online and offline guessing attacks (see

Appendix B for more details).

4.2 Website Implementation

We built five proof-of-concept websites, each with a PCP of

varying complexity. We implemented these websites using

Flask (Python) on the backend and JavaScript on the frontend.

Each website publishes its PCP and provides a form where

passwords can be generated, submitted, and verified.

We identified three approaches for publishing PCPs:

1. HTML: A new attribute could be added to the password

field, which would be set to the JSON-encoded PCP.

Alternatively, the PCP could be encoded as XML within

the HTML, adjacent to the password field.

2. HTTP header: An HTTP header (e.g., X-PCP) can

specify the JSON-encoded PCP for relevant pages.

3. File: The JSON-encoded PCP could be available at a

known URL (e.g., domain.tld/pcp.json). If there are

multiple PCPs for a domain, this file could contain a

mapping between URLs and PCPs.

Our websites use the third approach as it is the easiest to

implement and the only approach which can work with

non-browser-integrated managers. We checked the validity of

submitted passwords on the client-side using our JavaScript

library and on the server-side using our Python library. A
significant benefit of publishing PCP and using our tool to
validate them is that if the PCP is ever updated, there is no
need to separately update the validation code, simplifying
developer workloads and preventing situations where the
client- and sever-side validation may become out of sync.

4.3 Password Manager Implementation

We modified BitWarden, a popular open-source password

manager, to check if a domain hosts a /pcp.json file, and if

so, to use it to generate PCP-compliant passwords. The actual

generation is handled by our JavaScript library and occurs

over three phases:

In the first phase, we set the password length to the smallest

min_length (if there are multiple rules). Next, we use our

JavaScript library to check if passwords of this length using

this PCP will be offline-resistant password [11]. If not, we

choose the smallest length that would result in an offline-

resistant password.

In the second phase, we create an array of length equal

to our calculated minimum length. Each position within the

array contains an (initially empty) list of which charsets can

appear at that position. To fill these lists, we first satisfy

required_locations by setting the list at the specified index to

its respective charset. Next, we set the remaining empty lists

as necessary to satisfy min_required and required. Lastly, the
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remaining empty lists are set to include all allowed character

sets unless doing so would violate max_allowed.

In the third phase, we shuffle all indices not set due to

required_locations. We then generate a password by

randomly selecting a character at each index from the

charsets in the list at that index. We then check the generated

password against the other requirements in the PCP. If it is

not, we repeat phase three until we generate a valid password.

In addition to ensuring that generated passwords are

PCP-compliant, we also follow recommendations by Oesch

et al. [24] and ensure that generated passwords are not

randomly weak. This is done by checking passwords using

zxcvbn and ensuring that the generated passwords receive the

highest strength rating (4).

5 Usability Study

To evaluate the usability of our developed language and

libraries, we conducted an IRB-approved user study wherein

participants authored five PCPs of varying complexity using

our PCP language. This section gives an overview of the

study and describes the tasks and study questionnaire. In

addition, we discuss the development and limitations of the

study. The study instrument is given in Appendix A.

5.1 Study setup
The study ran for three weeks starting Friday, January 28,

2022, and ending Tuesday, February 15, 2022. In total, 25

participants completed the study. The study was designed

to take about thirty to forty minutes and participants were

compensated with a $25 Amazon gift card. Participants were

required to have Python 3.6.1 or higher installed on their

system. The study was administered online using Qualtrics.

Participants were recruited from the EECS department at

our local university using posters, email invitations, and class

announcements. We also asked researchers at other

universities to share the study with their students. We chose

to use EECS students as we felt they were a good

representation of novice developers, and we hypothesized

that our language and libraries would be sufficiently usable

to support novice developers.

5.2 Study tasks
Participants started by reading and accepting an informed

consent statement. Next, participants installed our Python

library and executed a Python instruction that allowed us to

confirm that the library was correctly installed. They then

entered basic demographic information (class standing, major,

gender).

Participants were told that in the study they would be

authoring five PCPs. They were given a link to

documentation for the Python library and informed that this

link would also be provided with each task. The

documentation included a description of our language,

source code examples, and JSON-encoded PCPs.

Participants encoded five PCPs:

1. The password must be at least 8 characters.

2. The password must be at least 8 characters and contain at

least two of the following: uppercase, lowercase, digits,

symbols.

3. The password must be at least 12 characters, contain a

letter and a number, and not contain whitespace.

4. The password must be at at least 8 characters long and

contain a letter and a number. Alternatively, the

password must be at least 15 characters.

5. The password must be at least 8 characters, contain at

least two symbols, contain either an upper or lowercase

letter, not contain the string "mywebsite", and none of

the following characters: ^'";/\

Upon submitting a PCP, the survey checked whether the

submitted PCP was parsed correctly. It also verified that

the PCP was correct by checking two valid and two invalid

passwords. Participants were allowed to continue when they

submitted a correct PCP description or once two minutes

had passed (to prevent participants from becoming stuck).

After submitting their policy, participants completed an After-

Scenario Questionnaire [31] (ASQ) about their experience.

Upon completing all five policies, participants were asked

to fill out the System Usability Scale [6] (SUS) regarding

their overall experience. They were also asked what they

liked most and least about the system and library. Finally,

they were asked to provide any other feedback they had.

5.3 Demographics
Participants were largely male: male (19; 76%), female (6,

24%). All students studied computer science (23; 92%) or

electrical engineering (2; 8%). Participants were all more

senior students: juniors (2; 8%), seniors (10, 40%), graduate

students(13, 52%).

