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Abstract
We present VeriSimplePIR, a verifiable version of the state-

of-the-art semi-honest SimplePIR protocol. VeriSimplePIR is
a stateful verifiable PIR scheme guaranteeing that all queries
are consistent with a fixed, well-formed database. It is the
first efficient verifiable PIR scheme to not rely on an honest
digest to ensure security; any digest, even one produced by
a malicious server, is sufficient to commit to some database.
This is due to our extractable verification procedure, which
can extract the entire database from the consistency proof
checked against each response.

Furthermore, VeriSimplePIR ensures this strong security
guarantee without compromising the performance of Sim-
plePIR. The online communication overhead is roughly 1.1-
1.5× SimplePIR, and the online computation time on the
server is essentially the same. We achieve this low overhead
via a novel one-time preprocessing protocol that generates
a reusable proof that can verify any number of subsequent
query-response pairs as long as no malicious behavior is de-
tected. As soon as the verification procedure rejects a re-
sponse from the server, the offline phase must be rerun to
compute a new proof. VeriSimplePIR represents an approach
to maliciously secure cryptography that is highly optimized
for honest parties while maintaining security even in the pres-
ence of malicious adversaries.

1 Introduction

Private information retrieval (PIR) [CKGS98] addresses
the question of how users can fetch a record from a
database without leaking their access patterns to the ma-
chine hosting the database. PIR schemes have found nu-
merous uses in privacy-preserving applications, such as
certificate transparency [LG15], metadata-hiding messag-
ing [AS16, ACLS18], password-breach alerting [TPY+19,
LPA+19, PIB+22], private contact discovery [KRS+19], and
many others.

Despite the ubiquity of PIR, essentially all constructions,
including all practical constructions, do not address the fun-

damental issue of verifiability. In other words, practical PIR
schemes crucially assume that the host server behaves at least
semi-honestly, which is to say that it correctly executes the
protocol with some fixed database. However, in the real world,
a malicious server can deviate arbitrarily from the prescribed
protocol with potentially disastrous consequences. One class
of attacks involves equivocating on the database used to re-
spond to each client. Such attacks allow a malicious server
to alter all entries of the database for a particular client, ef-
fectively choosing the client’s output. Malicious servers can
even compromise the client’s query privacy by performing
a selective-failure attack [KO97, KS06, HKE13], where the
server mauls specific entries of the database in an attempt to
learn the client’s query.

At a higher level, the deployment of any semi-honest PIR
scheme will be plagued by the strong assumptions required
for security. The reality of many distributed systems is that
“honest” behavior cannot always be guaranteed even without
true malicious actors. Deviations from the honest protocol
could be caused by software bugs, network delays, faulty hard-
ware, or any number of emergent failures that occur when
computing at scale. Any system with security that is contin-
gent on such failures never occurring will be hard to justify in
sensitive applications. Nevertheless, true malicious behavior
remains exceedingly rare, and a major optimization challenge
is how to achieve security against malicious adversaries with-
out sacrificing the performance of the best semi-honest pro-
tocols. In this work, we address the challenge of verifiable,
single-server PIR by asking the following question:

How can a client ensure that a server is using a fixed,
well-formed database to respond to all PIR queries while

maintaining the efficiency of semi-honest PIR?

1.1 Prior Work

Semi-honest PIR. The starting point for this work is the semi-
honest PIR protocol of Henzinger et al. [HHCG+23], referred
to as SimplePIR. This protocol represents the state-of-the-art



in semi-honest PIR, where queries can be answered as fast
as the database can be read from memory. SimplePIR is a
stateful PIR protocol, where the server sends an initial, one-
time digest of the database to each client. The clients then use
this digest to improve the efficiency of all subsequent queries.
This work will follow the same approach, having each client
engage in a one-time protocol with the server, and the output
of this protocol is used to process and verify queries in the
online phase.

Verifiable PIR. The verifiable PIR primitive was first in-
troduced in the multi-server setting by Zhang and Safavi-
Naini [ZSN14] and in the single-server setting by Wang, Zhao,
and Huang [WZ18,ZWH21]. In these works, the client issues
a challenge with each query to ensure that the server correctly
computed the response. These challenges resemble plaintext
checksums, essentially requiring that the server evaluate the
PIR computation on several random queries in addition to the
real query. Unlike our work, these verifiable PIR schemes
do not have a database commitment, so they do not defend
against attacks where a malicious server changes the database
in between queries.

The work of Ben-David, Kalia, and Paneth [BDKP22] ex-
tends the notion of verifiable PIR by verifying more complex
predicates over the database in addition to the PIR query.
While this work also does not have a database commitment,
both this work and our work achieve extractability of the
database used to respond to the PIR query. Our work can
be viewed as an intermediate protocol between the original
security notion of verifying that the server is using some well-
formed database and this stronger notion given by Ben-David,
Kalia, and Paneth. Our protocol only verifies the consistency
of the PIR queries (rather than more complex predicates),
but it does achieve the strong security property of database
extractability. In addition, we leverage the stateful properties
of our protocol to prove that all responses are consistent with
a single database, which is a stronger requirement than all
prior works. In other words, once the one-time protocol is
complete, the only responses that will pass verification must
all be consistent with a fixed, well-formed database.

Authenticated PIR. A very recent work of Colombo, Nikitin,
Corrigan-Gibbs, Wu, and Ford [CNCG+23] constructs a
slightly weaker primitive called authenticated PIR (APIR).
The single-server protocols in this work are also based on
the SimplePIR protocol [HHCG+23]. In particular, these
protocols are also stateful, where the server sends an ini-
tial, one-time digest of the database to each client. While
both authenticated PIR and our verifiable PIR protocol use
an initial database digest, authenticated PIR differs from the
notion of verifiable PIR in that it assumes the initial digest
sent by the server is well-formed. This assumption is crucial
in their security proof. The authentication method for the
APIR queries closely resembles a plaintext MAC. This intro-
duces significant overhead since each plaintext bit is mapped

to roughly λ (security parameter) bits in the encoding, and
the defense against selective-failure attacks requires error-
correcting codes implemented on top of the PIR query. In a
somewhat unintuitive result, our work achieves far superior
performance over the APIR protocols by relying on stronger
security. As we discuss below, only responses that are exactly
correct will pass verification with a probability greater than
2−λ. This allows us to retain the efficient database packing
schemes from SimplePIR while also removing the honest di-
gest assumption. We discuss in section 6 how this assumption
can be reintroduced as a performance optimization.

1.2 Our Contributions

We construct and implement VeriSimplePIR, the first efficient,
verifiable PIR scheme, achieving industrial-strength security
without compromising state-of-the-art performance.

Morally, the security property we achieve is the strongest
one could hope for in any (nontrivial) PIR scheme. The initial
database digest is accompanied by a noninteractive proof-of-
knowledge of some fixed database, and then every response
is verified against this proof to ensure that it is consistent
with the committed database. This forces all responses with
respect to a given digest to be consistent with the database that
is fixed before the client performs the first query. In addition,
this initial proof allows us to remove the assumption that the
digest is well-formed, since this is directly verified by the
client at the start of the protocol.

This verifiability comes at almost no performance over-
head as long as the server remains honest. This is due to our
novel preprocessing protocol that the client runs once with
the server when it downloads the initial database digest. The
result of this preprocessing protocol is a single noninteractive
proof that allows the client to verify an arbitrary number of
query-response pairs. The soundness of the verification is
maintained as long as the server does not attempt to learn
information about the private randomness held by the client
that is used for verification. Here, we leverage the very strict
property of this proof system, where only the response cipher-
text that is exactly correct will pass verification. Therefore,
the server cannot deviate from the honest protocol and pass
verification with a non-negligible probability. If the server
is running the honest protocol, then there is no leakage from
the client’s verification accepting (our verification algorithm
has perfect completeness), so the client can safely reuse the
preprocessed proof for any number of queries. In other words,
as long as the server remains honest, there is essentially no
overhead from adding verification to the SimplePIR protocol.

In particular, the concrete communication overhead for
the online phase is between 13% and 50% over SimplePIR,
depending on database sizes and whether or not the honest-
digest assumption is in place. The computation overhead for
VeriSimplePIR is at most 40% if the honest digest assumption
is not in place. More details are given in section 6.



Roadmap. We define a verifiable PIR scheme with a prepro-
cessed proof in section 3, then define our new VLHE scheme
in section 4. The VeriSimplePIR construction is given in
section 5 as it follows immediately from the VLHE construc-
tion. We present the full implementation and compare it to
the semi-honest SimplePIR in section 6. To demonstrate prac-
ticality, in section 7 we discuss applying VeriSimplePIR to
an important industry application: secure password checking.

2 Preliminaries

Notation. For m ∈ N, define [m] := {1, . . . ,m}. For i ∈ [m],
let bi ∈ Zm

q be the vector of all zeros with 1 in the ith position.
For M ∈ Zn×m

q , let M[i] denote the ith row of M and let m j

denote the jth column of M. Similarly, for a vector m ∈ Zn
q,

let m[i] denote the ith element of m. For a finite set S , let

x $←− S denote sampling an element x uniformly at random
from S .

