
Exploring Covert Third-party Identifiers through External Storage
in the Android New Era

Zikan Dong1*, Tianming Liu2,3*, Jiapeng Deng3, Haoyu Wang3‡, Li Li4

Minghui Yang5, Meng Wang5, Guosheng Xu1‡, Guoai Xu6

1Beijing University of Posts and Telecommunications 2Monash University
3Huazhong University of Science and Technology

4Beihang University 5OPPO 6Harbin Institute of Technology (Shenzhen)
* Co-first authors ‡Corresponding author: haoyuwang@hust.edu.cn

Abstract
Third-party tracking plays a vital role in the mobile app

ecosystem, which relies on identifiers to gather user data

across multiple apps. In the early days of Android, track-

ing SDKs could effortlessly access non-resettable hardware

identifiers for third-party tracking. However, as privacy con-

cerns mounted, Google has progressively restricted device

identifier usage through Android system updates. In the new

era, tracking SDKs are only allowed to employ user-resettable

identifiers which users can also opt out of, prompting SDKs to

seek alternative methods for reliable user identification across

apps. In this paper, we systematically explore the practice of

third-party tracking SDKs covertly storing their own gener-

ated identifiers on external storage, thereby circumventing

Android’s identifier usage restriction and posing a consider-

able threat to user privacy. We devise an analysis pipeline

for an extensive large-scale investigation of this phenomenon,

leveraging kernel-level instrumentation and UI testing tech-

niques to automate the recording of app file operations at

runtime. Applying our pipeline to 8,000 Android apps, we

identified 17 third-party tracking SDKs that store identifiers

on external storage. Our analysis reveals that these SDKs

employ a range of storage techniques, including hidden files

and attaching to existing media files, to make their identifiers

more discreet and persistent. We also found that most SDKs

lack adequate security measures, compromising the confi-

dentiality and integrity of identifiers and enabling deliberate

attacks. Furthermore, we examined the impact of Scoped Stor-

age - Android’s latest defense mechanism for external storage

on these covert third-party identifiers, and proposed a viable

exploit that breaches such a defense mechanism. Our work

underscores the need for greater scrutiny of third-party track-

ing practices and better solutions to safeguard user privacy in

the Android ecosystem.

1 Introduction

Third-party tracking refers to the process of collecting data

about a user’s online behaviors and activities, by an entity dis-

tinct from the website or platform being used by the user [44].

In Android, the entity refers to a third-party tracker other than

the app and the Android system. These trackers could be ad-

vertisers, data brokers, or other service providers that collect

user data across multiple apps for various purposes, which

generally include targeted advertising that is personalized to

users to enhance the likelihood of users engaging with the ad,

or analytics that help improve user experience and retention.

Although beneficial to app developers and increasing their

revenue, third-party tracking also poses a significant threat

to user privacy, as it requires profiling users based on their

behaviors or interests. In the process of third-party tracking,

cross-app user identification plays a crucial role as it allows

trackers to connect disparate pieces of information harvested

from different apps to a single user for profiling.

Third-party trackers achieve cross-app user identification

through user identifiers. In Android, trackers provide app

developers with their own SDKs (Software Development

Kits) [46] to be integrated into the app to facilitate the acquisi-

tion of user identifiers. These identifiers generally include non-

resettable hardware device identifiers (e.g., IMEI) and user-

resettable identifiers (e.g., Google Advertising ID [12]). To

enhance the protection of user privacy, Google has gradually

imposed restrictions on the use of device identifiers through-

out the development of Android. Initially, apps only needed

the necessary permission to obtain hardware identifiers, which

would not change even after a system reset. However, due

to growing privacy concerns, Google tightened control over

hardware identifiers, first mandating user authorization before

obtaining hardware identifiers, and then outright prohibiting

access to them, while recommending advertising identifiers as

an alternative. Compared to hardware identifiers, advertising

identifiers are more unstable: firstly, users can manually reset

these identifiers at any time; secondly, users can opt out of

advertisement personalization, which directly prevents apps

from accessing them.

In this new era where the use of hardware identifiers is heav-

ily restricted, third-party trackers are compelled to seek alter-

native approaches to reliably identify users across different



apps. In our manual analysis of popular third-party tracking

SDKs, we have identified cases where tracking SDKs store

their own identifiers on Android’s external storage. Typically,

these SDKs generate an identifier and store it in a specific

shared directory location on external storage when it does

not already exist on the device. Other apps with the same

SDK can then access this identifier to facilitate cross-app user

identification. Although apps must obtain the relevant permis-

sions (which require user authorization at runtime) to access

external storage, it is common for apps to request such permis-

sions, and users usually do not deny such requests. Moreover,

Android’s inadequate management of external storage, partic-

ularly shared directories, results in numerous files accumu-

lating on external storage, leaving users unable to determine

whether deleting these files would affect app functionality or

the Android system. Consequently, these generated identifiers

may persist in external storage for a long time.