5.4 Study Design
Initially, we structured study compensation as a raffle, where

five participants would receive a $50 Amazon gift card. Under

this incentive scheme, only two participants completed our

study. This led us to revise our study to compensate every

participant (including the two who had already completed it).

After making this revision, re-obtaining IRB approval, and

re-launching the study, we quickly gathered our remaining 23

participants.

We also changed our documentation between the two

iterations of our study. Initially, the survey provided a link to

the documentation explaining how to author policies in

JSON, with that documentation providing a link the Python
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Policy Correct
JSON

mistakes
Minor
errors

Major
errors

Mean time
in minutes

Mean
ASQ

1 92% 0 0 2 1.5 7.0

2 92% 1 0 1 1.4 6.7

3 88% 1 2 1 4.6 5.7

4 96% 1 1 0 0.6 6.3

5 64% 3 7 0 4.0 6.0

Table 1: Quantitative results by policy

library’s documentation. However, after looking at the first

two participants’ results, it became clear that they lacked

proficiency in JSON. To encourage participants to use the

Python library, we changed the survey’s documentation link

to point to the Python library’s documentation, with that

documentation providing a link to the JSON documentation.

Participants could still directly author JSON, and eight (40%)

did for at least one task.

5.5 Limitations

Our students do not have the same experience as the

administrators responsible for authoring PCPs. Similarly,

participants had less incentive to learn and correctly enter

policies than administrators trying to use these tools. As

such, our results may not fully represent the usability of our

tooling for the target audience. However, past research has

shown that students can serve as a reasonable approximation

for developers [22, 23].Lastly, our study only measured the

ability of participants to author policies, not to read them.

6 Study Results

In this section, we report the significant findings of our user

study. Quantitative results for each policy are given in Table 1.

Mean completion times use the geometric mean [31].

6.1 Success Rates

Overall, participants did very well at encoding policies. Two

participants struggled at nearly all tasks, only correctly

encoding a single PCP. Excluding them from our data,

completion rates move to 100%, 100%, 96%, 100%, and

68%, respectively.

In policies, we detected three types of errors. First,

incorrectly formatted JSON (6 total), likely stemming from

unfamiliarity with JSON. Second, minor errors (10 total),

such as forgetting to include a prohibited character or

including a rule from a previous policy. We only classify

errors as minor if users showed comprehension of the tested

language and library features but made an error with the

values used. Third, major errors (4 total) resulting in an

entirely incorrect submission. These errors indicate that

participants failed to understand how to use the language and

library.

Looking at Policy 5’s results more closely, we see that three

errors (12%) arose due to incorrectly encoded JSON, with the

remaining seven (28%) arising due to participants forgetting

to include one or more of the prohibited characters. This

happened even though these same participants had properly

excluded characters in Policy 3.

6.2 Completion Times

Participants generally completed tasks quickly, with

(geometric) mean times ranging between 36 seconds and 4

minutes. However, we note that these times are lower bounds

as they do not include time participants may have spent

reading documentation between tasks and before they started

interacting with the task. Still, these times suggest that it is

easy to pick up and use our language and library with no

prior experience.

Using a two-way ANOVA, we find that while there is a

statistically significant difference between how long each

policy took to create (F(4,170) = 8.731, p < 0.001), though

this is not surprising given the difference in difficulty between

policies. We do not find a statistically significant difference

between time taken to author PCPs using JSON or our library

(F(1,170) = 0.109, p = 0.74), nor for the interaction effect

(F(4,170) = 0.027, p = 1.00). This is a surprising result as,

based on our first two respondents, we expected participants

to struggle authoring JSON.

6.3 Perceived Usability

Overall, policies received good ASQ scores (see Table 1),

indicating that it was easy and relatively quick to author

policies. The mean SUS score was 65, which can be

interpreted as “Good” usability [3], receives a C grade [31],

and is just above the 40th percentile of systems studied with

SUS. While this is an acceptable score for our language and

library to be used in the wild [3], it still fell short of our

initial expectations.

Looking into the qualitative feedback, we discovered three

primary critiques of our tooling. First, many participants felt

that JSON was confusing. Second, participants wanted

additional documentation. While we provided one example

for every PCP feature, they wanted even more. Third,

participants were confused by our library providing two ways

to create PCPs: (a) a class exactly matching the JSON

schema and (b) a simplified class that could be used to

encode simple PCPs more directly. While we created this

second method to reduce the amount of code participants

needed to write for simple PCPs, it ended up causing

unneeded confusion and is a prime candidate to remove from

our library.
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6.4 Takeaways

Overall, our results show that our proposed language is

promising, though it has room for improvement. Other than

the two participants who failed all but one task, every other

participant correctly encoded Policies 1–4, except for one

mistake in Policy 3.

However, of these 23 participants, nine (39%) submitted

incorrect solutions for Policy 5. One-third of these errors (3)

arose from improperly encoded JSON. This suggests that in

line with participant feedback, it might be worthwhile to

consider other more developer-friendly encodings (e.g.,

YAML) or supporting multiple encodings, allowing

developers to choose which they will use. Alternatively,

pushing for programmatic specification of PCPs could be

used to avoid encoding issues entirely.

Two-thirds of the errors (6) for Policy 5 arose from minor

issues with the PCP. Half of these issues (3) involved the

participants removing some but not all of the prohibited

characters from the symbols list. This may have arisen as the

textual policy described a denylist for restricted characters,

whereas participants chose to create an allowlist of symbols.

To address this, the library could allow users to specify a

denylist for characters and then have the library generate the

appropriate character set, though further research would be

needed to measure the efficacy of this approach.

