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Abstract
The Signal protocol and its X3DH key exchange core are regu-
larly used by billions of people in applications like WhatsApp
but are unfortunately not quantum-secure. Thus, designing
an efficient and post-quantum secure X3DH alternative is
paramount. Notably, X3DH supports asynchronicity, as par-
ties can immediately derive keys after uploading them to
a central server, and deniability, allowing parties to plausi-
bly deny having completed key exchange. To satisfy these
constraints, existing post-quantum X3DH proposals use ring
signatures (or equivalently a form of designated-verifier sig-
natures) to provide authentication without compromising de-
niability as regular signatures would. Existing ring signature
schemes, however, have some drawbacks. Notably, they are
not generally proven secure in the quantum random oracle
model (QROM) and so the quantum security of parameters
that are proposed is unclear and likely weaker than claimed.
In addition, they are generally slower than standard primitives
like KEMs.

In this work, we propose an efficient, deniable and post-
quantum X3DH-like protocol that we call K-Waay, that does
not rely on ring signatures. At its core, K-Waay uses a split-
KEM, a primitive introduced by Brendel et al. [SAC 2020],
to provide Diffie-Hellman-like implicit authentication and
secrecy guarantees. Along the way, we revisit the formalism
of Brendel et al. and identify that additional security proper-
ties are required to prove a split-KEM-based protocol secure.
We instantiate split-KEM by building a protocol based on
the Frodo key exchange protocol relying on the plain LWE
assumption: our proofs might be of independent interest as
we show it satisfies our novel unforgeability and deniability
security notions. Finally, we complement our theoretical re-
sults by thoroughly benchmarking both K-Waay and existing
X3DH protocols. Our results show even when using plain
LWE and a conservative choice of parameters that K-Waay is
significantly faster than previous work.
∗The full version of this paper can be found on ePrint [25].
†All of this work was completed while the author was working at EPFL.
‡Part of this work was completed while the author was studying at EPFL.

1 Introduction

Researchers for several years now have sought to build crypto-
graphic primitives and protocols that are resistant to efficient
quantum attacks [58]. This is highly evidenced with the NIST
Post-Quantum Cryptography competition for standardising
quantum-safe key encapsulation mechanisms (KEM) and sig-
natures, organised by the United States National Institute of
Standards and Technology (NIST). Recently, four schemes
were selected by NIST for standardisation, out of which three
rely on algebraic lattices. Indeed, with the US National Se-
curity Agency releasing their new CNSA 2.0 Suite [62],
which says that CRYSTALS-Kyber [13] and CRYSTALS-
Dilithium [32] should be the main cryptographic force for
communication security beginning from 2030, lattices are a
natural candidate for building more advanced cryptographic
primitives, such as secure messaging.

The widely used Signal protocol for secure messaging as
currently deployed is not quantum-safe since it is based on
Diffie-Hellman key exchange [30]. The protocol, used in ap-
plications like Signal and WhatsApp, comprises two compo-
nents, namely 1) the X3DH key exchange [50] which is used
to bootstrap sessions of 2) the Double Ratchet messaging pro-
tocol [54]. The Double Ratchet has been investigated in a line
of recent works [4, 10, 18] that each neatly abstract the proto-
col into primitives like so-called continuous key agreement.
Fortunately, these primitives have post-quantum (PQ) instan-
tiations that leaves the core structure and resulting security
guarantees of the Double Ratchet in place.

In standard X3DH, parties use a mixture of ephemeral (one-
time), semi-static (many-time but temporary) and long-term
keys. First, parties upload their keying material to a central
server or public key infrastructure in a so-called prekey bun-
dle. A party can then derive a session key by downloading
their partner’s bundle and performing three (or four) Diffie-
Hellman key exchanges with a mixture of ephemeral and
long-term (resp. plus semi-static) keys, ensuring at least con-
fidentiality if the ephemeral or long-term key of each party is
corrupted.



Observe that X3DH does not use signatures after signed
prekeys are uploaded: at that point, the DH exchanges pro-
vide (implicit) authentication guarantees. Consequently, the
protocol provides a level of deniability [33, 55, 60] as was
formalized by Vatandas et al. [63]: informally, a participant
can deny having performed key exchange with its counter-
part. This is an important privacy guarantee that prevents
(at least on a cryptographic level) a conversation transcript
from incriminating an unsuspecting party, which is especially
pertinent in situations like whistleblowing and protesting.

In May 2023, Signal published code corresponding to
their initial hybrid post-quantum key exchange solution,
namely the “PQXDH protocol”.1 Like in X3DH, several
Diffie-Hellman key exchanges are performed at once, but
in PQXDH, parties upload prekey bundles that also contain
a Kyber-1024 public key that the initiator additionally en-
capsulates to the responder with. Moreover, prekey bundles
are still signed with the same signature scheme as regular
X3DH based on Curve25519 [8]. Although PQXDH appears
to provide post-quantum confidentiality, which is an impor-
tant first step towards post-quantum security as it prevents
“store-now-decrypt-later” kind of attacks, it does not provide
post-quantum authentication as an active quantum attacker
can trivially forge pre-key bundles. It is thus prudent to design
a suitable X3DH alternative that is fully post-quantum secure.

A natural direction for building such a protocol is to
emulate X3DH’s structure by replacing Diffie-Hellman
key exchange with a cryptographic group action, such as
CSIDH [21]. In order to broadly capture this protocol struc-
ture, Brendel et al. [17] introduce a primitive called split-KEM
that captures the symmetry of e.g. Diffie-Hellman. In a split-
KEM, a party A encapsulates to their partner B by using their
own secret skA and their partner’s public key pkB to produce
a ciphertext; B then decapsulates it using skB and pkA. The
authors define indistinguishability-based security notions and
notice that Frodo [12] lattice-based key-exchange fulfills the
split-KEM syntax and the weakest notion of indistinguishabil-
ity they define.2 Although they present a X3DH-like protocol,
they do not define a security model, and, looking ahead, their
split-KEM security notions do not suffice to construct X3DH-
like key exchange with authenticity and deniability.

In two recent works, Hashimoto et al. [37, 38] and Brendel
et al. [16] concurrently proposed instead to construct X3DH-
like key exchange using KEMs directly. Since a core feature
of X3DH is its asynchronicity, a challenge-response protocol
cannot be employed using KEMs alone to provide authentica-
tion [57]. Thus to ensure deniability, two seemingly different
approaches were proposed: Hashimoto et al. [37] apply ring
signatures while Brendel et al. [16] use a flavour of designated
verifier signatures; these primitives were later shown to be
equivalent [38].

1https://signal.org/docs/specifications/pqxdh.
2The construction can conceptually be seen as instantiating the lattice-

based cryptographic group action from [9].

As described in the aforementioned works, the currently
most efficient post-quantum ring signatures [9, 34, 44, 48, 64]
are proven to be secure in the random oracle model [7] and
can enjoy signatures that are a handful of kilobytes large.
Often, however, the constructions do not come with a security
proof in the quantum random oracle model (QROM) [11]. In
this vein, parameters are generally optimistically chosen as
the security loss incurred by proofs in the ROM is not taken
into account when setting these, without even mentioning
QROM loss, which is usually much larger. Further, security
notions can differ between papers, making it less clear exactly
when they are appropriate for use.

More generally, it is of interest to determine the cost (or
overhead) that deniability incurs in (X3DH-like) key ex-
change. Towards this goal, Hashimoto et al. [38] provide
benchmarks for their baseline, non-deniable X3DH-like pro-
tocol based on signatures and KEMs, and Brendel et al. [16]
consider parameter sizes for (but do not benchmark) existing
ring and designated verifier signatures. As such, a more fine-
grained and detailed evaluation will help inform practitioners
on the overhead incurred by deniability in the post-quantum
setting.

While the use of ring signatures to build PQ and deniable
X3DH is at least theoretically understood, this far from ex-
hausts the protocol design space. Motivated by this and the
above discussion, we therefore first ask: Can we design a
provably-secure, efficient and deniable post-quantum X3DH
alternative that does not require ring signatures?

1.1 Our Results
In this work, we propose an efficient, deniable and post-
quantum X3DH-like protocol without ring signatures that
we call K-Waay. To summarise our contributions:

• Towards building our protocol, we revisit the split-KEM
formalism proposed by Brendel et al. [17] and deduce
that several additional properties, namely notions of au-
thenticity and deniability, are needed to construct a se-
cure X3DH-like deniable authenticated key exchange
protocol (DAKE).

• We propose K-Waay, a X3DH-like DAKE that uses deni-
able and unforgeable split-KEM at its core. Our protocol
uses signatures to sign prekeys, and then uses ephemeral
KEM, long-term KEM and split-KEM for the final key
exchange step.

• The main drawback of a naive version of our protocol
is that parties can run out of ephemeral keys, thus mak-
ing the protocol synchronous if this happens (e.g. Al-
ice needs to wait for Bob’s fresh ephemeral key before
sending a message). While such a problem would rarely
occur in practice, given enough keys are uploaded on
the server, we propose a simple trick that makes the
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reuse of ephemeral keys possible on the receiver’s side
for messages they received while offline. We think this
trick could be of independent interest as it – perhaps
surprisingly – allows for a specific kind of key reuse for
a split-KEM that is not IND-CCA secure.