2.1 Short Integer Solution Problem
We review the Short Integer Solution (SIS) problem [Ajt96]
on which the verifiability of our scheme is based.

Definition 2.1 (Short Integer Solution Problem). The state-
ment of short integer solution problem SISn,m,q,β is the follow-
ing: Given a random matrix A← Zn×m

q , find a vector x ∈ Zm

such that Ax = 0 (mod q) and 0 < ||x||∞ ≤ β.

Note that we use `∞-norm in the definition instead of `2-norm.
For the concrete hardness of SISn,m,q,β, we follow [Lyu12]

and use the analysis of [GN08, MR09] to choose parameters.
Based on experiments of [GN08], Micciancio-Regev [MR09]
analyzed that the shortest solution to Ax = 0 (mod q) one
can obtain by lattice reduction algorithms is of length (up
to `2-norm) roughly min(q,22

√
n logq logδ). Here δ is the root

Hermite factor which depends on the output quality of the
lattice reduction algorithm being used. We set parameters to
satisfy the following condition to ensure the concrete hardness
of SISn,m,q,β (up to `∞-norm).

β
√

m < min
(

q ,22
√

n logq logδ

)
(1)

In this paper, we set δ= 1.005 when choosing parameters. We
note that the current best lattice reduction algorithms achieve
around δ = 1.01 and [CN11] conjectured that δ = 1.005 is
totally out of reach with thorough experiments.

2.2 Extractable SIS Commitments
We review a statistically extractable SIS-based commitment
scheme. The scheme is described in fig. 1. It is essen-
tially the amortized zero-knowledge proof of knowledge from

Prover Verifier
A ∈ Zm×n

q A

D ∈ Z`×m,H ∈ Z`×n
q

s.t. H = D ·A H−−−−−→ H

C←−−−−− C←{0,1}λ×`

Z = C ·D ∈ Zλ×m
q

Z−−−−−→
Check that ||Z||∞ ≤ B

and ZA = CH.

Figure 1: Extractable SIS-based Commitments [BBC+18].
The prover provides a commitment H to the verifier of some
short matrix D. The prover then provides Z in response to a
challenge C. Z is a proof of knowledge of some D′ such that
||D′||∞ ≤ 2B and D′A = H.

[BBC+18] but adapted to our setting where zero-knowledge
is not needed.

Lemma 2.1 (Completeness). Let P be an honest prover (in
fig. 1) who follows the protocol with respect to some D such
that ||D||∞ ≤ B′ with ` ·B′ ≤ B. Then, P always passes the
verification.

Proof. ||Z||∞ ≤ ` · ||D||∞ ≤ B and ZA = CDA = CH.

Lemma 2.2 (Extractability [BBC+18, Lemma 3]). Let P be
a prover (in fig. 1) who succeeds with probability ε > 2−λ+2

over his random tape and the challenge choice C←{0,1}λ×`.
Then, there exists a knowledge extractor E which makes
O(` log`/ε) calls to P to extract a witness D ∈ Z`×m such
that DA = H and ||D||∞ ≤ 2B with overwhelming probability.

We note that this extractability does not rely on the hard-
ness of SIS; a matrix D such that DA = H can be extracted
from any prover that completes the protocol in fig. 1 with
non-negligible probability. The hardness of SIS is used to
guarantee the computational uniqueness of this matrix D
(lemma 2.3). We refer the reader to [BBC+18, Lemma 3] for
the full proof of lemma 2.2. Instead, we give a brief descrip-
tion of an extractor, since it will be relevant to the following
lemmas.

Extractor for the SIS Commitment. We focus on extracting
the i-th row of some D such that D[i] ·A = H[i] and ||D||∞ ≤
2B. The idea of the extractor is to obtain valid responses Z
and Z′ to two challenges C and C′ such that ∀ j 6= i, c j = c′j
and ci 6= c′i. Since the responses are valid, we have the sum
of the following outer products:

ZA = CH =
`

∑
j=1

c j ·H[ j] and Z′A = C′H =
`

∑
j=1

c′j ·H[ j].

Taking the difference gives (Z− Z′)A = ∑
`
j=1(c j − c′j) ·

H[ j] = (ci− c′i) ·H[i]. Consider an index k ∈ [λ] such that



ci[k] 6= c′i[k] and assume that ci[k]− c′i[k] = 1 without loss of
generality. Then, if we consider the k-th row in the previous
equality, we have (Z[k]−Z′[k])A = H[i]. Since Z and Z′
passed verification, ||Z[k]−Z′[k]||∞ ≤ 2B holds. Thus, we
can output (Z[k]−Z′[k]) as the i-th row of D.

Binding Commitments from SIS Hardness. The hardness
of SIS combined with the statistical extractability makes the
protocol in fig. 1 a computationally binding commitment.

Lemma 2.3 (SIS Commitment Binding). Let P be a compu-
tationally bounded prover in fig. 1. Consider the extractor
E guaranteed by lemma 2.2 running on P . Either (i) the
extractor E outputs a unique matrix D with all but negligible
probability, or (ii) the prover P can be used to solve SISn,m,q,β
for β = 4B.

Proof. Suppose condition (i) does not hold. Then, we can
run E polynomially many times to obtain two matrices
D 6= D′ such that ||D||∞, ||D′||∞ ≤ 2B and H = DA = D′A
by lemma 2.2. This gives a solution for SISn,m,q,β for β = 4B
of the form (D−D′)A = 0, since D−D′ 6= 0.

Let B′ be the honest bound on the matrix D; B′ ≥ ||D||∞.
Then, the correctness bound on ||Z||∞ is B ≥ ` · B′. The
extractability of the commitment scheme in fig. 1 guarantees
that we can extract an SIS solution of size at most 4B (by
taking the difference of extracted databases with size at least
2B), which means that we need SIS to be hard for 4B in order
to ensure computational binding. Setting β = 4B = 4`B′, we
require that 4`B′

√
m≤min

(
q ,22

√
n logq logδ

)
.

A Useful Statistical Lemma. We prove a lemma on the prob-

ability of a vector being in the nullspace of C $←− {0,1}λ×`.

Lemma 2.4 (Guessing an Element in the Nullspace). Let
`,λ ∈ N and p ≥ 2. For all x ∈ Z`

p such that x 6= 0, the
following holds:

Pr
C

$←−{0,1}λ×`
[ C ·x = 0 ]≤ 2−λ.

Proof. Since x 6= 0, there exists some i ∈ [`] such that x[i] 6=
0. Consider two vectors c0,c1 ∈ {0,1}` which are identical
except the i-th bits: c0[i] = 0 and c1[i] = 1. Then, 〈c0,x〉
and 〈c1,x〉 cannot be simultaneously zero, since 〈c1,x〉 −
〈c0,x〉= x[i] 6= 0. Thus, Pr[ 〈c,x〉= 0 ]≤ 1/2 holds, where

the probability is over c $←− {0,1}`. Since λ rows of C are
sampled independently from {0,1}`, the lemma follows.

Fiat-Shamir Transform. Below, we will use that fact that
fig. 1 is a public-coin proof of knowledge with negligible
soundness error, which allows us to apply the Fiat-Shamir
transform [FS87] to generically make this protocol non-
interactive in the random oracle model [PS96]. Concretely,
the prover generates the challenge C← Hash(A,H) and then
computes the response Z← CD, where the hash function
Hash is modeled as a random oracle.

2.3 Learning with Errors

The security of our PIR scheme is based on the decisional
Learning with Errors (LWE) problem [Reg09]. Consider
a uniformly random matrix A ∈ Zm×n

q , a short error vector
e ← χm such that e ∈ Zm

q , and uniformly random vectors
s ∈ Zn

q. Note that χ is an error distribution over Zq, typically
a zero-centered discrete Gaussian modulo q. The LWE prob-
lem is to distinguish the distribution of (A,As+ e) from the
distribution of (A,r), where r is uniformly sampled in Zm

q .
More formally, we say that the (n,q,χ)-LWE problem with m
samples is (T,ε)-hard if no adversary running in time T can
distinguish these distributions with probability better than ε.

Linearly Homomorphic Encryption. We briefly define the
linearly homomorphic encryption (LHE) scheme from LWE
given by Regev [Reg09]. We use the same "hoisted" variant
as in Henzinger et al. [HHCG+23], where the matrix A is
reused across multiple ciphertexts but the secret s is sampled
independently for each ciphertext, allowing us to preprocess
data dependent on the matrix A.