The other issues with Policy 5 (3) arose from participants

failing to include the list of restricted characters, even though

the other requirements for this policy were included. This

happened even though these same participants had properly

excluded characters in Policy 3. It is unclear whether this

issue stems from something in the design of our language, the

general challenge of remembering all the requirements in a

complex policy, or study fatigue.

7 Website Analysis

Using the PCP dataset we collected to build our language,

we replicated and extended prior work analyzing website

PCPs [10, 20]. Our analysis covers (1) the strength of PCPs,

(2) the requirements used in PCPs, and (3) additional non-PCP

authentication-related details.

To estimate PCP strength, we calculate the average

number of guesses an adversary would need to discover a

password that (a) complies with the PCP and (b) is of the

smallest allowed length. In contrast to previous work [10, 20]

which calculates strength based only on the smallest allowed

length and count of allowed characters (i.e.,

#characterslength), our estimates take into account all PCP

features. First, we create a canonical representation of the

PCP. Second, we enumerate all unique password

compositions—a password composition specifies the number

of characters from each character class that makes up a

password. Third, for each password composition, we

Country Count

Global 65

Australia 13

Brazil 14

Germany 17

India 9

Nigeria 13

UK 8

US 72

China 28

Iran 12

Russia 19

Popularity Count

Top 10 8

Top 50 24

Top 100 25

Top 500 59

Top 1000 25

Top 5000 79

5000+ 50

Use case Count

E-commerce 58

Finance 10

News 72

Social media 55

Software 13

Streaming 28

Other 34

Ad
Provider Count

Yes 158

No 112

Public
username Count

Yes 43

No 227

Past
breach Count

Yes 51

No 219

Table 2: Number of PCPs in each category

calculate the number of unique passwords that exist for that

composition, reducing this number to account for passwords

that fail to meet the various chartset_requirements. Finally,

we sum these counts. A more detailed description of this

algorithm is given in Appendix B.1.

In addition to estimating PCP strength based on password

chosen entirely at random (as is done in previous

research [10, 20]), we also consider PCP strength under

conditions where users prefer characters from certain

character sets: (a) preferring alphabetic (particularly

lowercase) characters over non-alphabetic characters (as

commonly seen in the US [18]) and (b) preferring numeric

characters (as commonly seen in China [18, 36]). These

changes help our analysis to more accurately measure the

strength of PCPs under a range of usage scenarios. These

calculations are performed by modifying our enumeration of

password compositions only to include compositions that use

the most preferred character classes unless the PCP

specifically requires another character class. A more detailed

description is given in Appendix B.2.

Throughout our analysis, we categorize PCPs by (i) the

country where they are popular, (ii) their Alexa global rank,

(iii) their use case, (iv) whether they generate revenue by

displaying ads, (v) whether usernames on the website were

publicly available or easily guessed, and (vi) whether a data

breach had been reported for the website. All categorizations

are mutually exclusive, with PCPs popular in multiple

countries categorized as “Global”. Table 2 lists these

categories and the number of PCPs in each.

7.1 PCP Strength

Figure 1 gives the distribution of password strengths. If

passwords are generated entirely at random, nearly all PCPs

are strong enough to resist online attacks (106 guesses [11]),

though only about 40% are strong enough to resist offline
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(a) CDF of PCP strengths

(b) Distribution of PCP strengths

106 and 1014 are estimates of the number of guesses a password

should resist to survive online and offline attacks, respectively [11].

Figure 1: PCP Strengths

attacks. For passwords where alphabetic characters are

preferred, nearly all PCPs fall into the online-offline

chasm [9]—strong enough to resist online attacks but not

offline attacks(surviving 1014 guesses [11]). This chasm is

problematic because PCPs in it impose a usability burden to

pick more complex passwords than necessary to resist online

attacks, but which are still too weak to resist offline attacks.

For passwords where numeric characters are preferred, half

of the analyzed PCPs are insufficient to prevent online

attacks, and none are strong enough to resist offline attacks.

Comparing mean PCP strength under different password

generation strategies, we find that passwords generated at

random (3.5 ∗ 1017) are roughly two orders of magnitude

stronger than alphabetic-preferred passwords (2.3∗1015) and

six orders of magnitude stronger than numeric-preferred

passwords (2.1∗1011). This highlights the benefits of using a

password generator to create passwords. It also demonstrates

why it is crucial to consider generation strategy when

estimating PCP strength, as assuming passwords are selected

Figure 2: PCP strength by Alexa global rank

entirely at random can significantly overestimate the

protectiveness of PCPs.

7.1.1 Strength by Category

Figure 2 shows the correlation between PCP strength and

a website’s Alexa global ranking. In general, we find that

higher-ranked websites have stronger PCPs. Using Pearson’s

r and log scales for both rank and PCP strength, we find

a medium effect size for entirely random (r = −0.30, p <
0.001), alphabetic-first (r =−0.34, p < 0.001), and numeric-

first (r =−0.34, p < 0.001) strengths.

We found a statistically significant difference between

strengths based on country for generation at random and

alphabetic first generation, but not for numeric-first

generation (one-way ANOVA—entirely

random—F(10,259) = 1.87, p < 0.05;

alphabetic-first—F(10,259) = 2.05, p < 0.05;

numeric-first—F(10,259) = 0.29, p = 0.98), We did not

find any meaningful pairwise differences for the statistically

significant results using Tukey’s test. There was no

significant difference based on use case (entirely

random—F(5,263) = 1.04, p = 0.40;

alphabetic-first—F(5,263) = 0.59, p = 0.74;

numeric-first—F(5,263) = 0.40, p = 0.88).