• We prove key indistinguishability in our model that cap-
tures ephemeral key reuse and session state exposure,
and prove a variant of deniability that strengthens the
notion of Brendel et al. [16] by additionally leaking the
victim’s session state to the adversary in the security
game.

• We instantiate a post-quantum split-KEM secure un-
der our new security notions derived from the Frodo
key exchange protocol (FrodoKEX) [12] based on the
plain LWE assumption. We then use a transform in the
(Q)ROM to prove it UNF-1KMA (i.e. our new unforge-
ability definition for split-KEM). This construction in-
curs a security loss as usual in the (Q)ROM, and we pick
conservative parameters such that our split-KEM has
128 (resp. 64) bits of classical (resp. quantum) security
if the adversary is limited to ≈ 264 queries (resp. 264/d
quantum queries) to the random oracle, where d repre-
sents the maximal number of distinct participants that
can send a message to a given receiver while the latter is
offline. In other words, our parameters take into account
the loss due to the (Q)ROM proof.

• We benchmark our protocol K-Waay using our modified
version of FrodoKEX (which we call FrodoKEX+) as the
split-KEM, along with standard X3DH and the two previ-
ous proposals for PQ X3DH-like AKE [16, 38]. We find
that while K-Waay has larger prekeys, it is 6× faster com-
pared to these. In addition, the only non-standard primi-
tive we use in K-Waay (i.e. FrodoKEX+) is based on both
an assumption (i.e. LWE) and a scheme (FrodoKEM)
that have been thoroughly scrutinized by the crypto-
graphic community. Overall, we believe our protocol
more mature for short to medium-term integration com-
pared to previous work based on ring signatures.

1.2 Technical Overview
1.2.1 X3DH-like key exchange.

A quantum-secure X3DH-like protocol should satisfy certain
properties. Apart from satisfying standard authenticated key
exchange (AKE) properties like secrecy and authentication, it
should also be asynchronous. That is, parties should be able
to upload keying material to a central server, after which an
initiating party can derive a session key immediately with their
counterpart who may be offline. This also entails receiver-
obliviousness, using the language of Hashimoto et al. [38], as
the initial key upload should not depend on the keys of any
other party. Another is deniability, allowing parties to claim

that they plausibly did not participate in the key exchange.
Note that we cannot possibly ensure that parties can claim that
they never uploaded prekeys as they are signed (and using ring
signatures, e.g., would violate receiver-obliviousness). Finally,
a DAKE should, like X3DH, provides security guarantees
even if the session state of a party is leaked.

1.2.2 Revisiting split-KEM.

In an attempt to model the primitive central to X3DH-like
AKE, Brendel et al. [17] introduced split-KEM, which is simi-
lar to a standard KEM except the encapsulator can contribute
to the derived key. However, we discovered that the accom-
panying security definitions were not sufficient to use such a
primitive as the main component of a KE. The reason being
that their notions ensure that an encapsulated ciphertext will
not leak information on its encapsulated key, but not that only
the sender can send a “legitimate” ciphertext to the sender (or
that only the sender and receiver can derive a common key). In
other words, there is no guarantee of implicit authentication.
Therefore, we introduce the notion of unforgeability against
one known-message attacks for split-KEM (UNF-1KMA),
which states that if Bob receives a message allegedly sent
by Alice, either Alice really sent it or the decapsulation will
fail. Jumping ahead, this will be used in the security proof
of the protocol to argue that either the adversary relayed a
legit split-KEM ciphertext to the receiver that the adversary
cannot learn the decapsulation of, or the sender aborts as the
ciphertext is forged.

We also introduce an intermediary notion of decaps-OW-
CPA, which says that an adversary should not be able to
recover a key decapsulated by some party without knowing
the sender’s or the receiver’s secret key. We will prove that
our lattice-based split-KEM satisfies such a definition, then
we will apply some transform in the (Q)ROM to obtain a
UNF-1KMA split-KEM.

Finally, we also define the notion of deniability for split-
KEM, which states that no party J can be convinced that
a party A sent a given ciphertext to B, even knowing B’s
secret key but assuming both parties did not deviate from the
protocol. This models a setting where B communicates with
A and later tries to frame the latter by giving the transcript
and their own secret key to J.

1.2.3 Construction.

As any X3DH-like protocol, our construction works in 4
phases: long-term key generation, prekey generation, send
and receive. The first observation we make is that in X3DH
implementation, prekey bundles are signed with a long-term
signing key before being uploaded to the server. This fact is
often abstracted away in formal analysis as it hurts the claims
one can make about the deniability of X3DH: as a signature is
undeniable by definition, users cannot deny they participated



Alice (lpkB,vkB)

(eskskemA ,epkskemA )←$ KeyGenAsKEM

Kℓ,ctℓ←$ EncapsKEM(lpkB)

Kskem
e ,ctskeme ←$ EncapssKEM(epkskemB ,eskskemA )

Kkem
e ,ctkeme ←$ EncapsKEM(epkkemB )

K← KDF(Kℓ,Kskem
e ,Kkem

e )

Bob (lpkA,vkA)

(eskskemB ,epkskemB )←$ KeyGenBsKEM

(eskkemB ,epkkemB )←$ KeyGenKEM

K′ℓ ← DecapsKEM(lskB,ctℓ)

K′e
skem ← DecapssKEM(epkskemA ,eskskemB ,ctskeme )

K′e
kem ← DecapsKEM(eskkemB ,ctkeme )

K′ℓ
?
= ⊥ ∨ K′e

skem ?
= ⊥ ∨ K′e

kem ?
= ⊥

K′ ← KDF(K′ℓ,K
′
e
skem,K′e

kem)

{epkskemA }skA{epkskemB ,epkkemB }skB

ctℓ,ct
skem
e ,ctkeme

Figure 1: High-level overview of the K-Waay protocol. Val-
ues in brackets {·}sk are signed with sk and the signature is
verified upon reception. For clarity, we omit the calculation
and addition of session identifier sid to KDF.

in the protocol. Based on this, our goal was to achieve some
level of peer-deniability [26], where parties can deny they
communicated with someone in particular, and to leverage
the fact that we use signatures to authenticate the prekeys. Our
protocol works then as follows (see Figure 1 for a high-level
overview). The long-term key pair consists of a KEM and
signature key pair, the latter being used to sign the prekey,
which comprises an ephemeral KEM key pair and ephemeral
split-KEM key pair. The former is used for forward secrecy
while the second is used for the implicit authentication of
the sender. Although usually ephemeral keys cannot be used
for authentication as they are dynamic, in our case we can
since they are authenticated (i.e. signed) by their owner. Then,
the sender encapsulates against both KEM public keys of
the receiver, and uses their own split-KEM secret key and
the receiver’s public key to derive a split-KEM ciphertext.
Upon decapsulation, the receiver recovers the three keys and
combines them using a PRF to derive the shared key.

Ephemeral split-KEM key reuse. The way our protocol
is described above works perfectly well if the split-KEM
satisfies the UNF-1KMA unforgeability notion introduced
above. However, in practice, it could happen that some party
(e.g. Bob) is offline for too long and all their ephemeral split-
KEM keys have been used. If that occurs, another sender
would have to wait for Bob to come online and upload new
keys before they can send him a message.

We fix this issue by modifying the protocol as follows:
when Bob’s ephemeral public keys have run out on the server,
a sender can simply reuse one of them. Then, when Bob is
back online, he groups the ciphertexts corresponding to the
same public-key and decrypts all ciphertexts in a group at
once. If one or more of the decapsulations in a group fails,
Bob outputs⊥ for all ciphertexts and e.g., restarts the protocol.
Otherwise, Bob proceeds as before (and never decapsulates
again using the same split-KEM key). We formally model
this key reuse with an algorithm BatchReceive that takes as
input a given session state and one or more messages to be
received.

Security. We show this version of the protocol is secure
assuming the split-KEM satisfies a stronger notion than IND-
CPA that we call IND-1BatchCCA. This definition is the
same as traditional IND-CPA (adapted to the split-KEM syn-
tax), except the adversary can query a decapsulation oracle
once with multiple public keys and ciphertexts, and the oracle
returns ⊥ if one or more of the decapsulations failed, and
the resulting keys otherwise. We show that one can easily
build an IND-1BatchCCA split-KEM out of a CPA secure
one in the (Q)ROM, conveniently using the same transform
mentioned above that builds a UNF-1KMA scheme out of a
decaps-OW-CPA one.

As in previous protocols [16, 38], the long-term KEM pro-
vides implicit authentication of the receiver as only they can
decrypt. As mentioned above, the ephemeral KEM provides
forward secrecy, and the UNF-1KMA/IND-1BatchCCA split-
KEM provides implicit authentication of the sender, as it
guarantees that only the sender could have sent a ciphertext
that correctly decapsulates (unforgeability), and no adversary
knows what is inside that ciphertext (indistinguishability),
even after seeing the decapsulation of one batch of ciphertexts
encapsulated against the same public-key (if all decapsulated
correctly). We note that the sender-to-receiver authentication
depends both on a long-term key (i.e. the signing key) and an
ephemeral one (the split-KEM key). Consequently, our model
(that allows session state exposure) is more restrictive than
that of Hashimoto et al. [38], since in particular it suffices
for the adversary to learn a receiver’s ephemeral state during
key exchange to forge a message that the receiver accepts.
Intuitively, this is because split-KEM is effectively a sym-
metric primitive. Nevertheless, the security that we achieve
is stronger than weak forward security without session state
exposure.