The plaintext space of the LHE scheme is vectors over Zp.
Let µ ∈ Zm

p be a plaintext. To encrypt µ, sample a uniform
matrix A ∈ Zm×n

q , a uniform secret key s← Zn
q, and an error

vector e← χm. The ciphertext is (A,As+∆µ+e)∈Zm×(n+1)
q ,

where ∆ := bq/pc. To decrypt a ciphertext (A,u)∈Zm×(n+1)
q ,

compute As and output b(u−As)/∆c ∈ Zm
p . The correctness

of this decryption holds as long as ∆/2 > ||e||∞.
To see why this scheme is linearly homomorphic, consider

a linear transformation D ∈ Z`×m. We can homomorphically
compute D over an encryption of a vector µ. Consider the
ciphertext ct = (A,As+∆µ+ e). Observe that the product
D · ct= (DA,DAs+∆Dµ+De) ∈ Z`×(n+1)

q is a well-formed
encryption of Dµ. Decryption correctness holds as long as
∆/2 > ||De||∞.

LHE Correctness. We now discuss the constraints on the
LWE parameters to ensure correct decryption with good prob-
ability after a homomorphic linear transformation. We follow
the analysis of Henzinger et al. (see e.g. [HHCG+23, Theo-
rem C.1]). We will make use of the following helpful lemma.
Here, Ds denotes the discrete Gaussian distribution over Z
with variance s2/2π.

Lemma 2.5 ( [LP11, Lemma 2.2], [Ban95, Lemma 2.4]). For
any real s > 0 and T > 0, and any x ∈ Rn, we have

Pr
e←Dm

s

[
|〈x,e〉| ≥ T · s||x||2

]
< 2exp(−π ·T 2).

For some D ∈ Z`×m, consider the decryption of the cipher-
text (A,As+∆µ+De) ∈ Zm×(n+1)

q , where e is a fresh sample
from Dm

s . As noted above, we need ∆/2 > ||De||∞ to decryp-
tion correctly. Regarding ||De||∞, we apply lemma 2.5 to
each row of D. Note that we can bound the `2 norm of any
row of D by

√
m · ||D||∞. Then, setting T = ∆/(s

√
m · ||D||∞),



we have that Pr[||De||∞ ≥ ∆/2]< δ, where

δ = 2exp

(
−π

(
∆

s
√

m · ||D||∞

)2
)
.

Equivalently, we have decryption failure probability of at
most δ if

∆≥ s
√

m · ||D||∞ ·
√

ln(2/δ)

π
= σ · ||D||∞

√
2m ln(2/δ).

Here, σ denotes the standard deviation of Ds, i.e. σ2 = s2/2π.
In summary, this gives us a lower bound on q as

q≥ p ·σ · ||D||∞
√

2m ln(2/δ). (2)

This saves us roughly a
√

m factor over the naïve worst-case
analysis.

2.4 Semi-honest PIR
We begin by giving the API for PIR with a preprocessed
database. These core algorithms will be identical to those
used in the preprocessed verifiable PIR below. The database
elements are treated as elements of Zt , where t is some integer
modulus. The parameters for this primitive are a modulus t, a
database length N, and a security parameter λ. The algorithms
are described below, and the usage of the API is given in fig. 2

• pp← Setup(1λ,1N , t)
Outputs public parameters pp.

• d← Digest(pp,D ∈ ZN
t )

Takes in a database D of size N of elements of Zt and
outputs a short digest d (i.e. |d| � |D|).

• q,st← Query(pp, i ∈ [N])
Takes in an index i ∈ [N] and produces a query q with a
query state st.

• a← Answer(pp,D,q)
Takes in a database D and a query q and produces an
answer a.

• r← Recover(pp,st,a,d)
Takes in a query state st generated from an index i ∈ [N],
an answer a, and a digest d of D. Outputs a database
element r. If inputs are honestly generated, the output r
should be D[i]. This is formalized below (definition 2.2).

We now define basic correctness and security requirments
for the semi-honest PIR primitive.

Definition 2.2 (Correctness). We say that a PIR scheme
has correctness error δ if, for security parameter λ, for all
databases D ∈ ZN

t and for all indices i ∈ [N],

Pr

Recover(st,a,d)= D[i]

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ,1N , t)

d← Digest(D)

q,st← Query(i)

a← Answer(D,q)

≥ 1−δ.

Server Client
pp← Setup(1λ,1N , t)

One-Time Setup
Database D ∈ ZN

t
d← Digest(pp,D) d−−−−−→

Query
Index i ∈ [N]

q,st← Query(pp, i)q←−−−−−
a← Answer(pp,D,q) a−−−−−→

Output r← Recover(pp,st,a,d)

Figure 2: Usage of the Semi-honest PIR API.

The public parameters pp are implicit inputs in all algorithms
following Setup.

Definition 2.3 (Query Hiding). We say that a PIR scheme is
(T,ε)-Query Hiding if, for all adversaries A running in time
at most T , on database size N and for all i, j ∈ [N],∣∣∣Pr[A(pp,q) = 1 : (q,st)← Query(pp, i)]

−Pr[A(pp,q) = 1 : (q,st)← Query(pp, j)]
∣∣∣≤ ε

Remark 2.1 (Selective Failures & Query Hiding). We note
that definition 2.3 is insufficient when considering malicious
adversaries, since selective failure attacks could compromise
query hiding even when the query message alone reveals
nothing about the client’s desired index.

2.4.1 SimplePIR

We give the semi-honest PIR protocol, denoted SimplePIR,
from [HHCG+23] below. The API usage is given in fig. 2.
Parsing the public parameters pp as A and the digest d as H
is implicit. Note that the database here is represented as a
matrix D ∈ Z`×m

p . We omit the details of encoding vectors in
ZN

t to matrices over Zp.

• pp← Setup(1λ,1N , t)
Output a uniform A ∈ Zm×n

q as pp.

• d← Digest(pp,D)
Compute H← DA ∈ Z`×n

q . Output d←H.

• q,st← Query(pp, i ∈ [N])
Write i as (ir, ic) ∈ [`]× [m]. Sample a uniform secret
s ← Zn

q and an error vector e ← χm. Compute u ←
As+ e+ bq/pcbic . Output (q,st)← (u,(s, i)).

• a← Answer(pp,D,q)
Parse q as u ∈ Zm

q . Output v← Du as a.



• r← Recover(pp,st,a,d)
Parse (s, i)← st and v← a. Write i as (ir, ic) ∈ [`]×
[m]. Compute r̂← v[ir]−〈H[ir],s〉 ∈ Zq. Output r←
bp · r̂/qe ∈ Zp.

The constraints on the LWE parameters to ensure correct-
ness of the protocol are given in eq. (2) in section 2.3.

3 Verifiable PIR Definitions

In this section, we define the algorithms that comprise the pre-
processed verifiable PIR primitive as well as the correctness
and security definitions that this primitive must satisfy.

As in the semi-honest definition, the database elements are
treated as elements of Zt , where t is some integer modulus.
The parameters for this primitive are a modulus t, a database
length N, and a security parameter λ. The API consists of
the following algorithms in addition to the algorithms in the
semi-honest PIR API (see section 2.4). The usage of this API
is described in fig. 3.

• Accept/Reject← DigVer(pp,d)
Takes in the public parameters and a digest and outputs
Accept if the digest is well-formed with respect to some
database. Outputs Reject otherwise.

• qπ,stπ← PrQry(pp)
This is the proof query algorithm, where the client gener-
ates a request used by the server to precompute the proof
for the query phase. The output is a proof query qπ and
a proof query state stπ.

• aπ← PrAns(pp,D,d,qπ)
This is the proof answer algorithm that is run by the
server to respond to a proof query. The output is returned
to the client.

• π/⊥← PrRec(pp,d,qπ,stπ,aπ)
This is the final algorithm in the proof preprocessing
phase, which is run by the client to verify the response
from the server and output the proof. If the response
does not verify, the algorithm outputs ⊥. Otherwise, it
outputs the proof π.

• Accept/Reject← Verify(pp,d,q,a,π)
Takes in the digest d, a query q, an answer a, and a
proof π. Outputs Accept if the answer a was correctly
computed over the query q and the digest d.

At a high level, the goal of this API is to allow the client to
query the server for a single proof that is then reused across
many PIR queries. This proof can be safely reused as long as
the verification does not fail. As soon as the verification fails,
the client must rerun the proof preprocessing phase in order
to maintain the integrity of the verification.

Server Clientpp← Setup(1λ)

One-Time Setup
Database D ∈ ZN

t
d← Digest(pp,D) d−−−−−→ DigVer(pp,d)

Abort if DigVer outputs Reject.

Proof Preprocessing

qπ,stπ← PrQry(pp)qπ←−−−−−
aπ← PrAns(pp,D,d,qπ)

aπ−−−−−→
π← PrRec(pp,qπ,stπ,aπ)

If π 6=⊥, proceed to the query phase.

Query
Index i ∈ [N]

q,st← Query(pp, i)q←−−−−−
a← Answer(pp,D,q) a−−−−−→ Verify(pp,d,q,a,π)

If Verify outputs Reject, set
π←⊥ and rerun PrQry.
If Verify outputs Accept, out-
put r← Recover(pp,st,a,d).

Figure 3: Usage of the Preprocessed Verifiable PIR API.

Security Definitions. We give an intuition for the security
definitions of the vPIR primitive here. The full definitions are
in appendix A.