This type of third-party identifier contravenes Google’s re-

strictions on device identifier usage and poses a huge threat to

user privacy. Therefore, we intend to conduct an exhaustive,

large-scale investigation into such identifiers in real-world

scenarios. Our primary goal is to delve into these covert iden-

tifier practices, providing an in-depth analysis of their storage,

generation, and security measures, as well as their potential

implications. We have developed an analysis pipeline to facil-

itate our large-scale experiment. First, we devise a dynamic

analysis framework that leverages kernel-level instrumenta-

tion and UI testing techniques to automate the recording of

apps’ file operations at runtime. Subsequently, we pick out file

candidates that are potentially related to third-party identifiers

from a collection of file operations recorded across all apps

using heuristics. Next, we re-inspect apps that accessed these

candidates to locate the code facilitating the file operations,

thereby enabling us to attribute the file operations to a spe-

cific party. Finally, we perform an in-depth manual analysis to

determine if the file candidate is indeed related to third-party

identifiers and further delve into the storage, generation, and

security aspects of these identifiers.

By adopting our pipeline to 8,000 Android apps, we iden-

tified 17 third-party tracking SDKs that store identifiers on

external storage. Furthermore, we discovered that these SDKs

employ a variety of methods to store identifiers on external

storage, including hidden files and attaching to existing media

files, in order to make identifiers more covert and persistent.

In terms of security, most SDKs lack sufficient protective mea-

sures, leaving the confidentiality and integrity of identifiers

vulnerable, which opens doors for deliberate attackers to tam-

per with identifiers and further compromise user privacy, as

demonstrated by the two potential attack vectors we proposed

in Section 3.2. We also assessed the influence of Scoped Stor-

age, Android’s latest defense mechanism for external storage,

on these covert identifiers in Section 5.4, and further proposed

a viable exploit that can bypass this defense mechanism, thus

posing a risk of reliable third-party user identification even

after Scoped Storage’s enforcement.

In summary, this work offers these major contributions:

• We highlighted the phenomenon of third-party tracking

SDKs covertly storing their identifiers in Android’s ex-

ternal storage, which significantly threatens user privacy.

• We developed an analysis pipeline to investigate such

covert tracking practices extensively on a large scale,

and successfully identified 17 third-party tracking SDKs

that store their identifiers on external storage.

• We provided an analysis of how these identifiers are

stored, generated, and (not) secured.

• We analyzed the implications of these identifiers post

Scoped Storage, and further proposed a feasible exploit

breaching Scoped Storage to identify users.

2 Background

2.1 Identifier Evolution
During the progression of Android development, the use of

identifiers, especially hardware identifiers, has undergone sev-

eral significant updates to enhance user privacy. However,

before delving into the evolution of identifier usage, it is cru-

cial to first recognize that Android’s permission management

system allows the app and its integrated SDKs to share the

same permissions, which means permissions granted to apps

also extend to SDKs. To date, this situation persists1 even

though several permission isolation prototype schemes have

been proposed [35, 50, 52]. As a result, when referring to

permission-related topics, the terms "apps" and "SDKs" are

used interchangeably.

Prior to Android 6.0, tracking SDKs could identify users

through a variety of hardware identifiers, such as IMEI, IMSI,

serial number, and MAC address. These hardware identi-

fiers would remain unchanged even if the user resets the

device completely (i.e. factory reset). Additionally, access-

ing these hardware identifiers was quite easy for apps. Apps

only needed to request the READ_PHONE_STATE permis-

sion from users upon installation. Users had to accept all

permissions displayed or would be unable to install the app.

Once granted the permission, the app would have unlimited

access to these hardware identifiers which could not be re-

voked. In addition to hardware identifiers, SDKs could also

use ANDROID_ID to identify users. ANDROID_ID is a 64-

bit hexadecimal string generated when the device is first set up.

ANDROID_ID would change after a factory reset, however,

no permission is required to access it.

Starting from Android 6.0 (API level 23, released in 2015),

Google has tightened restrictions on the usage of hardware

1We further discuss Google’s beta program Privacy Sandbox [24] and its

SDK Runtime feature [27] in Section 6.3.



identifiers. The required permissions to obtain hardware iden-

tifiers are listed as runtime permissions, which require user

consent at runtime and can be revoked at any time.

Subsequently, starting from Android 8 (API level 26, re-

leased in 2017), ANDROID_ID was changed to have a differ-

ent value for each app, effectively ending its use for cross-app

user identification.