Deniable split-KEM from lattices. We provide the first
lattice-based split-KEM which satisfies both deniability and
UNF-1KMA security. Our starting point is the Frodo key-
exchange (FrodoKEX) [12], which was identified (among
other schemes) as a split-KEM by Brendel et al. [17], the
security of which relies on the well-known Learning with
Errors (LWE) problem [56]. We highlight that the vanilla



construction of FrodoKEX does not enjoy the aforementioned
properties. Indeed, when looking closely at the security games
of deniability and UNF-1KMA, partial information about the
secret keys are revealed - thus making a reduction to LWE
completely non-trivial3. We circumvent this problem in two
ways.

First, we reduce deniability of our scheme to a so-called
Extended-LWE problem [2], where in addition to a standard
LWE instance, the adversary is given a short random combina-
tion of the secret coefficients. We show that deniability of our
scheme reduces straightforwardly to Extended-LWE, and then
follow the methodology of Alperin-Sheriff and Peikert [2] to
reduce it further to plain LWE.

Towards UNF-1KMA security, we slightly modify the
Frodo split-KEM by introducing masking terms. As the name
suggests, they are used to hide the partial information about
secret keys. Consequently, this enables us to simulate the
decapsulation mechanism via rejection sampling [47]. In Sec-
tion 5.2 we discuss the necessity of these (seemingly artificial)
changes.

1.3 Additional Related Work
The security of X3DH has been modelled in detail by Cohn-
Gordon et al. [22]. Vatandas et al. [63] investigate the denia-
bility of X3DH and similar key exchange protocols under the
deniability notion of Di Raimondo et al. [55], requiring strong
knowledge-of-exponent-type assumptions to prove X3DH
secure. Dobson and Galbraith [31] propose a SIDH-based
X3DH-like protocol which is unfortunately now broken [20].
Very recently, [40] prove X3DH tightly-secure in the generic
group model under a new multi-user assumption although do
not allow the adversary to expose parties’ session states.

Unger and Goldberg build a number of different
DAKEs [60, 61]. However, the protocols do not provide post-
quantum guarantees: only in their later paper [61] is it sug-
gested to add a PQ KEM for post-quantum confidentiality
and the authors do not propose a more comprehensive hy-
brid protocol. Nevertheless, the protocols provide relatively
strong online deniability (i.e. where a judge and a party can
communicate while trying to frame another party) at the ex-
pense of stronger primitives like dual-receiver encryption and
non-committing encryption.

Alwen et al. [3] define the notion of authenticated key
encapsulation mechanism (AKEM) and some security defini-
tions. AKEM captures the same primitive as a split-KEM, but
we opted for the syntax and language of the latter as it was
meant to be used in a X3DH-like protocol.

Cremers and Feltz [26] introduce peer deniability, which
captures the kind of participation deniability property we are
after in this paper, namely that a party cannot deny using a
system but can deny communicating with a particular party.
However, their security notion does not require the simulator

3Nevertheless, we found no deniability/UNF-1KMA attack on [17].

to output the session key and the adversary to distinguish
between the real and simulated key, and so composability
issues may arise from using it.

2 Preliminaries

In this work, we denote by efficient adversary a probabilistic
polynomial-time or quantum polynomial-time algorithm un-
less otherwise specified. Let [n] = {1, . . . ,n}, i.e. the set of
integers between 1 and n.

2.1 Triple PRF
We first define the notion of a triple PRF, a natural generalisa-
tion of a dual PRF:

Definition 2.1 (Triple PRF). Let F : K ×K ×K ×D→ R
be a function. We consider the game shown in Figure 2. We
say that F is 3PRF if for all efficient adversaries, we have:

Adv
3prf
F (A) := max

i∈{1,2,3}

∣∣∣∣Pr [PRFFi(A)⇒ 1]− 1
2

∣∣∣∣= negl .

where Fi denotes F keyed in its i-th argument for i ∈ {1,2,3}.

Note that the notion of a triple PRF generalises the
now common notion of a dual PRF [6]. A triple PRF
Ftriple can be trivially constructed in the random oracle
model, or from a dual PRF Fdual as Ftriple(k1,k2,k3,x) =
Fdual(k1,Fdual(k2,k3,x),x).

PRFF(A)

Sample random function G

k←$ K
b←$ {0,1}

b′←$ APRF(1λ)

return 1b′=b

PRF(a,b,c)

if b = 0

return Fk(a,b,c)

else
return G(a,b,c)

Figure 2: PRF game for function Fk taking three arguments
as input.

2.2 Split-KEM
We next define split-KEM, which was introduced by Brendel
et al. [17].

Definition 2.2 (Split-KEM). A split-KEM
sKEM is a tuple of four efficient algorithms
(KeyGenA,KeyGenB,Encaps,Decaps) defined as follows:

• (pkA,skA) ←$ KeyGenA(1λ) (resp. (pkB,skB) ←$

KeyGenB(1λ)): The key generation function of the
first/second party takes the security parameter λ as input,
and outputs a pair of public/secret keys (pkA,skA) (resp.
(pkB,skB)).



• K,ct←$ Encaps(pkP ,skP ): The encapsulation function
takes the public key pkP of a party P ∈ {A,B} and the
other party’s secret key skP as inputs, and outputs a
ciphertext ct and a key K.

• K/⊥← Decaps(pkP ,skP ,ct): The decapsulation func-
tion takes the secret key skP of a party P ∈ {A,B}, the
other party’s public key pkP and a ciphertext ct as inputs,
and outputs a key K or the error symbol ⊥.

Finally, we say a split-KEM is (1−δ)-correct if

Pr

K ̸= K′ :

(pkA,skA)←$ KeyGenA(1λ);
(pkB,skB)←$ KeyGenB(1λ);
K,ct←$ Encaps(pkB,skA);
K′← Decaps(pkA,skB,ct)]

≤ δ .

Intuitively, a split-KEM is similar to a normal KEM except
material from both participants is used for encapsulation (i.e.
the final key will depend on both parties’ secret/public keys).
In a X3DH-like protocol, it can be used to implicitly authen-
ticate the party encapsulating. For security, we first define
one-wayness (OW-CPA) for sKEM, which is very similar to
the usual one for KEM and another new notion called IND-
1BatchCCA. Looking ahead, we will show that any OW-CPA
split-KEM can easily be transformed into a IND-1BatchCCA
one.

Definition 2.3 (split-KEM OW-CPA). We consider the OW-
CPA game defined in Fig. 3. A split-KEM scheme sKEM =
(KeyGenA,KeyGenB,Encaps,Decaps) is OW-CPA if for any
efficient adversary A we have

Adv
ow-cpa
sKEM (A) = Pr [OW-CPAsKEM(A)⇒ 1] = negl .

Definition 2.4 (split-KEM IND-1BatchCCA). We consider
the IND-1BatchCCA game defined in Fig. 3. Let K be
a finite key space. A split-KEM scheme over K sKEM =
(KeyGenA,KeyGenB,Encaps,Decaps) is IND-1BatchCCA
if for any efficient adversary A we have

Advind-1batchcca
sKEM (A) :=

∣∣Pr [IND-1BatchCCAsKEM(A)⇒ 1]− 1
2

∣∣= negl .

On the original split-KEM security. In the original work
on split-KEM by Brendel et al. [17], the authors defined sev-
eral indistinguishability notions meant to capture which level
of security a split-KEM should achieve in order to be used as
part of a X3DH-like key exchange. This goes from nn-IND-
CCA security, which is the same as IND-CPA security for
split-KEM, to mm-IND-CCA security (equivalent to some
kind of IND-CCA security). Many intermediary notions of
the form xy-IND-CCA, x,y ∈ {n, s, m} were also defined,
where x (resp. y) specifies the number of queries an adversary
can make to the decapsulation (resp. encapsulation) oracle
(i.e. none, single, or many). We refer the reader to the original

IND-1BatchCCAsKEM(A)

b←$ {0,1}; q← 0

pkA,skA←$ KeyGenA(1λ)

pkB,skB←$ KeyGenB(1λ)

K0,ct
∗←$ Encaps(pkA,skB)

K1←$ K

b′←$ ABatchDec(pkA,pkB,ct
∗,Kb)

return 1b′=b

BatchDec({(pki,cti)}d
i=1)

if q = 1 : return ⊥ else q← q+1

for i ∈ {1, . . . ,d}
if (pki,cti) = (pkB,ct

∗) : return ⊥

K′i ←Decaps(pki,skA,cti)

if K1 =⊥∨ . . .∨Kd =⊥ : return ⊥
return (K1, . . . ,Kd)

OW-CPAsKEM(A)

pkA,skA←$ KeyGenA(1λ); pkB,skB←$ KeyGenB(1λ)

K∗,ct∗←$ Encaps(pkA,skB)

K′←$ A(pkA,pkB,ct
∗)

return 1K′=K∗

Figure 3: IND-1BatchCCA and OW-CPA games.

work on split-KEM [17] or the full version of this paper [25]
for the formal definitions.