Figures showing strength differences based on country,

global rank, and use case can be found in Appendix D. We

also tested whether (i) ads, (ii) public usernames, (iii) or data

breach history impacted PCP strength, finding no statistically

significant differences.

7.2 PCP Features
The most common minimum lengths for PCPs are

6 (128; 47%) and 8 (100; 37%) (see Figure 3a). Just over a

tenth of PCPs (29; 11%) allowed passwords with fewer than

6 characters, with five (5; 2%) allowing passwords with a

single character. These low length requirements are not only

problematic for user-generated passwords but also for
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(a) Histogram of minimum lengths

(b) CDF of maximum lengths

Figure 3: PCP lengths

password generators, which are known to occasionally

generate random but weak passwords at shorter password

lengths [24].

Most PCP rules (195; 72%) set a maximum length for

passwords, with a wide range of values (see Figure 3b). Just

over a tenth (28; 10%) limit passwords to 16 or fewer

characters, with four (4; 1%) limited to 12 or fewer

characters.

The next most common requirement was having required

character classes (51; 19%): digits (42/51; 82%),

alphabet (37/51; 73%), lower (12/51; 24%),

upper (10/51; 20%), and symbols (4/51; 8%). This was

followed by requiring a subset of character classes (43; 16%):

at least one (5/43; 12%), two (14/43; 33%), or

three (13/43; 30%) characters from all character classes; at

least one symbol or digit character (9/43; 21%); at least one

upper or symbol character (1/43; 2%); or at least one upper,

digit, or symbol character (1/43; 2%).

The remaining requirements only appeared rarely. For

prohibited substrings (11; 4%), websites primarily restriction

personal information (10/11; 91%): name (6/11; 55%),

email (5/11; 45%), username311, birthday211, website

name (1/11; 9%). Rules also included max consecutive

characters (9; 3%) with values of one (1/9; 11%),

two (2/9; 22%), three (4/9; 44%), and seven (1/9; 11%).

Finally, one PCP (1; 0%) required two lower case letters and

two digits.

7.2.1 Multi-Rule PCPs

Of particular interest, we discovered three PCPs (3; 1%) that

had more than one rule.

gumtree.com.au Required twenty-character passwords

unless the password included an alphabetic character

and either a digit or symbol, in which case ten-character

passwords were allowed.

github.com Required fifteen-character passwords unless the

password included both a lowercase character and a digit,

in which case eight-character passwords were allowed.

yy.com Required nine-character passwords unless the

password included an alphabetic character, in which

case an eight-character password could be used. This

could be to encourage Chinese users to pick

non-digit-only passwords, which is common in that

culture [18, 36].

Ignoring specific requirements, these PCPs all share a

common goal: allow users to choose between short but

complex or long but simple passwords.

7.2.2 Features by Category

We find statistically significant difference for minimum

length by country (one-way ANOVA—F(10,259) = 2.74,

p < 0.01), global rank (Pearson’s-r—r =−0.30, p < 0.001),

and use case (one-way ANOVA—F(6,263) = 3.57,

p < 0.01). Within these categories, high-ranked websites are

much more likely to allow passwords shorter than six

characters (see Figure 4b). Similarly, “streaming” websites

have lower minimum length requirements (see Figure 4a),

with the difference being statistically significant for

“Ecommerce” (p < 0.01) and “Other” (p < 0.05).

We did not find statistically significant differences in

maximum length by country (one-way

ANOVA—F(10,259) = 1.05, p = 0.40), global rank

(Pearson’s-r—r = 0.01, p = 0.88), or use case (one-way

ANOVA—F(6,263) = 1.40, p = 0.21). We did not see any

meaningful difference for other restrictions, though we did

not test for statistical significance.

Figures showing differences for minimum and maximum

length based on country, global rank, and use case can be

found in Appendix E. We also tested whether (i) ads, (ii)

public usernames, (iii) or data breach history impacted PCP

minimum and maximum length, finding no statistically

significant differences.
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(a) By use case

(b) By Alexa global rank

Figure 4: PCP minimum lengths

7.3 Website Analysis
We also examined the following items for each website:

(a) whether account creation and login required HTTPS,

(b) which SSO providers, if any, were supported, and

(c) whether a password strength meter is shown to users.

For most websites (255; 94%) HTTPS was required to

view the account creation and login pages. Still, there were

fifteen (15; 6%) websites where we could access the account

creation or login interface over HTTP.3

A third of websites (92; 34%) support at least one single

sign-on (SSO) provider for account creation and

authentication. The most popular SSO providers are

Facebook (82/92; 89%), Google (65/92; 71%),

Twitter (21/92; 23%), VK (10/92; 11%), and

mail.ru (6/92; 7%), with the remaining 20 SSO providers

being represented on fewer than five websites.

We find that just over a tenth (35; 13%) of websites show

users a strength meter when they are creating passwords. We

also find that just under a tenth (22; 8%) use a strength checker

as part of their password policy—i.e., passwords must be a

certain strength to be accepted.

3The list of websites is given in Appendix C.

7.3.1 Websites by Category

For websites whose account creation or login pages can be

accessed over HTTP, the majority were in China:

China (8/15; 53%), Russia (2/15; 13%), and one

each (1/15; 7%) for India, Iran, Nigeria, Brazil, and the US.