• Completeness. Our verification procedures will have
perfect completeness; messages produced by honest
servers will always verify. This is in addition to the
standard PIR correctness given in definition 2.2.

• Digest Binding. We require that the digest be a compu-
tationally binding commitment to the database D. This
will allow us to define honest behavior with respect to
this fixed database as long as the initial DigVer check
passes.

• Soundness. The soundness requirement for the verifica-
tion procedure is very strict. Not only must the returned
answer a give the correct output upon running Recover,
but a must be the unique value defined by the query q
and the fixed database D. This uniqueness requirement
is extended to the proof π. The only value π that will
pass verification in the preprocessing phase is the exact
value defined by pp, qπ, stπ, and the fixed database D.

Reusable Proofs from Strict Soundness. The strict sound-
ness requirements achieved by this primitive immediately
imply that it is safe to reuse the proof. If the only answers that



the server can return are exactly the honest values, then there
is no leakage on the proof from client passing verification,
since due to the perfect completeness the honest messages
will always pass verification. Furthermore, since the proof
π does not depend on the query or answer, the safety of us-
ing this proof once extends to reusing this proof many times,
since the server has no additional information about π once a
query phase is complete.

4 Verifiable Linearly Homomorphic Encryp-
tion

In this section, we construct our verifiable linearly homomor-
phic encryption scheme, denoted VLHE. This scheme begins
with the Regev LHE described in section 2.3. In this scheme,
a ciphertext that encrypts a vector µ ∈ Zm

p has the structure

(A,As+ bq/pcµ+ e) = (A,u) ∈ Zm×n
q ×Zm

q .

This scheme supports the homomorphic evaluation of linear
functions D ∈ Z`×m that map Zm

p to Z`
p. Note that we allow D

to define linear maps between larger rings, e.g., Zm
q → Z`

q for
q > p. The ciphertext that encrypts the output of the function
D has the form

(DA,DAs+ bq/pcDµ+De) = (H,v) ∈ Z`×n
q ×Z`

q,

where we defined v := Du ∈ Z`
q and H := DA ∈ Z`×n

q . At a
high level, we use the fact that the matrix H is an extractable
commitment to the matrix D. Furthermore, we can use the
extractable proof described in section 2.2 to efficiently prove
knowledge of the function D. Overall, the basic equation that
we will use throughout this section is

D
[
A u

]
=
[
H v

]
, (3)

which also has the form of an extractable SIS commitment
described in section 2.2.

4.1 Verifiable LHE Construction
We now give the API for the (secret-key) VLHE primi-
tive along with the construction based on the Regev LHE
scheme [Reg09].

Construction 4.1 (Verifiable Linearly Homomorphic Encryp-
tion). The scheme is parametrized by a computational secu-
rity parameter n, a statistical security parameter λ, a plaintext
modulus p, a ciphertext modulus q, and an error distribution
χ. The final parameter is a hash function Hash that is mod-
eled as a random oracle. This hash function is used to apply
the Fiat-Shamir transform [FS87] to the public-coin proof
described in section 2.2 on the commitment defined in eq. (3).

• pp← VLHE.Setup(1n,1m,q)
Samples a uniformly random matrix A ← Zm×n

q and
outputs pp← A as the public parameters.

• H,Z← VLHE.Commit(A,D ∈ Z`×m
p )

Takes in a linear function D and computes H← DA ∈
Z`×n

q as the commitment to D. Compute C ∈ {0,1}λ×`

as C = Hash(A,H) and set Z← C ·D. Output H,Z.

• Accept/Reject← VLHE.VerCom(A,H,Z)
This verifies the initial commitment to the linear function.
Check ||Z||∞ ≤ ` · p and output Reject if this check fails.
Compute C←Hash(A,H) exactly as in Commit. Check
that ZA = CH. Output Reject if this check fails and
Accept if this check passes.

• (u,s)← VLHE.Encrypt(A,µ ∈ Zm
p )

Sample a uniform secret s← Zn
q and an error vector

e← χm. For ∆ := bq/pc, compute the ciphertext u :=
As+∆µ+e∈Zm

q . Note that this is identical to the Regev
LHE encryption. Output (u,s).

• v← VLHE.Eval(D,u)
This is homomorphic evaluation; output v← Du.

• ν← VLHE.Decrypt(H ∈ Z`×n
q ,s ∈ Zn

q,v ∈ Z`
q)

We define this operation for the outputs of homomorphic
evaluation. This operation is identical to Regev decryp-
tion, where the output is ν← b(v−H · s)/∆c ∈ Z`

p.

• Z← VLHE.Prove(A,H,u,v,D)
Compute C ∈ {0,1}λ×` as C← Hash(A,H,u,v). Out-
put Z← CD.

• Accept/Reject← VLHE.Verify(A,H,u,v,Z)
Check ||Z||∞ ≤ ` · p. Output Reject if this check fails.
Compute C ← Hash(A,H,u,v) exactly as in Prove.
Check that Z

[
A u

]
= C

[
H v

]
. Output Reject if this

check fails and Accept if this check passes.

Observe that Verify performs the exact checks that corre-
spond to verifying an opening of the commitment defined in
eq. (3).

4.1.1 Verifiable LHE Correctness & Security

We first prove the security of the verification, then show how
to obtain correctness for all (even malicious) functions that
pass verification.

Security. Semantic security follows directly from the security
of the Regev encryption scheme and the hardness of LWE.
Below, we give the constraint parameters that guarantees
correct decryption as long as VLHE verification passes.

We can now focus on the security of the proof verification.
We obtain a very strong security guarantee, which is that only
one ciphertext (the correct ciphertext) will pass verification.
We focus our security proofs on the interactive variant of the
verification given in fig. 5, and the security of construction 4.1
follows by applying the Fiat-Shamir heuristic [FS87].



Server Client
A← Setup(1n,1m,q)A ∈ Zm×n

q A

Function Commitment

D ∈ Z`×m
p

H,Z← Commit(A,D)
H,Z−−−−−→

Accept/Reject← VerCom(A,H,Z)
Abort if VerCom outputs Reject.

Homomorphic Evaluation
µ ∈ Zm

p .
u,s← Encrypt(A,µ)u←−−−−−v← Eval(D,u)

Z← Prove(A,H,u,v,D)
v,Z−−−−−→

Accept/Reject← Verify(A,H,u,v,Z)
If Verify outputs Accept,

output ν← Decrypt(H,s,v).

Figure 4: Usage of the VLHE API in construction 4.1.

Server Client
A ∈ Zm×n

q A

Function Commitment
D ∈ Z`×m

p

H← DA ∈ Z`×n
q

H−−−−−→ H
C←−−−−− C $←− {0,1}λ×`

Z← CD ∈ Zλ×m Z−−−−−→ Check that
||Z||∞ ≤ ` · p and

Z ·A = C ·H.

Homomorphic Evaluation
µ ∈ Zm

p .
u,s← Encrypt(A,µ)

u←−−−−−
v← Du ∈ Z`

q
v−−−−−→
C←−−−−− C $←− {0,1}λ×`

Z← CD ∈ Zλ×m Z−−−−−→ Check that
||Z||∞ ≤ ` · p and

Z ·
[
A u

]
= C ·

[
H v

]
.

If all checks pass, output ν← Decrypt(H,s,v).

Figure 5: Variant of the VLHE construction in that uses inter-
active commitment openings. Construction 4.1 can be derived
by applying the Fiat-Shamir heuristic to this protocol.

Lemma 4.1 (Verification Uniqueness). Let P be a computa-
tionally bounded server (prover) in fig. 5, and let H be the
matrix sent by P in the function commitment phase. Consider
the extractor E from lemma 2.2 running on P in the func-
tion commitment phase. Let D ∈ Z`×m be the unique matrix
that can be extracted from E , under hardness assumption of
SISn,m,q,β for β = 4`p (lemma 2.3). Consider a ciphertext
u as in fig. 5 and a response ṽ. Assuming the hardness of
SISn,m,q,β for β = 4`p, ṽ = Du must hold.

Proof. Assume for contradiction that the response cipher-
text ṽ 6= Du, but the server is able to produce some Z̃ such
that ||Z̃||∞ ≤ `p and Z̃ ·

[
A u

]
= C ·

[
H ṽ

]
. We can in-

voke lemma 2.2 on the commitment defined by
[
A u

]
and

[
H ṽ

]
to extract some database D′ such that ||D′||∞ ≤

2`p and D′
[
A u

]
=
[
H ṽ

]
. If D′ 6= D, then we have

(D′−D)A = 0, where D′−D 6= 0. This is an SIS solution
for A of magnitude ||D′−D||∞ ≤ 4`p. This contradicts the
hardness of SISn,m,q,β for β = 4`p, so we must have D′ = D.
Therefore, ṽ = Du.