We recall that the advantage of split-KEMs over normal
KEMs is that they capture the fact that the party encapsulating
can contribute towards the shared key, whereas it is not the
case with KEMs, as the encapsulation function only takes the
receiving party’s public key as input. In particular, this means
that KEMs cannot be used for implicit authentication of the
encapsulator, unlike split-KEMs. However, we argue that the
original xy-IND-CCA definitions for split-KEMs [17] do not
capture implicit authentication either and thus are not suited
for their purpose (i.e. building an asynchronous DAKE). In
fact, any IND-CPA (resp. IND-CCA) KEM can be seen as
an (asymmetric) split-KEM satisfying IND-CPA (resp. mm-
IND-CCA), where the sender’s pair of key is set to (⊥,⊥)
and encapsulation is done using only the receiver’s public
key.

More formally, imagine a setting where Alice and Bob
know each other’s public key, and Alice wants to implicitly
authenticate to Bob using a split-KEM. In addition, we as-
sume a mm-IND-CCA split-KEM sKEM0 exists (note mm-
IND-CCA security is the strongest so this holds for all weaker
notions). We first modify sKEM0 s.t. on a special cipher-
text ct⋆ not in the original ciphertext space, Decaps returns a
constant key K⋆. Let’s call this modified scheme sKEM. We
observe that sKEM is still mm-IND-CCA secure as no ad-
versary can break an honestly-generated challenge ciphertext.
Now, implicit authentication means that if Bob decapsulates
a ciphertext and obtains a key K, then only Alice knows K.
However, in our case, any adversary can send ct⋆ to Bob and
set their own key to K⋆. Both the adversary and Bob will share
the same key and implicit authentication does not hold. In a
way, xy-IND-CCA security does not prevent forgery.

This leads us to define our notion of UNF-1KMA security
for split-KEMs below which, along with OW-CPA (which
can be turned into IND-1BatchCCA), guarantees that only



UNF-1KMAsKEM(A)

pkA,skA←$ KeyGenA(1λ)

pkB,skB←$ KeyGenB(1λ)

KB,ct←$ Encaps(pkA,skB)

ct′←$ A(pkA,pkB,ct,KB)

if ct′ = ct : return 0

KA←Decaps(pkB,skA,ct
′)

if KA =⊥ : return 0

return 1

decaps-OW-CPAsKEM(A)

b←$ {0,1}

pkA,skA←$ KeyGenA(1λ)

pkB,skB←$ KeyGenB(1λ)

KB,ct←$ Encaps(pkA,skB)

K′A,ct
′←$ A(pkA,pkB,ct)

KA←Decaps(pkB,skA,ct
′)

if KA =⊥ : return 0

return 1KA=K′A

Figure 4: Games UNF-1KMA and decaps-OW-CPA.

DENYREAL
sKEM,Sim(A)

(pkA,skA)←$ KeyGenA(1λ)

(pkB,skB)←$ KeyGenB(1λ)

K,ct←$ Encaps(pkA,skB)

b←$ A(pkA,pkB,skA,K,ct)

return b

DENYSIM
sKEM,Sim(A)

(pkA,skA)←$ KeyGenA(1λ)

(pkB,skB)←$ KeyGenB(1λ)

K,ct←$ Sim(pkB,skA)

b←$ A(pkA,pkB,skA,K,ct)

return b

Figure 5: Deniability game (we assume w.l.o.g. that B encap-
sulates and A simulates).

Alice (and obviously Bob) can know the result of Bob’s de-
capsulation on some ciphertext. More precisely, UNF-1KMA
ensures that no adversary can forge a valid split-KEM cipher-
text when knowing a (distinct) legitimate one. We also define
a security notion called decaps-OW-CPA that will serve as a
building block to build UNF-1KMA. This notion ensures that
it is hard for an adversary knowing one legitimate ciphertext
ct to come up with a ciphertext ct′ (possibly equal to ct) and
a key K′ s.t. the decapsulation of ct′ returns K′.

Definition 2.5 (split-KEM UNF-1KMA). We consider
the UNF-1KMA game defined in Fig. 4. A split-KEM
scheme sKEM = (KeyGenA,KeyGenB,Encaps,Decaps) is
UNF-1KMA if for any efficient adversary A we have

Advunf-1kma
sKEM (A) := Pr [UNF-1KMAsKEM(A)⇒ 1] = negl .

Definition 2.6 (split-KEM decaps-OW-CPA). We consider
the decaps-OW-CPA game defined in Fig. 4. A split-KEM
scheme sKEM = (KeyGenA,KeyGenB,Encaps,Decaps) is
decaps-OW-CPA if for any efficient adversary A we have

Adv
decaps-ow-cpa
sKEM (A) :=

∣∣Pr [decaps-OW-CPAsKEM(A)⇒ 1]− 1
2

∣∣= negl .

2.3 Deniability
We state here the notion of split-KEM deniability we would
like to achieve.

Definition 2.7 (Deniability). We consider the game shown in
Figure 5. We say a split-KEM sKEM is DENY if there exists

a simulator Sim s.t. for all efficient adversaries A , we have

Adv
deny
sKEM,Sim(A) :=

∣∣Pr[DENYREAL
sKEM,Sim(A)⇒ 1]

− Pr[DENYSIM
sKEM,Sim(A)⇒ 1]

∣∣= negl .

Note that for the sake of simplicity, we define deniability with
respect to B encapsulating. The other case (i.e. A encapsu-
lates) follows by symmetry.

Informally, the setting considered is the following. Alice
and Bob use the split-KEM to establish a shared key (we
assume the public keys are only used for this one exchange),
and Alice (while following the protocol) wants to frame Bob
and prove that he did communicate with her. Therefore, after
receiving Bob’s ciphertext and deriving the key, Alice gives
both public keys, the derived key, the ciphertext and her own
secret key to a judge (i.e. the adversary) that must decide
whether Bob actually sent the ciphertext that was used to
derive the key or not. The scheme is deniable if there is a
simulator that, given Alice’s view, outputs a ciphertext and a
key indistinguishable from the ones output by Bob.

2.4 Model for DAKE
We next describe our model for deniable authenticated key
exchange (DAKE) that we tailor to the semantics and flow of
X3DH.

Syntax. A DAKE DAKE is a tuple of four efficient al-
gorithms (KeyGen, Init,Send,BatchReceive) defined as fol-
lows:

• (pk,sk)←$ KeyGen(1λ). This function takes as input
the security parameter λ and outputs the long-term pub-
lic/secret key pair of the caller.

• (sti,preki) ←$ Init(ski, role). This function takes as
input a long-term secret key ski and a role role ∈
{sender, receiver} and outputs a session state sti and
a prekey bundle preki. This function models the creation
of key material that will be uploaded to the public key
infrastructure by both parties (e.g. the prekey bundle in
X3DH). The output values depend only on the public
key of party i executing the function.

• (k,m)←$ Send(ski,pk j,sti,prek j). This function takes
as inputs the secret key of the executing party i, the
public key of the intended recipient pk j, party i’s session
state sti and the (claimed) prekey bundle of the intended
recipient prek j, and outputs a key k and a message m.

• {ks}s←$ BatchReceive(ski,sti,{pk j,prek j,m j} j). This
function takes as inputs the secret key of the executing
party i, an ephemeral state of party i sti and a vector
of size d ≥ 1 of the form (pk j,prek j,m j) for party i’s
session with the public key of the (claimed) sender pk j,



party i’s session state sti, the (claimed) prekey bundle of
party j prek j and a message m j, and outputs a vector of
d keys (k1, . . . ,kd), some or all of which can be ⊥.

Init explicitly captures parties uploading ephemeral keys to
a central server in the first protocol step. This contrasts with
the formal modelling in some previous works on X3DH-like
key exchange [16, 38] that formally model a three-move key
exchange with a single initiator. As Init is independent of
keying material from the caller’s counterpart, our definition
captures so-called receiver obliviousness [38] (sometimes
post-specified peers [19]), corresponding to some, but not all,
key exchange protocols in the literature.

The most novel part of our primitive is BatchReceive
which in particular captures ephemeral key reuse when up-
loaded ephemeral keys are exhausted. In the case of key
exhaustion, when a party comes back online, they execute
BatchReceive several times, where the number of inputs of
the form (pk j,prek j,m j) in a given BatchReceive call cor-
responds to how many times ephemeral state sti is re-used.
Otherwise, BatchReceive can be used as one would expect
with a single value (pk j,prek j,m j) as input.

Security. Due to space limitations and its similarity with
previous work [16, 38], we defer a formal description of our
key indistinguishability game and some discussion to the full
version [25]. We nevertheless define security and discuss its
core features below.

Definition 2.8 (DAKE key indistinguishability). We consider
the KIND game described below. We say a DAKE DAKE
is KIND if for all efficient adversaries A and polynomially-
bounded n (the total number of parties), we have

Advkind
DAKE,n(A) :=

∣∣∣∣Pr[KINDn
DAKE(A)⇒ 1]− 1

2

∣∣∣∣= negl .