It is unclear why China is so different, but we find this

correlation troubling. These types of websites are most likely

to occur in less popular websites.3

Within certain countries we see much higher rates of

adoption of SSO: Russian (11/19; 58%), Nigeria (6/13; 46%),

Brazil (6/14; 43%), Australia (5/13; 38%), UK (3/8; 38%),

India (3/9; 33%), Global (21/65; 32%), US (21/72; 29%),

China (6/28; 21%), Iran (2/12; 17%). We also see a trend that

the less popular sites are more likely to adopt 2FA: Top

10 (1/8; 13%), Top 50 (7/24; 29%), Top 100 (4/25; 16%),

Top 500 (17/59; 29%), Top 1000 (6/25; 24%), Top

5000 (37/79; 47%), 5000+ (20/50; 40%). For categories,

SSO is more evenly dispersed, though news (35/72; 49%)

sites have higher support for SSO.

We do not find any meaningful effect from the categories

on strength meters or internal strength checks for passwords.

8 Discussion

In this section, we discuss observations from our research.

8.1 PCP Recommendations
Of all the PCPs encountered in our analysis, we were most

interested in the multi-rule PCPs, which allowed users to

choose between short but complex or long but simple

passwords. This ensures that passwords will resist offline

attacks without causing unnecessary usability burdens.

Moreover, this approach returns the locus of control to

users—i.e., while PCPs are often viewed as restrictive, and

therefore less usable [17, 32, 33], multi-rule PCPs give users

a choice of which PCP is most appropriate for them. We

hypothesize that by giving this control back to users, not only

will they be more satisfied with the PCP, but they will also

create stronger passwords. Future work could validate this

hypothesis and try to determine what the ideal multi-rule

construction is. For example, would more rules be even

better, providing even more fine-grained control of the types

of passwords users can select?

Another observation from our analysis is the importance

of PCP design for ensuring the security of passwords not

generated entirely at random. Whereas PCP requirements

reduce the strength of passwords generated entirely at

random (by shrinking the search space), they increase the

strength of passwords generated with preferences to a given

character class. Thus there is an interesting interplay between

PCPs and passwords based on how they are generated. More

specifically, we note that increasing length is the easiest way
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to improve strength, regardless of generation strategy.

Similarly, we find that it is likely advantageous to limit users

from having too much of their password be composed of

digits (or symbols), as this significantly weakens those

passwords and may lead to passwords vulnerable to online

guessing attacks. As such, we recommend that

administrators use a multi-rule approach that allows users to

choose between long but simple passwords or short but

complex passwords. This allows machine-generated

passwords to be short but ensures that human-generated

passwords are strong enough to resist attack.

8.2 NIST Guidelines
NIST provides PCP guidelines (i.e., non-compulsory

recommendations) for US companies and organization [12].

While our dataset includes a wealth of PCPs for global and

non-US websites, we still think it is interesting to see which

of these PCPs conform to the NIST guidelines.

We find that less than half of PCPs (106; 39%) meet

NIST’s recommended minimum length of eight characters.

Similarly, we find that most (195; 72%) implement

unnecessary maximum length requirements.

In line with NIST recommendations, most

PCPs (177; 66%) do not have any composition requirements

(this would be more positive if they met the minimum length

requirements). Similarly, only a small fraction (8; 3%) reject

specific symbols, which can be an indication of improper

password hashing.

9 Related Work

This section discusses related work on password generation,

PCP languages, analysis of Web PCPs, and PCP usability.

9.1 PCP Languages
There have been previous proposals for building PCP

languages, with each providing a different subset of the

features used in our PCP language (see Table 3). Two

proposals involve adding additional HTML attributes to input

fields to specify PCP requirements [4, 21], though they only

cover a small subset of the most common PCP features.

Horsch et al. developed an XML-based PCP language by

automatically scanning and extracting PCPs for 72,125

services. Based on a sample of 200 manually verified PCPs,

they estimated that their algorithm correctly extracted PCPs

in just over four out of five cases, with the remaining cases

evenly split between mostly correct and incorrect. Their

resulting PCP language has most of the features found in our

language. However, it is missing support for multiple rules,

requiring a subset of character classes, limiting maximum

consecutive characters from the same character class, and set

required and prohibited locations based on distance from the

PCP Features T
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ie
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1
]
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o
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ch
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.
[1

4
]

Define character sets � � � �
Multiple rule sets �

min_length � � � �
max_length � � � �
max_consecutive � � �
prohibited_substrings � �

required � � � �
require_subset � �

charset_requirements
.min_required � �
.max_allowed � �
.max_consecutive �
.required_locations � �
.prohibited_locations � �
reverse indexing �

Table 3: Comparison between PCP languages

end of the password. This demonstrates the limitation of this

type of automated PCP extraction—i.e., it can only find PCP

features that the automated tool expects to find.

Examining our data, none of these PCP languages can

encode all the PCPs in our dataset. However, these proposals

could be extended to support the features identified in our

research. During our PCP language generation process (see

§3), our team built and tested several versions of our PCP

language that were HTML- and XML-based. Ultimately, we

rejected these approaches because our team felt that

encoding policies in these languages was cumbersome and

that the resulting policies were difficult to read. Still, the

results of our user study show that there is significant room

for improving our proposed language, and future work could

explore integrating paradigms from these prior proposals

with our language or testing whether, contrary to our team’s

perceptions, HTML- or XML-based would be better received

than our JSON-based approach by developers. In this regard,

the main contribution of our paper is the identification of

features that must be included in such PCP languages.

9.2 Web PCP Analysis

In 2010, Florêncio and Herley [10] retrieved PCPs for 75

websites in the US. They found that contrary to their

intuition, the importance of a website had little correlation to

the PCP used on that website. In many cases, the largest,

most important websites had the weakest PCPs. They

suggested that the reason for this was that due to market

economics, these larger websites needed to be more

concerned with usability than security, being able to absorb
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the security cost of weak PCPs more readily than smaller

sites.