Correctness. In the original Regev scheme, correctness was
only guaranteed for a function D ∈ Z`×m

p . The correctness
requirement for this scheme must account for the slack be-
tween the honest entry-size p and the bound guaranteed by
extractability, which is ||D||∞ ≤ 2`p (recall lemma 2.2). By
slightly increasing the ciphertext modulus, we can account
for any matrix D ∈ Z`×m

2`p , which allows us to guarantee that
if verification passes then decryption will only fail with negli-
gible probability. We can use this bound in eq. (2) to obtain
the following correctness requirement for the VLHE scheme:

q≥ σ ·2`p2
√

2m ln(2/δ). (4)

4.1.2 Batch Verification of Output Ciphertexts

We briefly note that the proofs in construction 4.1 can effi-
ciently verify a batch of input-output pairs. More formally, we
batch-verify t input-output ciphertext pairs (ui,vi) ∈ Zm

q ×Z`
q

by first defining the matrices

U :=
[
u1 · · · ut

]
∈ Zm×t

q

V :=
[
v1 · · · vt

]
∈ Z`×t

q .

We then observe that the server’s computation across all t pairs
can be viewed as an SIS commitment D ·

[
A U

]
=
[
H V

]
which can be verified using the relation

Z ·
[
A U

]
= C ·

[
H V

]
. (5)

Observe that the matrix Z in eq. (5) is identical to the Z
matrix in eq. (3). In addition, the C matrices in both equations
are also the identically distributed, which results in identical
norm bound on the Z matrices. In fact, the only piece of the
BatchProve and BatchVerify algorithms that grow with t is
the computation of the hash function Hash on the t tuples
and, of course, the matrix multiplication itself, which now



has n+ t columns rather than n+1 columns. The algorithms
are give formally below.

• Z← VLHE.BatchProve(A,H,U,V,D)
Compute C← Hash(A,H,U,V) where C ∈ {0,1}λ×`.
Compute Z← CD ∈ Zλ×m and output Z.

• Accept/Reject← VLHE.BatchVerify(A,H,U,V,Z)
Compute C ← Hash(A,H,U,V) exactly as in
BatchProve. Check that ||Z||∞ ≤ ` · p and that
Z ·
[
A U

]
= C ·

[
H V

]
. If all the checks pass, output

Accept. Otherwise, output Reject.

The security of these functions follows an identical argument
to the proof of lemma 4.1.

4.2 Reusable VLHE Proof
We present a useful protocol to compute a reusable VLHE
proof. When a fixed linear function is applied to many en-
crypted vectors, this reusable proof a prevents repeatedly com-
puting and sending a fresh Z for every response ciphertext.
Looking ahead, our final VeriSimplePIR protocol leverages
this proof preprocessing protocol to allow verifiability at no
online cost in SimplePIR.

Our proof preprocessing protocol combines two observa-
tions. The first is that the proof Z = CD does not directly
depend on any other aspect of the protocol beyond the matrix
D. This allows us to precompute this proof before the input
ciphertext is given. A caveat here is that the proof Z must be
computed while keeping the client’s challenge C secret from
the server. Otherwise, the server might use its knowledge of
the challenge for malicious actions in homomorphic evalua-
tion. Meanwhile, if the proof is computed while keeping the
challenge secret, we can even reuse the preprocessed proof
across several queries as long as C is not leaked.

The second observation is that the proof Z = CD is, in fact,
computed as a linear function evaluation defined by D. That
is, we can use construction 4.1 on the matrix DT where the
ciphertexts encrypt the rows of the challenge C. This allows
the server to verifiably compute DT CT = ZT for the client
while not knowing the challenge C.

The full proof preprocessing protocol, along with the cor-
responding verifiable homomorphic evaluation, is given in
fig. 6. In the construction, two commitments, H1 and H2,
are used. The first commitment H1 plays the same role as
the commitment H in the original VLHE construction (sec-
tion 4.1, fig. 5). The second commitment H2 is introduced
to commit to DT . This commitment is used when checking
whether the server has run the proof preprocessing phase hon-
estly. This complication occurs since the direction of the D
multiplication differs when preprocessing proofs and homo-
morphically evaluating answers. We also replace Verify with
a simpler PreVerify, which verifies with preprocessed proof
rather than fresh proofs.

• Accept/Reject← VLHE.PreVerify(u,v,C,Z)
Check that Zu = Cv. If the check passes, output Accept.
Otherwise, output Reject.

Correctness. In order to accommodate the encryption of
a row of Z, we will need an Encrypt algorithm with the
plaintext space Zp` and the evaluation of the linear func-
tion DT ∈ Zm×`

p . Let Encryptp` denote this algorithm and
let Decryptp` denote the corresponding decryption algorithm.
We have an updated correctness requirement from eq. (4):

q≥ σ ·2`2 p2
√

2` ln(2/δ). (6)

to account for this increase in the plaintext modulus increas-
ing from p to `p in the preprocessing encryptions and the
length ` of the rows of DT . Note that the encryptions in the
homomorphic evaluation phase still use p as the plaintext
modulus.

The correctness of the proof preprocessing protocol follows
directly from the correctness of the homomorphic computa-
tion of Z = CD = (DT CT )T . Observe that the homomorphic
computation produces ciphertexts that encrypt each row of Z.

These rows are computed as Z[i] =
(

DT · (C[i])T
)T

for the

sampled C, where C[i] is the ith row of C.

Security. We give an intuition for the security of this pre-
processed protocol. The full security proofs are given in
appendix B.

The security of the proof processing protocol in fig. 6
follows from the security of our VLHE scheme (construc-
tion 4.1). In particular, the server does not learn any informa-
tion on the challenge C during the protocol since the semantic
security of the encryption hides C. For soundness, we argue
that Z = CD must hold if the checks pass (in particular, if
the check ZA1 = CH1 passes). At a high level, this follows
from the soundness of our VLHE (lemma 4.1) together with
lemma 2.4: By lemma 4.1, the server has committed to some
fixed linear function D′ with H2, and it is guaranteed that
Z = C(D′)T . Therefore, we have ZA1 = C(D′)T A1 = CH1,
so C

(
(D′)T A1−H1

)
= 0 holds. By lemma 2.4, this occurs

with negligible probability if (D′)T A1−H1 6= 0, so we have
that (D′)T A1 = H1 with overwhelming probability. Then, by
SIS hardness, we must have that (D′)T = D and thus Z = CD.

The security of the simplified homomorphic evaluation
phase in fig. 6 is straightforward from the security of our
VLHE scheme (construction 4.1). The only difference is that
we can skip a fraction of the checks as it is already done in
the proof preprocessing phase. We note that, however, when
verification fails, leakage on C may occur. Then, the client
must discard C and the corresponding Z and rerun the proof
preprocessing phase.



Server Client
A1 ∈ Zm×n

q , A2 ∈ Z`×n
q A1, A2

Function Commitment

D ∈ Z`×m
p

H1,Z1← Commit(A1,D)
H2,Z2← Commit(A2,DT )

{Hi,Zi}i=1,2−−−−−→
Accept/Reject← VerCom(Ai,Hi,Zi)

Abort if VerCom outputs Reject for i ∈ {1,2}.

Proof Preprocessing

Sample C $←− {0,1}λ×`.
For i ∈ [λ], compute

ui,si← Encryptp`(A2,C[i]).
U←

[
u1 · · · uλ

]
.

U←−−−−−V← DT U
Zπ← BatchProve(A2,H2,U,V,DT )

V,Zπ−−−−−→
BatchVerify(A2,H2,U,V,Zπ)

If BatchVerify outputs Reject, abort.
Otherwise, for Z ∈ Zλ×m

p` set
Z[i]← Decryptp`(H2,si,vi)

Check that Z ·A1 = C ·H1.
Abort if this check fails.

Homomorphic Evaluation

C, Z from the proof
preprocessing phase.

µ ∈ Zm
p .

u,s← Encrypt(A,µ)
u←−−−−−

v← Du ∈ Z`
q v−−−−−→

PreVerify(u,v,C,Z)
where C and Z are from
the proof preprocessing.

If PreVerify outputs Accept,
output ν← Decrypt(H1,s,v).

Otherwise, set C,Z←⊥ and rerun
the proof preprocessing phase.

Figure 6: Protocol for computing reusable VLHE proofs. The
proof is safe to reuse in many homomorphic evaluations as
long as verification PreVerify passes. Once verification fails,
a new proof must be computed.

5 Verifiable SimplePIR Construction

In this section, we present our full VeriSimplePIR protocol.
The protocol follows directly from the VLHE construction
from section 4. Recall from section 2.4.1 that we can view a
database as a matrix D ∈ Z`×m

p and queries as one-hot vectors
bi. The response to this query is di = D ·bi, the ith column of
D. The scheme is instantiated using the preprocessed VLHE
scheme described in fig. 6. Observe the parallel structure of
the preprocessed VLHE construction in fig. 6 and the prepro-
cessed verifiable PIR API in fig. 3. We give the construction
in construction 5.1. Note that the algorithms Query, Answer,
and Recover are identical to the SimplePIR definitions in
section 2.4.1.