The KIND game proceeds in two phases in which the ad-
versary drives the execution of several parties, each of which
can be executing several concurrent instances of the DAKE.
In the first phase, the adversary A is given access to several
oracles, including EXEC (driving protocol execution and in-
cluding message injection), LTK (for long-term key reveals),
REGISTER (for adversarial public key registration), STATE
(for ephemeral state exposure) and KEY (for session key ex-
posure). At the end of the first phase, A makes a TEST query
with respect to some session key output by either the sender
or receiver, which outputs either the correct session key or a
key uniformly sampled by the challenger. In the second phase,
the adversary continues to make oracle queries, and finally
outputs a guess as to whether the key is real or random.

Apart from the fact we make several extensions to typical
AKE modelling to capture BatchReceive, the game is closest
to that of Hashimoto et al. [38] except that we additionally
enforce correctness checks as done by Brendel et al. [16]. To

DENYexp
DAKE,n,Sim(A)

b←$ {0,1}
L← /0

for i ∈ [n]

(pki,ski)←$ KeyGen(1λ)

L← L∪{(pki,ski)}

b′←$ ACHAL(L)

return 1b′=b

CHAL(s,r)

require s ∈ [n]∧ r ∈ [n]

(k,m)← (⊥,⊥)
(sts,preks)←$ Init(sks,sender)

(str ,prekr)←$ Init(skr , receiver)

if b = 0 : (k,m)←$ Send(sks,pkr ,sts,prekr)

else : (k,m)←$ Sim(skr ,pks,str ,preks,prekr)

T ← (preks,prekr ,m)

if exp = true : return (k,T,str)

else return (k,T )

Figure 6: Deniability game.

capture partnering, we consider partner and key identifiers
that may be vectors for a receiver, such that several sender
sessions may be partnered with a receiver session if, for a
given sender session, it partners with a part or component
of the receiver session. We do not capture semi-static keys
explicitly as Brendel et al. [16] do, although in principle they
could be captured in Init. We note in particular that our model
captures session state exposure, unlike that of Brendel et al.
Note that for BatchReceive which can output several keys,
just one of the output keys are tested.

Trivial attacks. We restrict the adversary’s behaviour to
prevent ‘trivial’ attacks (e.g. directly revealing the challenge
key) by defining freshness predicates. Due to our protocol’s
design, our notion restricts more than the full forward security
notion under session state exposure defined by Hashimoto et
al. [38]. Our freshness predicates imply weak forward secrecy
and implicit authentication given session state exposure is
not allowed (enforced in some recent works [5, 23]). Brendel
et al.’s model provide these guarantees but additionally pro-
tect against randomness exposure [16]: the standard NAXOS
trick [42] can be applied to our protocol to mitigate this attack
vector.

2.5 Deniability
We next introduce our security notion for a deniable DAKE.
To this end, we introduce security game DENYexp

DAKE,Sim in
Figure 6.

Definition 2.9 (DAKE deniability). We consider the game
shown in Figure 6. We say a DAKE DAKE is DENYexp for
exp ∈ {true, false} if there exists an efficient simulator Sim
s.t. for all efficient adversaries A and polynomially-bounded
n, we have

Adv
deny
DAKE,Sim,exp(A) :=

∣∣∣∣Pr[DENYexp
DAKE,n,Sim(A)⇒ 1]− 1

2

∣∣∣∣
= negl .

Our definition captures the following deniability property.
Initially, the judge A is given the long-term keys of all parties.



A then observes honest protocol runs between pairs of parties
(via CHAL). Depending on the challenge bit b, either Send or
a simulator Sim that takes as input the secret keying material
of the receiver trying to frame the sender is executed in each
run. Moreover, A is given the prekey messages independent of
b and, if the parameter exp is set to true, also the session state
of the receiver in each protocol run. The goal of the adversary
is to distinguish whether Send or Sim is being called.

Our notion DENYfalse corresponds most closely with that
of Brendel et al. [16] which was also adopted by Cremers
and Zhao [27]. Due to their AKE syntax, they also consider
semi-static key pairs which are also given to the adversary.
DENYtrue provides stronger deniability, corresponding in
practice to a receiver who co-operates with a judge by hand-
ing over the entire contents of e.g. their phone. Although
incomparable formally, our DAKE would not be considered
deniable under a notion like that of Brendel et al. [16] since
their protocols do not formally model long-term signatures.
Finally, note that our definition, like Brendel et al.’s, can be
straightforwardly converted to a ‘simulation-based’ notion
like Definition 2.7.

3 K-Waay: Post-Quantum X3DH from Split-
KEM

We present our DAKE K-Waay (Key-exchange With
asynchrony, authentication and peer-deniability) in Figure 7.

Each party is associated with a long-term public/secret key
pair which in K-Waay comprises of a signature and KEM key
pair generated in KeyGen. In Init, ephemeral KEM and split-
KEM keys for both parties are generated and the public keys
are signed with the long-term signature key.

After initialisation, the sender Pi (sometimes initiator) in-
vokes Send that takes the prekey prek j output by the receiver
Pj’s Init call as input. After verifying the signature in prek j,
Pi encapsulates to 1) the long-term KEM key of Pj; 2) the
ephemeral KEM key contained in prek j; and 3) the ephemeral
split-KEM key contained in prek j. Note that the split-KEM
provides implicit authentication (without it, Send could be
simulated without secrets). Pi then combines the keys using
a KDF and outputs the key and its message for Pj consisting
of the three encapsulation ciphertexts. Receiving is analo-
gous: receiver Pi verifies Pj’s prekey, decapsulates using its
three respective secret keys and derives the session key. If
Pi’s prekeys have run out, it is possible that multiple Pj’s have
sent using the same prekey preki. In that case, Pi decapsulates
for all sessions using the same secret keys but aborts if any
split-KEM decapsulation failed in any of the session.

3.1 Security
Theorem 1. Consider (1−δEKEM)-correct IND-CCA KEM
EKEM, (1− δLKEM)-correct IND-CCA KEM LKEM, (1−
δSig)-correct SUF-CMA signature scheme Sig and (1−

Init(ski, role)

// prekey generation/upload

if role= sender :

(espki,esski)←$ KeyGenAsKEM(1λ)

ekpki←⊥
else :

(espki,esski)←$ KeyGenBsKEM(1λ)

(ekpki,ekski)←$ KeyGenEKEM(1λ)

σi←$ SignSig(ski.ssk,(espki,ekpki))

preki← (espki,ekpki,σi)

return (sti = (esski,ekski,preki),preki)

Send(ski,pk j,sti,prek j)

(esski,ekski,preki)← sti

(espk j,ekpk j,σ j)← prek j

msg← (espk j,ekpk j)

require VrfySig(pk j.spk,msg,σ j)

(Kℓ,ctℓ)←$ EncapsLKEM(pk j.kpk)

(Kk,ctk)←$ EncapsEKEM(ekpk j)

(Ks,cts)←$ EncapssKEM(espk j,esski)

m← (ctℓ,ctk,cts)

sid← Pi||Pj||pki||pk j||preki||prek j||m
k← KDF(Kℓ,Kk,Ks,sid)

return (k,m)

KeyGen(1λ)

// long-term key generation

(kpk,ksk)←$ KeyGenLKEM(1λ)

(spk,ssk)←$ KeyGenSig(1
λ)

pk← (spk,kpk)

sk← (ssk,ksk)

return (pk,sk)

BatchReceive(ski,sti,S = {pk j,prek j,m j} j)

(esski,ekski,preki)← sti

fail← false; k j←⊥
for j : (pk j,prek j,m j) ∈ S :

(ctℓ,ctk,cts)← m j

(espk j,ekpk j,σ j)← prek j

if ¬VrfySig(pk j.spk,(espk j,ekpk j),σ j) :

k j←⊥
continue

Kℓ←DecapsLKEM(ski.ksk,ctℓ)

Kk←DecapsEKEM(ekski,ctk)

Ks←DecapssKEM(espk j,esski,cts)

sid← Pj||Pi||pk j||pki||prek j||preki||m j

if Ks =⊥ : fail← true
if (Kℓ =⊥)∨ (Kk =⊥)∨ (Ks =⊥) : k j←⊥
else : k j← KDF(Kℓ,Kk,Ks,sid)

if fail : return ⊥|S|

else : return {k j} j

Figure 7: K-Waay: X3DH-like DAKE from IND-CCA KEMs
EKEM and LKEM, SUF-CMA signature scheme Sig and
IND-1BatchCCA and UNF-1KMA split-KEM sKEM.

δsKEM)-correct IND-1BatchCCA, UNF-1KMA split-KEM
sKEM and 3PRF KDF used to build K-Waay (Figure 7). Then,
we have that for every efficient adversary A that makes at
most q oracle queries, one can build an adversary B such
that

Advkind
K-Waay(A)≤ q

4
·
(
δSig+δLKEM+δEKEM+δsKEM

)
+

q2 · (εEKEM+ εLKEM+2εKDF+2εSig) +

q3 ·
(
εEKEM+ εLKEM+ εsKEM+3εKDF

)
,

where εEKEM =Advind-cca
EKEM (B), εLKEM =Advind-cca

LKEM (B), εSig =
Advsuf-cma

Sig (B), εsKEM = Advind-1batchcca
sKEM (B)+Advunf-1kma

sKEM (B)

and εKDF = Adv
3prf
KDF(B).