In 2016, Mayer et al. [20] replicated and extended the work

of Florêncio and Herley. In addition to re-examining 70 of the

websites used in the original study (five did not work), they

also analyzed 67 German websites. They find that overall,

PCP strength has been increasing, though German PCPs, on

average, are weaker than US PCPs.

In this paper, we replicate and further extend this work.

We collect a dataset that is roughly twice as large and five

times more geographically diverse than Mayer et al.’s dataset.

Compared to this prior work, we gather more features of the

PCPs used on these websites and develop a more fine-grained

estimation of PCP strength.

For the most part, our results are similar to past findings.

Overall, PCP strength (for random generation) is similar in

all studies. However, as our improved strength calculation

results in lower estimates of PCP strength, the similarity of

our results suggests that PCPs have continued to get stronger

over time, though that progress is slow and the delta is not

that meaningful. When using PCP strength estimates based

on random generation (as the prior work does), we find that

PCP strength has become more bimodal, with a clear contrast

between websites that require passwords to be offline-resilient

and those that only require online-resilience. While this may

only be an artifact of our increased precision in plotting PCP

strength (the prior worked binned strength into large ranges),

we do not believe so and think it is an area that could be

explored more in future research. Like the prior work, we

find that most PCPs reside within the online-offline chasm

identified by Florêncio and Herley [11].

Like prior work, we find no statistically significant

correlations when comparing PCP strength based on country,

use case, public usernames, and past breaches. However,

unlike the prior work, we find a correlation between a

website’s popularity and the strength of its PCPs. This

difference is most likely explained by (a) our larger data set,

(b) the increased fidelity of our strength estimates, and (c) the

use of log adjusted strength and global ranks. Also, whereas

prior work found a negative correlation between whether a

website served ads and its PCP strength, we find no

statistically significant correlation.

9.3 PCP Usability

Several studies have examined the effect of password policies

on user behavior. These studies have shown that while strong

PCPs make passwords harder to crack, they also make

passwords harder for users to remember [29]. Furthermore,

as the number of passwords a user needs increases, their

ability to remember them decreases [1, 35]. This helps

explain why when Florêncio and Herley [9] studied

password behavior of half a million users, they found that

users had on average 25 passwords and reused any given

password on an average of 6.5 different websites.

Other research explores what PCP features make

passwords harder to remember, with most research finding

that it is complex character class requirements that cause the

most difficulty [17, 32, 33]. In contrast, minimum length is

not nearly as significant of an impediment, leading

researchers to suggest favoring longer but less complicated

passwords. More recently, we have seen these suggestions

reflected in NIST guidelines [12].

Our research finds that length has the greatest impact on

PCP strength for both passwords generated at random and

using an alphabetic-first approach. As such, we echo prior

recommendations for PCPs to focus on length as opposed to

complexity. For those that want the best of both worlds, multi-

rule PCPs can be used that allow short but complex or long

but simple passwords, giving users the locus of control for this

decision and thereby increasing usability. Similarly, due to the

weaknesses of digit-first generated passwords, PCPs should

likely restrict the usage of too many digits in a password.

10 Conclusion and Future Work

In this work, we developed a PCP language that websites and

password managers can use to support the generation of

compliant passwords. We hope that our work will signal to

both communities that adopting a PCP language has tangible

benefits. For websites, it allows them to unify their PCP

specification and checking, allowing changes to the PCP file

to automatically update how checking happens on both the

client and server. For password managers, it not only

improves the usability and utility of password management

but also supports opinionated generation algorithms (e.g.,

mobile-aware generation [13], security-focused

generation [24]), which would otherwise frequently generate

non-compliant passwords.

While we are encouraged by the positive results of our

user study, they also indicated that there is room for

improvements. Future work could expand our PCP language

by identifying and adding support for rarely used PCP

features, such as restricting sequences of characters (e.g.,

“abcde”) or keyboard patterns (e.g., “qwerty”). Similarly, our

language could be enhanced to allow Unicode characters.

Future research could also examine how to allow our PCP

language to handle dynamic strings (e.g., usernames). One

potential solution is to use placeholders in the

prohibited_substrings requirement, providing appropriate

values to the library at password validation. Finally, research

could explore automatically identifying PCPs, both in

whitebox scenarios, helping web developers identify their

website’s PCP, and blackbox scenarios, helping password

managers identify PCPs for websites that do not publish it,

with care taken to avoid flooding servers with passwords

guesses (approximating a DoS attack).
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A Study Instrument

Setup For this study, you will be using a python library we

developed. Please install this library using pip: python3 -m
pip install -user -upgrade password-policy. If for

some reason, you don’t have pip installed, you can install it

using: python3 -m ensurepip -user -upgrade.

After installation is complete, check that everything is

working correctly by copying and pasting the following

command into your terminal. Enter the resulting output

below: python3 -c "import password_policy;
print(password_policy.__version__)".

Q1. Enter version
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Demographics
Q2.1. What is your class standing?

◦ Junior ◦ Senior ◦ MS student ◦ PhD student

Q2.2. What is your major?

◦ Computer Science ◦ Computer Engineering ◦ Electrical
Engineering ◦ other [Enter here]

Q2.3. What is your sex?

◦ Male ◦ Female ◦ Non-binary ◦ Prefer not to answer

Tasks Different websites have different requirements for

passwords. For example, some websites may require

passwords to have a minimum length, include certain types

of characters, and avoid using other characters. In our

research group, we are studying a system for describing

password policies using JSON. We are also studying libraries

that can be used to construct these JSON policy descriptions

and validate passwords based on these descriptions.