Construction 5.1 (Preprocessed Verifiable PIR). The input
parameters to this scheme are a computational security pa-
rameter n, a statistical security parameter λ, a plaintext mod-
ulus t, and a database size N. Let p, `,m ∈ N be such that a
database in ZN

t can be packed into an element of Z`×m
p . For

q that satisfies eq. (6), assume the hardness of SISn,m,q,β1 for
β1 = 4`p and SISn,`,q,β2 for β2 = 4mp. Furthermore, assume
the hardness of (n, `,q)-LWE and (n,m,q)-LWE.

Let VLHE denote construction 4.1 instantiated with plain-
text modulus p and ciphertext modulus q.

• pp← Setup(1λ,1N , t)
Output

A1← VLHE.Setup(1n,1m,q)

A2← VLHE.Setup(1n,1`,q)

as pp.

• d← Digest(pp,D)
Compute

H1,Z1← VLHE.Commit(A1,D)

H2,Z2← VLHE.Commit(A2,DT ).

Output d← (H1,Z1,H2,Z2).

• Accept/Reject← DigVer(pp,d)
Run VLHE.VerCom(Ai,Hi,Zi) for i ∈ {1,2}. Output
Reject if either VerCom iterations outputs Reject. Oth-
erwise, output Accept.

• qπ,stπ← PrQry(pp)

Sample C $←− {0,1}λ×`. For i ∈ [λ], compute ui,si ←
VLHE.Encryptp`(A2,C[i]). Set U ←

[
u1 · · · uλ

]
.

Output qπ← U and stπ← (C,{si}i∈λ).

• aπ← PrAns(pp,D,d,qπ)
Set V← DT U and compute

Zπ← VLHE.BatchProve(A2,H2,U,V,DT ).

Output aπ← V,Zπ.



• π/⊥← PrRec(pp,d,qπ,stπ,aπ)
Run VLHE.BatchVerify(A2,H2,U,V,Zπ) and output⊥
if BatchVerify outputs Reject. Otherwise, for Z ∈ Zλ×m

p`
set Z[i]← VLHE.Decryptp`(H2,si,vi). Check that Z ·
A1 = C ·H1. If this check fails, output ⊥. Otherwise,
output π← Z.

• q,st← Query(pp, i ∈ [N])
Write i as (ir, ic) ∈ [`]× [m]. Compute

u,s← VLHE.Encrypt(A1,bic).

Output (q,st)← (u,(s, i)).

• a← Answer(pp,D,q)
Output v← Du as a.

• r← Recover(pp,st,a,d)
Write i as (ir, ic) ∈ [`]× [m]. Compute

ν← VLHE.Decrypt(H1,s,v)

for ν ∈ Z`
p. Output r← ν[ir].

• Accept/Reject← Verify(pp,d,q,a,π)
Output the result of VLHE.PreVerify(A1,H1,u,v,C,Z).

The security of this scheme follows immediately from the
security of the preprocessed VLHE scheme presented in sec-
tion 4. The full proofs are given in appendix C.

6 Implementation & Performance Analysis

In this section, we present our implementation of the pre-
processed VeriSimplePIR protocol1. We give performance
benchmarks and compare against the semi-honest SimplePIR
protocol.

Simple Optimizations. We enumerate some simple optimiza-
tions that we incorporate into our implementation. These
optimizations are designed to maximize the performance for
the honest server, who will essentially never have to run the
proof preprocessing more than once for each client.

1. Optimizing Client Storage. The client does not need
to store the second database commitment H2 once the
preprocessing phase is complete. As soon as the client
holds valid C and Z matrices, it discards all other mes-
sages from the commitment and preprocessing phases.
The persistent client storage for the online phase is only
the matrices H1, C, and Z. We include the download of
H2 and the corresponding Z2 in the communication of
the proof preprocessing as an initial message before the
encrypted C is sent to the server.

2. Minimizing Ciphertext Overhead. Observe that the
correctness constraint on the VLHE ciphertext modulus

1https://github.com/leodec/VeriSimplePIR

for the preprocessing operations (given in eq. (6)) is
more strict than the constraint on this modulus in the
online phase (given in eq. (4)). Observe that if a modulus
q that satisfies the online constraint in eq. (4) then q′ ≥
κ ·q≥

√
`3/m will satisfy the preprocessing constraint

in eq. (6). We set the online modulus q to be a machine
word size (either 232 or 264), then run the preprocessing
over the larger modulus q′ ≥ κ ·q. This introduces only
a slight overhead to the preprocessing phase, since if κ is
odd then q and κ are coprime. Therefore, Zq′ = Zq⊗Zκ,
so almost no multiprecision arithmetic is required to
implement the VLHE operations over Zq′ . This allows
us to maximize the usage of the machine-word modulus
in the online phase.

3. Optional Assumption of Honest Digest. Recall that
the VLHE correctness must account for a database D
that is as large as the extractability bound of ||D||∞ ≤
2`p, which is larger than the honest database bound
of ||D||∞ ≤ p. Since the database digest is the same
across all clients, additional checks on this digest could
be implemented fairly easily. In particular, if the digest
is signed by a sufficient number of trusted parties, a
client can be confident that the digest was generated
with a database D such that ||D||∞ ≤ p. Note that the SIS
assumption still fixes this database (since p ≤ 2`p) so
even if the server is corrupted at a later time the database
must still be this fixed, honest value. This allows us to
further relax the correctness requirement on the VLHE
ciphertext modulus q (see eq. (2)).

Below, we will benchmark optimal parameters with and
without the assumption of an honest digest.

Experimental Setup. Our implementation is in C/C++. All
computational benchmarks presented here were run on a sin-
gle thread of a machine running Ubuntu 20 with an Intel i7
chip operating at 2.5 GHz with 32 GB of RAM. The VeriSim-
plePIR code was compiled with version 10 of the clang++
compiler using the -O3 option. All SimplePIR benchmarks
were taken with the VeriSimplePIR library using optimal pa-
rameters. Both VeriSimplePIR and SimplePIR parameters
were chosen to minimize online communication. In partic-
ular, all SimplePIR benchmarks throughout this work use
log(q) = 32, log(n) = 10, and log(p) chosen to minimize
online communication. We also give benchmarks of the Sim-
plePIR protocol with a 64-bit modulus, which is optimized
for online computation on a 64-bit machine. For all of these
benchmarks, database entries are one bit (d = 1). Note that
due to the tight database packing scheme, the database en-
try size has essentially no effect on the parameters2. Only
changing the overall database size (i.e. N · d) will change

2The only exception to this is when the database entry size is greater
than a

√
N fraction of the database, but this is much larger than entries in

essentially all practical applications.

https://github.com/leodec/VeriSimplePIR


the parameters of both SimplePIR and VeriSimplePIR. All
benchmarks are presented in terms of the total database size.

Benchmarks: Online Phase. In fig. 7, we present the online
performance of preprocessed VeriSimplePIR and compare
to the online performance of SimplePIR. This comparison
shows that verifiability can be achieved with very low over-
head. In particular, VeriSimplePIR without the honest digest
assumption has a 12% to 40% slowdown in the compute time
and a 40% to 50% increase in the total communication. When
the honest assumption is introduced, the communication over-
head of VeriSimplePIR drops to 13% to 20%, and the online
computation actually outperforms the original semi-honest
SimplePIR protocol. Note that this is because parameters are
optimized to minimize communication rather than compu-
tation. The minimal communication parameters from Sim-
plePIR use log(q) = 32, while the minimal parameters for
VeriSimplePIR use log(q) = 64. This means that the VeriSim-
plePIR protocol is able to pack more database bits into each
machine word, which results in an improved throughput on a
64-bit machine. Growing the SimplePIR modulus to 64 bits
would more than double the size of the database digest, as we
will see below.

Benchmarks: Offline Phase. In fig. 8, we present the one-
time offline communication required to both download the
initial database commitment and preprocess a proof. The
VeriSimplePIR bars in fig. 8 are split into two parts. The
bottom part of the bar represents the data that must be stored
locally on the client’s machine throughout the protocol (in-
cluding the online phase). This data is dominated (> 95%) by
the size of the digest H1, although it also contains the C and
Z matrices that are output from the proof preprocessing phase.
The top part of the bar represents the communication in the
proof preprocessing phase that is not stored once the proof
preprocessing phase is finished. Again, this data is almost
entirely (> 95%) the matrix H2, the commitment to DT .

Due to space constraints, we briefly summarize the offline
computation benchmarks. On a single-core, the offline com-
putation with a dishonest digest is roughly 100 seconds for
a 4 GB database is roughly 200 seconds and for an 8 GB
database. The computation is almost entirely on the server
and scales linearly with the database. As we mentioned above,
a full system would take advantage of the parallel nature of
the server’s computation and the optimizations admitted by
the machine-words modulus.

6.1 Comparing APIR with VLHE PIR

We now compare the performance of our non-preprocessed
PIR protocol to the authenticated PIR protocols (called APIR
and APIR+) of Colombo et al. [CNCG+23]. The performance
of the APIR protocol is essentially unaffected by malicious be-
havior, while our preprocessed protocol would require rerun-
ning the proof precomputation after each verification failure.