Proof. We defer the proof to the full version [25]. At a high
level, we first argue protocol correctness by invoking the
correctness of the underlying primitives. Then, we partition
the adversary’s behaviour into three classes, depending on
whether 1) the test session is partnered; 2) it is unpartnered



skA =
(

SA ∈ Zn×n̄
q ,DA ∈ Zn×n̄

q , FA ∈ Zn̄×n̄
q

)
,pkA =

(
A ∈ Zn×n

q ,BA = ASA+DA

)
skB =

(
SB ∈ Zn̄×n

q ,DB ∈ Zn̄×n
q , FB ∈ Zn̄×n̄

q

)
,pkB =

(
A ∈ Zn×n

q ,BB = SBA+DB

)

B(skB,pkA) A(skA,pkB)

EB←$ ψn̄×n̄ = U([−β,β]n̄×n̄)

V← SBBA+EB

ct← HelpRec(V)
ct - V′← BBSA+ FA

KB← Rec(V,ct) KA← Rec(V′,ct)

Figure 8: The modified FrodoKEX [12] as a split-KEM.
Boxed terms correspond to the changes made to the original
construction [12]. Here, Rec and HelpRec are the reconcili-
ation mechanisms [53] used to derive the same key (see the
full version [25] for details).

and the tester is a sender and 3) it is a receiver, and, depend-
ing on the combination of corruptions/reveals the adversary
makes, reduce to the security of a primitive that the adversary
does not have access to the secrets of.

Theorem 2. Consider deniable split-KEM sKEM with sim-
ulator SimsKEM used to build K-Waay (Figure 7). Then, we
have that for every efficient adversary A that makes at most q
oracle queries, there exists an efficient Sim s.t. one can build
an adversary B such that for exp ∈ {true, false} we have:

Adv
deny
K-Waay,Sim,exp(A)≤ q ·Advdeny

sKEM,SimsKEM
(B) .

Proof. We defer the proof to the full version [25], noting we
construct Sim using split-KEM simulator SimsKEM then apply
a standard hybrid argument that replaces Send calls in CHAL
queries with calls to SimsKEM.

4 Deniable Split-KEM from Lattices

In this section, we give a technical overview of our new lattice-
based split-KEM. More formal treatment of the construction
can be found in the full version [25].

4.1 Overview
We start with the Frodo key-exchange by Bos et al. [12],
which corresponds to the informal description in Fig. 8 where
(i) the boxed terms are ignored, and (ii) the coefficients of all
the secret matrices come from a distribution χ.

In this setting, the deniability property says that one can
efficiently simulate the key KB and the ciphertext ct, given
only the public key pkB of B and the secret key skA of A. This
means that no efficient adversary A(pkA,pkB,skA), which has
the public key as well as the secret key skA, can distinguish

between the honestly computed (KB,ct) and the simulated
one. By construction, if one can simulate V, then ct and KB

come for free, hence we focus on the latter task. Now, in order
to prove deniability, we first observe that:

V = SBBA+EB = SBDA+SBASA+EB

= SBDA−DBSA+BBSA+EB.

Since we are already given pkB and skA, we only need to find
a way to simulate the term SBDA−DBSA. A naive approach
would be to simulate the secret key of B. That is, simply
sample Ssim,Dsim←$ χn̄×n and set

Vsim := SsimDA−DsimSA+BBSA+EB. (1)

We formally show that this approach is a valid simulation
under the LWE assumption. To this end, we define a (matrix-
version) Extended-LWE (ELWE) problem which can be de-
scribed as follows: distinguish between

(A,SA+D,Z,W,SZ+DW) and (A,T,Z,W,SZ+DW)
(2)

where S,D←$ χn×n̄,Z,W←$ χn̄×n and T is uniformly random
in Zn̄×n

q . We call SZ+DW the hint matrix, and its height the
number of hints. Now, the proof consists of two main steps
which we sketch out below:

1. First, we argue that if we consider a hybridGame1, where
we swap the public key BB := SBA+DB with a uni-
formly random matrix over Zq, then no efficient adver-
sary can distinguish between the two experiments under
the ELWE assumption. Indeed, given the ELWE tuple
(A,T,Z,H), the reduction B can set T :=BB, Z :=−DA,
W := SA and V :=H+BBSA+EB, where EB is sampled
by B as in the protocol. Then, either T = SBA+DB or
T is uniformly random. However, in both cases we have
V = H + BBSA + EB = SBDA −DBSA + BBSA + EB.
Therefore, if T is a true LWE instance then the reduc-
tion can simulate the deniability game. Otherwise, T
is uniformly random and thus B simulates Game1. For
notational convenience, in Game1 we denote the secret
key matrices for B as (Ssim,Dsim) rather than (SB,DB),
which are only used to compute V.

2. The next step is to introduce the next Game2, where
the public key is now computed as BB := SBA+DB,
for SB,DB←$ χn̄×n, instead of being sampled uniformly
at random. Since SB,DB are only used to compute BB,
computational indistinguishability of the last two games
comes from the hardness of plain LWE. We highlight
that Game2 is not just reversing Game1, since V is still
computed as Vsim = SsimDA−DsimSA+BBSA+EB.

Finally, one observes that the matrix Vsim from (1) is com-
puted exactly as in Game2. Hence, the indistinguishability of
V and Vsim follows from both ELWE and LWE assumptions
via the hybrid argument.



4.2 Achieving Stronger Security Properties
As discussed above, for the main applications in this paper we
need our split-KEM to satisfy stronger security notion than
e.g. IND-CPA [17]. It turns out that split-KEM deniability,
which is a useful feature on its own, can be used as a building
block to prove more advanced properties. We showcase this
by giving an intuition on how to build a “decaps-OW-CPA”
split-KEM.

In the decaps-OW-CPA game, the challenger generates the
secret and public keys for both parties, applies the encap-
sulation for B to obtain (K∗,ct∗)← Encaps(pkA,skB), and
outputs (pkA,pkB,ct∗) to the adversary A , which then returns
a new ciphertext-key pair (ct′,K′A). The adversary’s goal is
to guess the key KA which is output by Decaps(pkB,skA,ct

′).
Note that by definition of deniability, we can use the simula-
tor Sim(pkB,skA) from before to simulate the encapsulation
output (K∗,ct∗) instead. After the substitution, the only place,
where the secret key skB ofB is actually used, is when comput-
ing BB = SBA+DB. Hence, under the LWE assumption, we
can swap BB with a uniformly random matrix. After all these
changes, the modified decaps-OW-CPA experiment, which we
call decaps-OW-CPA*, can be explicitly summarised below
(ignoring the boxed items for now).

decaps-OW-CPA*

SA,DA←$ χ
n×n̄;FA←$ χ

n̄×n̄; BA← ASA+DA

EB←$ Ψ
n̄×n̄; Ssim,Dsim←$ χ

n̄×n

Vsim← SsimDA−DsimSA+BBSA+EB

ct← HelpRec(Vsim)

K′A,ct
′←$ A(pkA,pkB,ct)

V′← BBSA+FA;KA← Rec(V′,ct′)

Our main goal is to make sure that after a certain number
of hybrid games, V′ is uniformly random. If this is the case,
then using a high min-entropy argument on the reconcilia-
tion mechanism Rec, we could show that the probability of
guessing KA is negligible.

By looking at how V′ = BBSA is currently defined, the
intuition is to somehow rely on the LWE problem. The first
issue with this idea is that the expression for V′ lacks an “error
term”. We can easily patch this by adding a short n̄× n̄ matrix
FA←$ χn̄×n̄ as a part of the secret of skA, which is used only
for decapsulation. Then, by defining V′ exactly as in the figure
above, we have: [

BA

V′

]
=

[
A
BB

]
SA+

[
DA

FA

]
which is exactly a LWE instance. The reason why we cannot
swap (BA,V′) with random matrices is that we still need
to simulate Vsim which depends on the secret key skA. We
solve this issue using the following approach. By rearranging,

we first compute V′ and then V. Next, we can alternatively
compute V as V = SsimDA−DsimSA+V′+E′ where E′ =
EB−FA. Here, our key idea is to apply rejection sampling
[47]. Namely, if we allow to pick coefficients of EB uniformly
at random from much larger interval [−β,β] than for χ, i.e.
ψ := U([−β,β]n̄×n̄), then conditioned on ∥EB+FA∥∞ ≤ β−
γ, where ∥FA∥∞ ≤ γ, the matrix E′ = EB−FA is uniformly
random with coefficients between [−β+γ,β−γ]. This allows
us to simply substitute the term EB−FA with a uniformly
random matrix E′, which in particular is independent of FA.

After all these modifications, we show that under a slightly
modified Extended-LWE assumption, we can swap (BA,V′)
with uniformly random matrices which finishes the proof.
Here, the main change from (2) is that we now allow the error
terms in the LWE sample not to be included in the hint. That
is, this time the adversary has to distinguish between([

A
B

]
,

[
A
B

]
S+

[
D
F

]
,Z,W,ZS+WD

)
and([

A
B

]
,T,Z,W,ZS+WD

)
.

The modified scheme we use (with added noise in decapsula-
tion) is given in Figure 8 with boxed instructions.