In this study, you will use this system and a python library

to encode several password policies. Our goal is to understand

how usable this system and library is.

To help you learn about this system and the python library

you installed, please click [this link to view the relevant

documentation]. You will be using the knowledge from this

documentation for the rest of the study. Feel free to refer to it

throughout the study. A link to this documentation will

always be available on the pages describing your tasks for

this study.

When you feel ready to use this system, click continue to

be given your first task.

The following questions were the same for each policy, except
for the policy requirements. We give the full text for Policy 1’s
questions, and only the policy requirements for Policy 2–5.

Q3.1.1. Using the python library, please write a policy

description for the following password policy. When finished,

encode it in JSON and enter it into the text field below. We

will validate the entered policy description to make sure it is

correct. You may also directly write the policy as JSON (not

using the library) if desired.

Password policy:

• The password must be at least 8 characters long

[Documentation link]

Q3.1.2. Did you manually write the JSON policy description,

or did you generate it using the python library?

◦ Generated it using Python library ◦ Manually entered the
JSON policy

Q3.1.3. Based on your experience authoring the JSON policy

description, indicate to what extent you agree with the

following statements. Options:Strongly disagree-1..Strongly

agree-7

◦ Overall, I am satisfied with the ease of completing this task.
◦ Overall, I am satisfied with the amount of time it took to
complete this task. ◦ Overall, I am satisfied with the support
information (on-line help, messages, documentation) when
completing this task.

Q3.2.1. Password policy:

• The password must be at least 8 characters long

• The password must contain characters from at least two

of the following: uppercase letters, lowercase letters,

numbers, symbols

Q3.3.1. Password policy:

• The password must be at least 12 characters long

• The password must contain at least one letter and one

number

• The password must NOT contain space

Q3.4.1. Password policy:

• The password must satisfy one OR the other of the

following policies:

– The password must be at at least 8 characters long

– The password must contain at least one letter and

one number

• OR

– The password must be at least 15 characters long

Q3.5.1. Password policy:

• The password must be at least 8 characters long

• The password must contain at least two symbols

• The password must contain at least one uppercase letter

and one lowercase letter

• The password must NOT contain space, the carrot

symbol (ˆ), quotes (’), double quotes ("), semicolons

(;), slashes (/), or backslashes (\).

• The password must NOT contain the substring

"mywebsite"

Post-Study Questionnaire That was the last policy you

will need to write for this study. We will now ask you a

few questions about your experience the password policy

description system and python library.
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Q4.1. Please answer the following question about your

experience. Try to give your immediate reaction to each

statement without pausing to think for a long time. Mark the

middle column if you don’t have a response to a particular

statement.

Options: Strongly Disagree, Disagree, Neither Agree nor

Disagree, Agree, Strong Agree

1. I think that I would like to use this system frequently

2. I found the system unnecessarily complex

3. I thought the system was easy to use

4. I think that I would need the support of a technical person

to be able to use this system

5. I found the various functions in this system were well

integrated

6. I thought there was too much inconsistency in this

system

7. I would imagine that most people would learn to use this

system very quickly

8. I found the system very cumbersome to use

9. I felt very confident using the system

10. I needed to learn a lot of things before I could get going

with this system

Q4.2. What did you like the most about the system and

library?

Q4.3. What did you like the least about the system and

library?

Q4.4. Is there any other feedback you would like us to know

about the system or library?

B PCP Strength Calculations

We measure the strength of password composition policies

(PCPs) by estimating how many passwords exist that (a)

satisfy the PCP and (b) are of the shortest possible length.

We then divide this number by two to estimate the average

number of guesses an adversary needs to find a user’s

passwords. This approach gives an exact estimate of strength

when passwords are generated entirely at random. To

estimate strength for human-generated passwords, we allow

our strength estimates to be parameterized by what character

classes are preferred [18].

B.1 Algorithm

Step 1—Preprocessing First, we filter the rules and only

consider those that have the smallest min_length (there may

be multiple). Next, we simplify require_subset, creating a

new rule with require set for each possible combination of

the listed options of length count. Lastly, we simplify the

shortcut rules require, setting min_require for each charset

listed in the requirement.

Step 2—Enumerating Password Compositions In this

step, we enumerate all possible password compositions for the

rules identified in Step 1. A password composition is simply a

list specifying how many characters from each character class

are used to make up a password. For example, for a PCP that

(a) only allows lowercase letters and digits and (b) has a rule

that sets min_length to 2 (but no other requirements), there

are three password compositions: (1) two lowercase letters,

(2) two digits, (3) one lowercase letter and one digit. Note,

we only consider compositions where the sum of character

counts equals min_length.

We take the following steps to derive the password

compositions for a rule. First, we create a password

composition with values set based on min_required for each

charset. We also calculate required_chars, which tracks the

total number of required characters (sum of the calculated

password composition). Second, we create a list of length

min_length− required_chars. At each index i (one-indexed)

of this new list, we include a list of which character classes

could appear i more times in the password composition

without violating max_allowed for each charset (if set).

Third, we calculate the full factorial combination of items in

this list of lists. For each such combination, we create a new

password composition that takes the original password

combination and adds the character classes in the

combination. For each composition, we also store any

restrictions related to that composition that may not yet have

been handled (e.g., max_consecutive).

For example, consider a policy with min_length set to 3,

which requires the alphabet character set to be used once and

has at most one digit. Our initial password composition

would be [1,0,0] representing 1 alphabet character, 0 digits,

and 0 symbols; required_characters would be 1. Our list of

lists would be [[alphabet,digit,symbol], [alphabet,symbol]].