In order to account for a setting where the server is frequently
malicious, we compare against a simplified variant of our
protocol that simply applies the (non-preprocessed) verifiable
linearly homomorphic encryption scheme defined in fig. 4 to
the PIR computation. We call this variant VLHE PIR, and this
version requires no per-client offline computation; the client
simply downloads the database commitment and expects the
server to send a fresh proof with each PIR response. To ac-
count for the larger dependence on the row length in the proof
Z, we rebalance the database dimensions to get a roughly√

λ communication overhead over SimplePIR. Note that all
benchmarks in this section consider VLHE PIR without the
honest hint assumption.

While all benchmarks in the previous section considered
single-bit database entries, it is important to consider the
database entry size when benchmarking the APIR protocols.
While SimplePIR and VLHE PIR scale only with the size of
the database, APIR and APIR+ crucially rely on 1-bit entries
for security, handling larger entries via repetition.

Due to space constraints, we briefly summarize the on-
line performance comparison, where VLHE PIR outperforms
APIR and APIR+ in both communication and computation
for all database sizes and all entry widths. When the database
entries are a single bit, the total runtime of APIR+ is roughly
5× greater than the runtime of VLHE PIR, and the runtime of
APIR is about 25× greater than VLHE PIR. When compared
the the APIR protocol, VLHE PIR sees a near 40% reduction
in the online communication. The comparison to APIR+ is
even better, where the VLHE PIR online communication is
7-12× smaller.

The only metric for which either protocol outperforms
VHLE PIR is the offline communication, with the APIR+
offline communication at about 4.5× smaller than VLHE PIR
when the database entries are a single bit. However, as dis-
played in fig. 9, the performance of APIR+ quickly decays
as the database entries grow. For example, with a 64 GiB
database with 32-bit entries, VLHE PIR outperforms both pro-
tocols on all metrics. By the time the database entry bitwidth
reaches 1024, the offline communication of APIR+ is roughly
7× the offline communication of VLHE PIR.

7 Application: Password Leak Detection

In this section, we discuss an application of VeriSimplePIR:
secure password leak detection. The goal of this application is
to allow clients to query a database of leaked passwords from
sources such as "Have I Been Pwnd?"3 without revealing the
queried password they are requesting to the server. The need
for privacy in this application is clear, since honest clients
would essentially always be interested in their own passwords.
Revealing the query to the server would reveal the client’s
credentials.

3https://haveibeenpwned.com/Passwords

https://haveibeenpwned.com/Passwords


Figure 7: Online performance of SimplePIR and preprocessed VeriSimplePIR for databases of various sizes. The left figure
is the per-query online computation, and the right figure is the per-query online communication. The hatched portion of the
computation graph represents work on the client side (Query, Verify, and Recover). In the communication benchmarks, the
upload and download sizes are equal.

Figure 8: Offline communication of SimplePIR and prepro-
cessed VeriSimplePIR for databases of various sizes. The
hatched portions in the VeriSimplePIR columns represent the
communication that is not stored once the precomputation is
finished. The unhatched portion represents the data that the
client must store locally throughout the protocol (including
the online phase).

This application is based on the Blyss private password
checker4. In the Blyss implementation, the database consists
of around 400 million SHA1 hashes (20 bytes each) of pass-
words that have appeared in data breaches. These passwords
are stored in a hash table about 8 GB in size. The hash func-
tion is public, so a client can map their hashed password to
a candidate database index. The Blyss implementation uses
either Spiral [MW22] or DoublePIR [HHCG+23], both of
which are semi-honest implementations. Despite the signifi-
cantly weaker security guarantees, VeriSimplePIR is highly
competitive with the online performance of both schemes.
DoublePIR is worse in both online communication and on-
line computation, and Spiral has around 25× slower online
computation [MW22, Table 2] than VeriSimplePIR. The only
overhead from VeriSimplePIR is the roughly 800 MB of data
that each client must locally store throughout the online phase.

4https://playground.blyss.dev/passwords

This is perhaps too large for mobile devices, but it is certainly
feasible for a laptop or desktop computer. Furthermore, it is
likely that queries requiring a higher level of security would
come from desktop or laptop computers, such as the mas-
ter password for a password manager. In such cases, clients
would require the strong guarantees of verifiable PIR and
would likely have the local storage to keep the digest.

If clients make infrequent queries, they could avoid storing
the full digest and instead only store a hash of the digest.
Redownloading the digest from the server would maintain
verifiability by checking against the stored hash. Note that
the client must store the preprocessed proof or offload this
data only in encrypted form. We leave a full implementation
of this system as well as exploration of other applications
(such as the PGP server proposed in the work of Colombo et
al. [CNCG+23]) for future work.

8 Related Work

The first PIR scheme was presented by Kushilevitz and Os-
trovsky [KO97]. This work was also the first to identify that
a malicious server could dynamically maul database to try to
learn the client’s query in what became known as a selective
failure attack.

Stateless verifiable PIR. Recent work [BDKP22] introduced
another notion of verifiable PIR in which the client can verify
arbitrary local properties of the database used for the response.
This verifiability notion differs from our work in that it is
stateless, which is to say there is no initial commitment to a
database. The stateless notion of verifiability is defined per
query and thus does not defend against attacks that modify
the database across the queries. In contrast, our verifiability
is defined for a database that is fixed throughout the lifetime
of the scheme (or at least the digest). We also note that this
stateless construction is based on recent developments in
the batch argument for NP, placing it outside the realm of

https://playground.blyss.dev/passwords


Figure 9: Offline communication comparison of VLHE PIR with APIR and APIR+. The left plot is for 1-bit database entries.
APIR benchmarks below 45 GB are ommitted since the download is larger than the database size.

practicality.
Several other prior works [WZ18, ZWH21] have consid-

ered verifiable PIR in the single-server setting. However, the
security guarantees achieved in these works are much weaker
than in ours. In particular, they only guarantee that the PIR
response was generated with respect to some well-formed
database, but there is no commitment to fix this database
across multiple queries.

Semi-honest PIR. In addition to SimplePIR, a number
of recent works have improved both the theoretical and
practical performance of semi-honest PIR. This includes
FrodoPIR [DPC23], which is essentially the same protocol as
SimplePIR. There have been several recent works exploring
the exciting direction of PIR with sublinear online complex-
ity [CGK20, CGHK22, LMW23, ZPSZ23]. It remains an
interesting open question how to add malicious security to
these schemes.
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A Verifiable PIR Detailed Definitions

In this section, we give detailed definitions for preprocessed
verifiable PIR correctness and security.

Completeness Definition. In addition to the correctness re-
quirement for the PIR output (definition 2.2), we require that
messages produced by honest servers pass verification in both
the preprocessing and the online phase. We formalize this
requirement as the following.

Definition A.1 (Verification Completeness). We say a vPIR
scheme is complete if the following holds for all security
parameter λ, database D∈ZN

t , and index i∈ [N]. (The public
parameter pp is an implicit input for all algorithms other than
Setup.)

Pr



π 6=⊥
&

Verify(d,π,q,a)

= Accept

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ,1N , t)

d← Digest(D)

qπ,stπ← PrQry(d)

aπ← PrAns(D,qπ)

π← PrRec(d,qπ,stπ,aπ)

q,st← Query(i)

a← Answer(D,q)


= 1.

Security Definitions. The following are security require-
ments for vPIR. At a high level, we require any malicious
behavior of a server in vPIR should lead to an abort. Addi-
tionally, we need a stronger notion of privacy than the query-
hiding of semi-honest PIR (definition 2.3) to defend against
malicious attacks such as selective failures.

Definition A.2 (Digest Binding). For a security parameter
λ, let S be a computationally bounded server. Let pp be an
honestly-generated public parameter. We say a vPIR scheme
is digest binding if the following holds:

1. It is infeasible for S to produce two databases D and D′
such that Digest(pp,D) = Digest(pp,D′).

https://eprint.iacr.org/2023/452
https://eprint.iacr.org/2023/452


2. Suppose S can output aπ such that PrRec(pp,d,qπ,stπ,
aπ) 6= ⊥ for qπ,stπ ← PrQry(d) with non-negligible
probability, where the probability is over the random-
ness of PrQry and S . Then, there exists an efficient
extractor E that extracts some database D such that
Digest(pp,D) = d by rewinding S , with probability at
least 1−2−λ.

Definition A.3 (Verification Soundness). For a security
parameter λ, let S be a computationally bounded server.
For an honestly-generated public parameter pp, let d ←
Digest(pp,D) for some D. Furthermore, let π 6= ⊥ be the
auxiliary information computed in the preprocessing phase
described in fig. 3. Let a be a response computed by S for a
query q. We say a vPIR scheme satisfies verification sound-
ness if the following holds with probability at least 1−2−λ:

Verify(pp,d,π,q,a) = Accept =⇒ a= Answer(D,q).

Definition A.4 (Query Hiding Against a Malicious Server).
For a security parameter λ, let pp be an honestly-generated
public parameter. We say a vPIR scheme that satisfies verifi-
cation completeness (definition A.1), digest binding (defini-
tion A.2), and verification soundness (definition A.3), is also
query hiding against a malicious server if the following holds.