Hardness of Extended-LWE. We provide a formal reduc-
tion from the newly defined Extended-LWE problem to plain
LWE. The reduction is similar to the one presented by Alperin-
Sheriff and Peikert [2], albeit not a straightforward adaptation.
The issue is that in [2], the ELWE problem outputs hints of
size only a single Zq element. Here, we have to deal with
n̄ many Zq-hints, which becomes problematic when arguing
about invertibility of certain matrices when following the orig-
inal reduction. We circumvent this by first reducing our ELWE
to the corresponding knapsack-type version [52], then apply-
ing the reduction from [2] to reduce to plain knapsack-LWE,
and finally going back to plain LWE using [52].

UNF-1KMA and IND-1BatchCCA. We have informally
proven so far that the modified version of FrodoKEX given
above is decaps-OW-CPA and OW-CPA. In the full ver-
sion [25] we show that any scheme satisfying both these
properties can easily be transformed into a UNF-1KMA and
IND-1BatchCCA split-KEM in the ROM and QROM using
the TCH transform of Huguenin-Dumittan and Vaudenay [39]
adapted to the split-KEM setting.

4.3 Concrete Instantiation

In Table 1 we propose the parameter set where we aim for
128-bit classical security. We detail in the full version [25]
the calculations that lead to these numbers.



n n̄ q B χ β |pk| |ct|
1452 8 31751 4 U({−1,1}) 26 21.3KB 64B

Table 1: Concrete parameters for our lattice-based split-KEM.
B is the number of bits that can be extracted per coefficient.
We note that in practice, we do not need to include the whole
matrix A in the public key, but rather the seed for the pseudo-
random function to generate it.

5 Benchmarks, Comparison and Discussion

Hereafter, we refer to the scheme by Brendel et al. [16] as
SPQR, and we refer to the deniable (i.e. with ring signatures)
scheme by Hashimoto et al. [38] as HKKP.

5.1 Benchmarks
Security of non-standard primitive. As K-Waay, SPQR
and HKKP can each be implemented using, except for a single
primitive in each case, only (soon to be) standardised prim-
itives, we wish to compare the security of the non-standard
primitives. In the case of K-Waay it is a split-KEM, here im-
plemented using a variant of FrodoKEX passed through the
TCH transform (that we call FrodoKEX+), and in the case of
both HKKP and SPQR it is a ring signature (or a DVS derived
from a ring signature). The authors of both SPQR and HKKP
proposed possible implementations for the RS without pick-
ing one in particular. The most efficient one for a ring of size
2 that has an existing C implementation is Raptor [45] which
we use for the benchmarks below. Other candidates would be
Falafl [9] or DualRing-LB [64].

We present in Table 2 a summary of the security claims,
approximate leading factor in the bounds in the (Q)ROM, and
assumptions for these non-standard primitives. We note that
none of these primitives are proven secure in the standard
model and all are based on lattices.

First, we note that parameters for these RS schemes are
picked before the reduction in the ROM. That is, a primitive
P based on lattices is built, parameters are chosen such that P
satisfies the security claim, then P is used to build a RS in the
ROM, which incurs a loss factor that usually depends on the
number of queries to the random oracle qH . In particular, it
is common to have at least a qH factor in the security bound
(e.g. if the adversary can make 232 queries to the RO, the
security level is reduced by 32 bits). Therefore, the claimed
security level does not match the provable security level. In
the QROM, the security loss is usually greater: square root and
q2

H or q3
H losses are quite common, however these schemes

are not proven secure in this model.
We chose the opposite approach in designing a split-KEM

with a conservative assumption (i.e., plain LWE) and param-
eters. Therefore, FrodoKEX+ with our proposed parameters
achieve 128 (resp. 64) bits of classical (resp. quantum) se-
curity after the (Q)ROM proof. We put the (approximate)

highest terms of both the ROM and QROM security bounds in
Table 2. These satisfy our security claims as long as qH ≤ 264

in the ROM and qH · d ≤ 264 in the QROM, where d is the
number of public key/ciphertext tuples allowed in the IND-
1BatchCCA game. We note that in K-Waay, d corresponds
to the number of distinct users trying to communicate with
an offline receiver after all prekeys have run out, thus should
typically be small. We note that the leading coefficients in all
our bounds are always related to the (Q)ROM security (e.g.
finding a collision) and not to the underlying hardness as-
sumptions. Therefore, one can easily make these coefficients
smaller by picking a larger digest size n, e.g. 512 bits.

The reason behind the approximations and lack of QROM
proofs for PQ ring signatures is likely the youth of the field
and the speed at which it is evolving. Still, we believe it is
worth noting as it makes any comparison between our protocol
and previous ones quite difficult.

Benchmarking. The protocols we benchmarked are: our
own implementation of the current X3DH protocol, a wit-
ness protocol made only with PQ KEMs and a signature
scheme similar to the non-deniable variant of HKKP, Brendel
et al.’s [16] construction SPQR using PQ KEMs, a signature
scheme and a DVS, Hashimoto et al.’s [37, 38] construction
HKKP using PQ KEMs, a signature scheme and a RS, and
our scheme K-Waay with FrodoKEX+ using PQ split-KEM,
KEMs and a signature scheme.

We picked Kyber512 as the KEM, both Falcon-512 and
Dilithium2 as signatures, and Raptor as the ring signature. We
implemented both HKKP and SPQR with signed prekeys as is
the case in Signal’s implementation of X3DH. That is, a PQ
signature key pair is part of the long-term key, and ephemeral
keys uploaded to server are signed with it. Note that this is
make explicit in K-Waay as the ephemeral keys are signed
with the long-term one. The authors of HKKP show that this is
not necessary in their protocol, however not doing so weakens
perfect forward secrecy.

We built the different protocols in C using the liboqs
library4 for Kyber, Falcon, and Dilithium, the Raptor imple-
mentation provided by the authors5, and a modified version
of the lwe-frodo library6 with scaled parameters to properly
simulate FrodoKEX+. More precisely, the modulus was set to
the first power of 2 larger than the modulus in FrodoKEX+,
the addition of the noise during decapsulation was also added,
and the noise distributions were modified to match the ones
of FrodoKEX+. We did not optimise the scheme in any way
(e.g. by using AVX instructions or parallelisation) and we
leave this as future work. For the sake of completeness, we
also provide a reference implementation of FrodoKEX+ in
Rust7 for the interested reader. All benchmarks were run on a

4https://github.com/open-quantum-safe/liboqs
5https://github.com/zhenfeizhang/raptor
6https://github.com/lwe-frodo/lwe-frodo
7https://github.com/lehugueni/frodokexp-rust

https://github.com/open-quantum-safe/liboqs
https://github.com/zhenfeizhang/raptor
https://github.com/lwe-frodo/lwe-frodo
https://github.com/lehugueni/frodokexp-rust


Scheme Cl. (C) Cl. (Q) ROM bnd QROM bnd Assumption
FrodoKEX+ 128 64 q2

H/2256 qH ·d/2128 LWE
Raptor [45] 114 103 ? ✗ NTRU

DualRing-LB [64] (128) (64) ? ✗ MSIS, MLWE
Falafl [9] 128 64 ? ✗ MSIS, MLWE

Table 2: Security comparison between FrodoKEX+ and several post-quantum RS. ‘Cl.’ stands for claimed number of security bits.
DualRing-LB’s authors do not seem to make a clear security claim, we thus assume NIST level I. ‘?’ indicates that no bound is
explicitly given for the security, ‘✗’ indicates that no proof is provided in the QROM.

virtual machine running Ubuntu 22.04 with 2 cores of an Intel
i7-9750H running at 2.60GHz and 4GB of RAM allocated.

Speed. For the speed benchmark, we measured how many
cycles each protocol takes in one execution. We summarise
our results in a logarithmic graph on Figure 9 (note that the
internal division of the bars is linear).

Fixing the choice of KEM and signature scheme, our proto-
col K-Waay, depending on the choice of KEM and signature
scheme, is between 3 and 6 times faster than the previous
proposals even with our relatively conservative parameter
choice. In our protocol K-Waay using Dilithium2, most cy-
cles are spent in the ephemeral key generation, while using
Falcon makes the static key generation as expensive as the
ephemeral key one. Overall, one can see that Falcon, while
more compact than Dilithium2, has a great impact on effi-
ciency. For instance, K-Waay with Dilithium2 is faster than
the non-deniable scheme using Kyber and Falcon.

Apart from Falcon, we see that the most time-consuming
primitives are the non-standard ones, i.e., ring signatures
and split-KEM. Hence, we see that the KEM+SIG proto-
col (HKKP’s baseline proposal) performs even better than
X3DH, which shows once again that lattice-based schemes
can be faster than their classical counterparts. However, we
recall that it does not provide deniability. At last, we note that
X3DH is the only construction that spends more time in send-
ing and receiving than generating keys. Our protocol’s Send
and Receive (i.e. BatchReceive with a single input message)
procedures are very fast.

Data size. In Table 3, we provide for each scheme the size of
the long-term keys, the prekeys (output by Init in our DAKE
syntax), and the ciphertext output by the sender. We computed
for both HKKP and SPQR the size with and without long-term
signatures. We see that K-Waay compares well in term of long-
term public key and ciphertext size as both are smaller than
signed HKKP and SPQR. However, the prekeys are much
larger as one could expect from a LWE-based scheme and
due to our conservative choice of parameters.