Lastly, starting from Android 10 (API level 29, released in

2019), apps must have privileged permission to access hard-

ware identifiers, a permission level unavailable to third-party

apps. Up to this point, Google has imposed strict restrictions

on accessing all hardware identifiers and ANDROID_ID. As

an alternative, Google recommends apps use advertising iden-

tifiers for advertising and analytics purposes. However, users

can reset or even opt out of advertising identifiers at any time,

making it difficult for third-party trackers such as advertising

and analytics companies to achieve reliable user identification

using advertising identifiers.

Until January 2023, a significant majority of Android de-

vices (68%) were running Android 10 or a later version [16].

Tracking SDKs are forced to seek alternative approaches for

reliable cross-app user identification in the new era.

2.2 External Storage

The storage system is a crucial component of Android, which

allows apps to store data persistently. The storage of Android

can be classified into two categories: internal storage and

external storage. Apps always have access to their own private

directory within internal storage (i.e., /data/data/<package

name>) and do not require any permission. Moreover, files

stored in internal storage can only be accessed by their owner.

Therefore, apps generally use internal storage to store data

that they do not want other apps to access.

On the other hand, external storage can be divided into two

parts, app-specific directories (e.g., "/storage/emulated/0/An

droid/data/<packagename>") and shared directories. Unlike

internal storage, even app-specific directories can easily be

accessed by other apps before Android 10 [39]. Therefore,

external storage is often used to store non-sensitive files or

those meant to be shared.

Prior to Android 10, reading and writing files on

external storage only requires the necessary permis-

sions, namely READ_EXTERNAL_STORAGE and

WRITE_EXTERNAL_STORAGE. These two permissions

are used so frequently, users tend to grant apps these permis-

sions. Consequently, a lot of apps, and their integrated SDKs,

have unlimited access to external storage before Android 10.

However, this changes when a new protection mechanism

called Scoped Storage [26] is introduced in Android 10

(and fully deployed in Android 11 [28]). With Scoped Stor-

age, an app-specific directory can only be accessed by its

owner app. On shared directories, an app can only access files

it created (no permission required), except under the follow-

ing conditions: (a) with READ_EXTERNAL_STORAGE2,

apps can read media files created by other apps [10]; (b) writ-

ing (i.e. modifying) media files created by other apps require

user consent on a file-by-file basis at runtime [29]; (c) ac-

cessing non-media files in shared directories created by other

apps require user manual selection via file browsing [11]3.

However, accessing all files in shared directories is still feasi-

ble with MANAGE_EXTERNAL_STORAGE, a permission

strictly regulated by Google and is granted only to apps with

specialized functions such as file management apps [21].

3 Motivation

3.1 Motivating Example
While exploring the Android system, we came across some

unusual files stored in hidden directories on external stor-

age. Upon further investigation, we discovered that these

files store identifiers generated by the Alibaba Identifier SDK

(package name: com.ta.utdid2) that was utilized across dif-

ferent apps. Alibaba is a major Chinese internet company

with billions of app downloads to its name. The Alibaba

Identifier SDK has a long-standing history, with the earliest

information found on search engines dating back to 2015. We

will now delve into its identifier generation and management

process, which takes place in the getUtdid method of the

com.ta.utdid2.device.UTDevice class.

The Alibaba Identifier SDK employs a four-step process for

identifier generation and management, a pattern commonly

observed in many other SDKs we examined, as illustrated in

Figure 1. This figure also contains a simplified code represen-

tation of the getUtdid method and highlights the research

concerns associated with each step:

Step 1: Initially, the SDK tries to obtain the identi-

fier from two key values in both system settings and

SharedPreference, with one plaintext and one AES-

encrypted version for each. If both attempts fail, the SDK

seeks to access the identifier in file /storage/emulated/
0/.UTSystemConfig/Global/Alvin2.xml and file /sto
rage/emulated/0/.DataStorage/ContextData.xml on

external storage, again with one plaintext and one encrypted.

Step 2: The SDK checks the validity of the identifier upon

each obtainment. The research concerns for this step involve

parts of the security aspect of the identifier, namely its in-

tegrity, which verifies that the identifier has not been tampered

with. However, Alibaba only performs basic format verifica-

tion, which can only determine if the identifier is damaged but

2Starting from Android 13, this permission becomes obsolete and is super-

seded by media permissions with finer granularity READ_MEDIA_* [15,20].
3There are also other functionality-specific exceptions. For instance, with

certain media-related permissions and users’ explicit consent, apps can write

all media files without file-by-file consent [19]. However, discussing these

exceptions in detail would be too verbose, and would digress from our re-

search topic. Readers interested in learning more about these exceptions can

refer to our citations for further details.