In total, there are six (3∗2) possible combinations of this list,

which after added to initial password composition result give

the following password compositions:

[[3,0,0], [2,0,1], [2,1,0], [1,1,1], [2,0,1], [1,0,2]].

This method will not result in overlapping compositions

within a given rule but can between rules. If this occurs,

duplicate compositions are trimmed.

Step 3—Calculating Combinations and Permutations
For each composition, we will calculate the number of

passwords (i.e., size of the search space) represented by each

composition that also satisfy the PCP. As a password only

maps to a single composition, the sum of search space sizes

for each composition is the size of the overall password

search space. For each composition, we take the following

steps to calculate its search space size:
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We start by calculating the number of combinations of

characters from the charsets that make up the composition:

∏
i

charset_sizecompositioni
i (1)

We then multiply this value by the number of unique

permutations in the composition:

(∑i compositioni)!

∏i(compositioni!)
(2)

If there are no additional requirements to be considered,

this value is used as the composition’s search space size. If

there are additional requirements, we will reduce this

calculated by value by the number of passwords removed by

each requirement.

First, we consider the required_locations requirement. If

used, we recalculate our baseline using the same calculations

above, except that we reduce the permutation calculation to

only consider character classes not at fixed positions due to

required_locations.

For the remaining four requirements, we take an approach

wherein we create one or more invalid compositions that

violate the requirement, calculate the search space for the

invalid composition, and subtract the invalid composition’s

search space size from the overall composition’s search space

size (calculated above). We continue doing so until there are

no more requirements to handle. We generate these invalid

compositions as follows:

• For max_consecutive, we identify all charsets which

have enough occurrences in the composition to violate

this rule. For each of these charsets, we create a new,

invalid composition that removes (max_consecutive +

1) occurrences from matched charset and adds a single

occurrence of a new charset of size equal to the matched

charset (representing the repeated character).

• For max_consecutive in charset_restrictions, we do

much the same as above, except that the size of the new

charset in the invalid compositions will equal

matched_charset_sizemax_consecutive+1, representing

all possible combinations of the charset.

• For each substring in prohibited_substrings, we create a

new, invalid composition that removes the appropriate

charset for each character in the substring. We then

append a charset of size 1 to the composition,

representing the prohibited string.

• For each location in prohibited_location, we do not

modify the current composition but instead calculate its

search space as if the prohibited location were required.

B.2 Estimating Human-Generation
Prior research has shown that when generating passwords,

humans prefer characters from specific character classes,

though this preference can differ based on country [18, 36].

Our PCP strength estimation can be parameterized based on

what character classes users prefer to represent this behavior.

For example, American users’ preferences might be

lowercase, uppercase, then digits [18]. For Chinese users,

their preferences are more likely to be digits, lowercase, then

uppercase [18, 36].

We handle these preferences in Step 2 of our calculations.

We initially execute step two as described up through

calculating the list of lists representing characters that can

occur in the remaining spots of the initially calculated

password composition. For each sublist of charsets, we check

to see if any of those charsets appears in the list of preferred

charsets. If one or more do, we replace the sublist with a new

list with a single element matching the highest-ranked

matching charsets. After this modification, calculations

proceed as described.

Note, these preference-based calculations are Fermi

approximations, underestimating character class diversity in

user passwords and overestimating diversity of character

selection within a character class, with the two errors

hopefully canceling out. Even though these are not exact

estimates for human-generated passwords, they are sufficient

to help administrators and researchers estimate the overall

strengths and weaknesses of a PCP.

B.3 Limitations

For PCPs that do not use any of the final four requirements

discussed in Step 3, our method precisely calculates the

PCP’s search space. Our calculation is also correct if only a

single one of these requirements are used for a composition.

Of the 270 PCPs in our dataset, 260 do not use any of the five

requirements, and of the ten that do, each uses only a single

requirements. This means that calculations used in our

analysis are all precise, and it suggests that most PCPs will

have their search space calculated precisely.

Still, more complicated PCPs that use multiple of the five

requirements could have their search spaces underestimated.

This occurs because these requirements have the possibility

of removing the same passwords. To our knowledge, the only

way to prevent this would be to enumerate the password

combinations and permutations–as we did with

compositions—but this is not tractable for any meaningful

length of passwords. However, as the reduction to the search

space for each of these requirements will generally be small

compared to the overall size of the composition’s search

space, we believe that the underestimates should be minimal.

Additionally, in terms of strength estimates, underestimates

are safer than overestimates.
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C Webpages Accessible with HTTP

The following is the list of website for which we were able to

access the account creation or login page using HTTP:

Website Country Popularity Category

weibo.com China Top 50 Social

babytree.com China Top 100 Social

usatoday.com US Top 500 News

yaplakal.com Russia Top 5000 Social

ig.com.br Brazil Top 5000 Social

wikidot.com China Top 5000 Other

fb.ru Russia Top 5000 News

javlibrary.com China 5000+ Stream

dwnews.com China 5000+ News

metacafe.com India 5000+ Social

eskimi.com Nigeria 5000+ Social

ci123.com China 5000+ Stream

sinovision.net China 5000+ News

sugardaddyforme.com China 5000+ Social

mydiba.xyz Iran 5000+ Stream
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D PCP Strength By Category

E PCP Features by Category

USENIX Association Eighteenth Symposium on Usable Privacy and Security    559



560    Eighteenth Symposium on Usable Privacy and Security USENIX Association