For every computationally bounded adversary A let
d,stA ← A(pp) be the digest produced by A such that
Accept← DigVer(pp,d). Let D be the database the adver-
sary used to produce d; the existence and uniqueness of D
is guaranteed by definition A.2. For every index sequence
~i = {i1, . . . , iL} ∈ [N]L, define the distribution

REALA ,~i :=



β :

qπ,stπ← PrQry(pp,d)
aπ,stA ← A(stA ,qπ)

π← PrRec(pp,d,qπ,stπ,aπ)

β← A(stA) if π =⊥
While π 6=⊥

q,st← Query(pp, ik)
a,stA ← A(stA ,q)

b← Verify(pp,d,π,q,a)
stA ← A(stA ,b)

If b= Reject, set π←⊥
Otherwise

r← Recover(pp,st,a,d)
b′← 1[r = D[ik]]
stA ← A(stA ,b

′)



L

k=1

β← A(stA),


where the L iterations are run sequentially. Similarly, for a

computationally bounded simulator X , define the distribution

IDEALA ,X :=



β :

qπ,stπ← PrQry(pp,d)
aπ,stA ← A(stA ,qπ)

π,stX ← X (pp,d,qπ,stπ,aπ)

β← A(stA) if π =⊥
While π 6=⊥

q,stX ← X (pp,stA)
a,stA ← A(stA ,q)

b,b′← X (pp,d,π,q,a,stA)
stA ← A(stA ,bk)

If b= Reject, set π←⊥
Otherwise

stA ← A(stA ,b
′)



L

k=1

β← A(stA),


where the L iterations are run sequentially as in REAL. We
say that a vPIR scheme is query hiding against a malicious
server if the following holds:

|Pr[REALA ,~i = 1]−Pr[IDEALA ,X = 1]| ≤ negl(λ).

B Security Proofs for Reusable VLHE

Here, we give the security proofs for the VLHE scheme with
preprocessed proofs presented in section 4.2.

Lemma B.1 (Semi-honest Preprocessed Protocol). Let S be
a computationally bounded server that correctly runs the pro-
tocol described in fig. 6. Let bF ∈ {0,1} indicate if the client
aborts on the function commitment phase and let bP ∈ {0,1}
indicate if the client aborts on the proof preprocessing phase.
Let U be the client’s message in the proof preprocessing phase,
as in fig. 6. The view of S at the end of the preprocessing
phase is (bF ,U,bP).

For q that satisfies eq. (6), assume the hardness of (n, `,q)-
LWE. The view of S is computationally indistinguishable from
(0,R,0), where R is a uniformly random element of Z`×λ

q .

Proof. This follows directly from the semantic security of
the Regev encryption scheme and the perfect completeness
of the verification algorithms VerCom and BatchVerify.

Lemma B.2 (Correct Encryption of Z). Let S be a com-
putationally bounded adversary acting as the server in the
protocol described in fig. 6. Define the view of S at the end
of the proof preprocessing phase (bF ,U,bP) as in lemma B.1.
Let q, `, p, and m satisfy eq. (6). Assume the hardness of
SISn,m,q,β1 for β1 = 4`p and SISn,`,q,β2 for β2 = 4mp. As in
lemma B.1, assume the hardness of (n, `,q)-LWE.

Consider the commitment defined by (A1,H1) and the ex-
tractor E guaranteed by lemma 2.2 running on S in the func-
tion commitment phase. Let D ∈ Z`×m be the unique matrix
that can be extracted from E on the commitment (A1,H1)
(i.e. H1 = DA1), under hardness assumption of SISn,m,q,β1



(lemma 2.3). Define D′ ∈ Zm×` similarly on the commitment
(A2,H2) (i.e. H2 = D′A2), under hardness assumption of
SISn,m,q,β2 .

If a client running the prescribed protocol completes the
proof preprocessing without aborting, then with probability
at least 1−2−λ the Z value held by the client equals CD for
the client-sampled C. Furthermore, the view of S is indistin-
guishable from the semi-honest view in lemma B.1 of with
probability at least 1−2−λ.

Proof. To see that the client’s Z value will equal CD, ob-
serve that since the ciphertext modulus q satisfies eq. (6),
applying the linear function D′ ∈Zm×` to the ciphertexts com-
prising the columns of U will result in correctly decrypting
ciphertexts V. Since BatchVerify accepts, then by lemma 4.1
and the hardness of SISn,`,q,β2 for β2 = 4mp it must be that
V = D′U. Therefore, by the correctness of the VLHE scheme,
it must be that the plaintext encrypted in the columns of V is
ZT = D′CT .

Meanwhile, the check Z ·A1 = C ·H1 = C(D′)T A1 passes,
and thus we have C((D′)T A1−H1) = 0. Since A1, H1, and
D′ are all fixed before C is sampled, then lemma 2.4 implies
that (D′)T A1−H1 = 0 with probability at least 1−2−λ. We
now have that (D′)T = D by the hardness of SISn,m,q,β1 for
β1 = 4`p, which implies Z = CD.

The claim regarding the view of S follows from lemma 4.1.
The correct ciphertext V is defined by the linear function com-
mitted with (A2,H2). Since anything other than the correct
ciphertext V will be rejected by BatchVerify with probability
at least 1−2−λ, then the server must return the correct cipher-
text with at least this probability. Since the ciphertext V is
correct, then there is no leakage from verification and decryp-
tion proceeding as in the prescribed protocol. The remainder
of the lemma follows from the semantic security of the Regev
encryption scheme, which makes U computationally indistin-
guishable from a random element in Zm×λ

q .

Lemma B.3 (Soundness of Preprocessed Verification). Let
S be a computationally bounded adversary acting as the
server in the protocol described in fig. 6. Define the view
of S at the end of the proof preprocessing phase (bF ,U,bP)
as in lemma B.1. Let q, `, p, and m satisfy eq. (6). Assume
the hardness of SISn,m,q,β1 for β1 = 4`p and SISn,`,q,β2 for
β2 = 4mp. As in lemma B.1, assume the hardness of (n, `,q)-
LWE.

Consider the commitment defined by (A1,H1) and the ex-
tractor E guaranteed by lemma 2.2 running on S in the func-
tion commitment phase. Let D ∈ Z`×m be the unique matrix
that can be extracted from E on the commitment (A1,H1)
(i.e. H1 = DA1), under hardness assumption of SISn,m,q,β1
(lemma 2.3).

If the client has completed the proof preprocessing phase
without aborting, then Accept ← PreVerify(u,v,C,Z) im-
plies that v = Du with probability at least 1−2−λ. Further-
more, this guarantee is maintained across any number of

homomorphic evaluation protocols as long as PreVerify does
not output Reject.

Proof. The security of a single instance of the homomorphic
evaluation phase follows directly from lemma B.2, since the
server has no information about the challenge C used to verify
the response. The uniqueness of the ciphertext v then follows
from lemma 4.1.

The second claim follows from the simulatability of the
client accepting the correct transcript. Strong uniqueness
of the response ciphertext v guarantees that the only way
the server will pass verification with probability better than
2−λ is if v = Du. If the server returns the correct ciphertext,
then clearly there is no additional information about C that is
learned, since the fact that the client accepts this transcript fol-
lows directly from the perfect completeness of the PreVerify
algorithm. Therefore, with probability at least 1− 2−λ, no
information about C is leaked if PreVerify outputs Accept.
This means that the challenge C and the corresponding Z can
be safely reused as long as PreVerify outputs Accept.

C VeriSimplePIR Security Proofs
We give the security proofs of the VeriSimplePIR construction
in section 5.

Lemma C.1 (VeriSimplePIR Completeness). Construction
5.1 satisfies definition A.1.

Proof. This proof follows directly from the perfect complete-
ness of the VLHE verification in section 4. In particular, the
bound on Z will never be exceeded as long as the database D
is within the honest bound ||D||∞ ≤ p. The perfect complete-
ness of the check ZA = CH follows immediately from the
honest values of H and Z.

Lemma C.2 (VeriSimplePIR Digest Binding). Construction
5.1 satisfies definition A.2.

Proof. This follows directly from the SIS hardness assump-
tions given in construction 5.1. This SIS assumption imme-
diately implies computational binding for the digest from
lemma 2.3.

Lemma C.3 (VeriSimplePIR Verification Soundness). Con-
struction 5.1 satisfies definition A.3.

Proof. This follows directly from lemma B.3.

Lemma C.4 (VeriSimplePIR Query Hiding). Construction
5.1 satisfies definition A.4.

Proof. This follows from lemma B.3 along with the correct-
ness of the VLHE parameters. Lemma B.3 guarantees that the
only ciphertexts that pass verification with probability better
than 2−λ are the honest ciphertexts. Decryption of the honest
ciphertext will yield the correct result with probability at least
1− 2−λ by lemma 2.5. Therefore, the second bit b′ in the
distributions in definition A.4 are also simulatable.
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