Scheme |lpk| |prek| |ct|
K-Waay + Dilithium 2112 24520 1632
K-Waay + Falcon 1697 22790 1632
HKKP [38] 1700 1700 4056
HKKP [38] + Dilithium2 3012 4120 4056
HKKP [38] + Falcon 2597 2390 4056
SPQR [16] 3400 1632 4824
SPQR [16] + Dilithium2 4712 4052 4824
SPQR [16] + Falcon 4297 2322 4824

Table 3: Size comparison in bytes between K-Waay instanti-
ated with FrodoKEX+, HKKP [38] and SPQR [16]. We also
computed the sizes for both HKKP and SPQR implemented
with signed prekey bundles.

5.2 Advantages, Limitations and Discussion

Running out of ephemeral keys. The main disadvantage
of our protocol is that running out of ephemeral keys requires
the receiver to abort if any of the sessions that used the same
prekey is bogus. If this happens, then a malicious party could
mount some kind of denial of service (DoS) attack against
the user that was offline for too long by sending a bogus split-
KEM ciphertext. There is an obvious trade-off between the
risk of such an attack happening and the number of ephemeral
keys uploaded on the server, thus the storage required on
the server. We leave the analysis and the mitigation of such
a threat as future work, but we believe that if a reasonable
amount of prekeys are uploaded, creating fake accounts is
difficult (e.g. by requiring a phone number as in Signal),
and/or users are online often enough, such an attack would be
difficult to mount. Furthermore, several practical mitigations
are possible. For instance, if the receiver (i.e. the victim)
received a bogus ciphertext among the n ciphertexts sent for
the same prekey while offline, they can restart K-Waay with
the n parties but as the initiator, which will probably succeed.
The victim could also send n new prekeys to the n initiators
directly, making sure the protocol will succeed at the next
iteration. This would make the attack less useful as it could
only delay communication and not prevent it.

We also think it is worth mentioning that the trick we pro-
pose might be easy to misimplement. In particular, it is cru-
cial that no information about which split-KEM ciphertext
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Figure 9: Speed benchmark for X3DH protocols

failed leaks if such a situation occurs. That is, all precautions
should be taken such that such leakage via side-channels is
prevented.

split-KEM instead of Ring Signatures. The first advan-
tage of using our protocol over existing ones is the use of
an ephemeral primitive instead of a long-term one, the for-
mer being often more efficient as the security requirements
are less strict. In addition, the use of a primitive similar to a
post-quantum KEM allows us to leverage the extensive litera-
ture on the topic and existing safe/optimised implementations.
This also gives good security guarantees as post-quantum
KEMs have been heavily scrutinised as part of the NIST
standardisation process. For example, as mentioned above,
our proposed lattice-based implementation is based on a key-
exchange variant of FrodoKEM, which is itself the PQ KEM
recommended by the German Federal Office for Information
Security (BSI) [35]. Overall we think that a split-KEM such
as FrodoKEX+ is more mature and closer to being usable in
practice than ring signatures.

On the necessity of modifying FrodoKEX. Currently, our
split-KEM significantly differs from the original FrodoKEX
in two aspects: (i) the modulus for our construction has to be
prime in order for our reduction from Extended-LWE to LWE
to hold8, and (ii) we have to introduce additional masking
terms to prove UNF-1KMA security. However, we believe
that both changes are artefacts of the security proofs, and the
original FrodoKEX split-KEM should be (up to a reasonable
security loss) deniable.

There are alternative reduction techniques from Extended-
LWE to LWE in the literature [14, 15], which do not rely on
having an odd modulus at the cost of using discrete Gaus-
sian error distributions with large parameters. It is thus an
interesting research problem to efficiently reduce Extended-
LWE to LWE for even modulus with small reduction loss. In

8Recall FrodoKEX [12] uses a power-of-two modulus for efficiency.

practice, the most efficient LWE attacks do not consider the
structure of the modulus, so intuitively this should translate
to the Extended-LWE setting9.

As for our second main modification, it is unclear how to
argue UNF-1KMA security without the additional masking
terms and rejection sampling, even though the latter could
potentially be removed using very recent techniques [1, 41].
Hence, we leave deniability and UNF-1KMA security of the
original FrodoKEX construction as exciting future work.

Deniability. While the signature on the ephemeral public
keys might give the impression that our protocol is less deni-
able than X3DH or previous PQ alternatives, this is actually
not the case. The reason is that prekey bundles in these proto-
cols are signed as well, but this detail is abstracted away in
the analysis (i.e. it is assumed that all parties have received
and authenticated all public-keys before the protocol actually
starts). While this kind of analysis allows for strong deniabil-
ity claims, in practice these protocols do not satisfy something
stronger than some kind of peer-deniability. The exception
is the ring signature based variant by Hashimoto et al. [38],
where the prekey bundle is not necessarily signed. However,
in this variant, the authors can only prove the security of their
protocol in a weaker model (i.e. it satisfies a weaker notion
of forward secrecy). Overall, if deniability should not come
at the price of security, peer-deniability seems like the best
notion one can achieve in these DAKEs.

We wished to provide a transparent model for peer-
deniability, where the upload of signed ephemeral keys is
made explicit. We also strengthen the deniability definition
of Brendel et al. [16] by allowing the exposure of one of the
parties (i.e. the receiving one, which would be the malicious
party trying to frame the sender). While our protocol satisfies
our stronger (in term of key exposure) notion of deniability,
we believe both previous PQ X3DH alternatives satisfy it as

9Recently, various frameworks have been developed [28, 29], which
measure concrete hardness of LWE given hints of specific form, such as
linear combination of secrets with short random coefficients.



well. Indeed, in these schemes, the ephemeral keys are KEM
and RS keys only, which are deniable. Hence, exposing these
should not harm deniability.

Hashimoto et al. [38] consider a strong notion of denia-
bility where the adversary is malicious (i.e. can arbitrarily
deviate from the protocol) and show how to modify HKKP
s.t. it is secure against such a threat. However, such denia-
bility comes at the expense of NIZKs, which are complex,
expensive and are not always proven secure in the QROM
when random oracles are used. Moreover, as in other deni-
able systems against malicious adversaries, non-falsifiable
assumptions (i.e. knowledge-type assumptions) are required
to prove the security. In addition, it seems difficult to defend
against adversaries actively trying to frame a given user in
messaging in practice [24, 36]; for example, an adversary
could also simply ask questions that would identify the victim
with good probability. Because of these reasons, we do not
consider such a notion of deniability here.

To contextualise our results, we remark here that crypto-
graphic deniability, which is targeted by this work and all
previous work on deniable X3DH key exchange, translates to
deniability on a system level only if the application preserves
deniability. For example, Collins et al. [24] observe that Signal
as currently deployed does not provide this kind of ‘practical’
deniability for ordinary users. Suppose Bob is trying to frame
Alice and hands over their phone, that contains a transcript
of communication between Alice and Bob, to a judge. Be-
cause Signal authenticates users (either directly or indirectly
through Signal sealed sender [46]), unless Bob was able to
modify their phone (which depends on the technical expertise
of Bob), the judge can deduce that the conversation plausibly
took place as in the transcript, regardless of the cryptographic
protocols employed underneath. It is interesting future work
to further explore deniability on the broader system level.

An optimisation. As presented in Section 3, the K-Waay
protocol generates a signature for each ephemeral public-key
uploaded. This can easily be optimised by signing the whole
prekey bundle containing several ephemeral keys. This way,
the server needs to store only one PQ signature for each user.
The downside is that now each user needs to download the
whole bundle to verify the signature. This offers a trade-off
between data stored at the server and sent to clients.

Strengthening protocol security. Note that we proved
K-Waay key indistinguishable in a model that considers state
exposures like Hashimoto et al.’s [38] but is nonetheless
weaker (our protocol is provably-secure under a notion similar
to that of Brendel et al. [16]). This is mainly since our protocol
only uses ephemeral split-KEM keys. As noted by Brendel et
al. [17], however, it seems much more difficult to construct
split-KEM secure under several encapsulation/decapsulation
queries, which we leave again as important future work.

Future work. An interesting line of research would be to
try to build other unforgeable IND-1BatchCCA split-KEMs
that are more efficient (mostly in key and ciphertext size).
One obvious direction would be to work over structured
lattices [43, 49, 59]. Indeed, Ring/Module-LWE with hints
(similar to our Extended-LWE problem) have already been
analysed from a theoretical point of view [14, 51]. We also
believe that our techniques can also be applied in the ring set-
ting. However, for security purposes one needs to take a ring
dimension d to be at least linear in the security parameter λ

which becomes problematic when proving deniability. Indeed,
the leaked hint is informally the product of secret keys of both
parties. Thus, in the ring setting the hint would be at least a
single polynomial, which contains d = O(λ) coefficients. We
predict that this would result with much larger reduction loss
than what we have now. However, the concrete analysis is left
as future work.

Finally, on a more practical side, it would be informative to
benchmark our protocol and others in a real-life scenario or
something close to it, and to implement other ring signatures
schemes to have a more complete comparison. Different pa-
rameter sets to achieve higher level of security could also be
provided and benchmarked.
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