String getUtdid(){
    String identifier;
    identifier = getIdentifierFromSystemSettings();
    if (isIdInvalid(identifier))
        identifier = getIdentifierFromSharedPreference();
        if (isIdInvalid(identifier))
            identifier = getIdentifierFromExternalStorage();
            if (isIdInvalid(identifier))
                identifier = generateUtdid();
    saveToOtherLocation(identifier);
    return identifier;
}

Get identifier from External Storage 
and other location.

If the identifier is obtained, check its 
validity.

If obtaining the identifier fails, generate 
a new identifier.

Save the identifier to External Storage 
and other location.

Code Example General Procedures Research Concerns

Security

Confidentiality

Intergrity

Generation

Storage

Uniqueness

Stability

Figure 1: Identifier Generation and Management in Alibaba Identifier SDK: Code Example, Procedures, and Research Concerns

is vulnerable to deliberate attacks elaborated in Section 3.2.

Step 3: If the identifier remains unattainable or invalid from

any of the locations mentioned in Step 1, the SDK generates

the identifier (based on IMEI or a random value if IMEI can-

not be obtained). The research concerns for this step involve:

(a) the uniqueness of the generated identifier; (b) whether the

same identifier can be generated for a specific device after

identifier deletion; (c) the second aspect of the identifier’s

security, specifically the confidentiality of the identifier. Here,

Alibaba ensures uniqueness but cannot generate the same

identifier if IMEI cannot be obtained, and only partially con-

siders confidentiality since only one of the two identifiers is

encrypted, as mentioned in Step 1.

Step 4: The SDK tries to synchronize the generated iden-

tifier across all locations mentioned in Step 1. The research

concerns for this step focus on the identifier storage tactics

which these tracking SDKs may apply to make their identi-

fier more discreet and persistent. For instance, here, Alibaba

stores their identifiers with two backups on external storage,

both locations being hidden files users cannot directly access.

Generally, apps do not have access to the system

settings as it requires signature-level permission, and

SharedPreference will be deleted upon the app’s uninstal-

lation. Therefore, the primary identifier storage location for

the Alibaba Identifier SDK’s stable user identification is the

two files on external storage, which only require commonly

granted storage permissions and can happen stealthily without

users’ consent, while bypassing Android’s system restrictions

on identifier usage. This motivating example showcases the

importance of thoroughly investigating the research concerns

in each step to better understand such identifier practices.

3.2 Potential Threat and Attack Vectors

Tracking users via external storage not only significantly vio-

lates user privacy and contravenes relevant identifier policies,

but also presents opportunities for deliberate attackers if iden-

tifiers are inadequately protected.

Violating Market Policies and Infringing User Privacy:
The SDK stores the identifier on external storage, resulting in

a long-lasting, relatively stable cross-app identifier accessible

to the SDK with only external storage permissions, which

stands in contrast to Google’s consistent efforts to restrict de-

vice identifier usage. Furthermore, this practice also breaches

the identifier usage policies established by app stores. For

instance, Google Play mandates the use of the Google Ad-

vertising ID (when available on a device) over other device

identifiers for any advertising purposes [12]. Similarly, Xi-

aomi Store stipulates that identifiers used for advertising and

analytics should be revocable [30]. These identifiers clearly

defy this rule, as users cannot manually reset these identifiers

or opt out as they can with the Advertising ID. Moreover, such

covert user identification can occur without users’ consent,

and it is almost impossible for an average user to notice such

acts. This clearly infringes upon users’ privacy choices.

Potential Attacks: Storing identifiers on external storage also

opens doors for attackers if the identifiers’ confidentiality and

integrity are not ensured. We propose two potential attacks.

First, an attacker can use a malicious app on the user’s

device to modify the identifier on external storage to an iden-

tifier carefully crafted by the attacker. After the modification,

the SDK will recognize the user’s device as the attacker’s,

leading to the SDK pushing advertisements personalized for

the attacker’s device to the user. Attackers could thus promote

their products and potentially profit from this tactic. The mali-

cious app executing the attack does not require high privileges

or dangerous behaviors—only permission to write to external

storage and modify the file storing the identifier.

Second, the attacker can read the identifier on external

storage, save it on their device, and install an app with the

integrated SDK. When using the app, the SDK recognizes

the attacker’s device as the victim’s device since it contains



the victim’s identifier, resulting in the attacker receiving ad-

vertisements targeted at the victim. By analyzing the content

of these ads, the attacker can infer details about the victim’s

privacy, such as their interests or viewed products. Similar

attacks have already been proved feasible both on the web

and on the mobile [45, 47].

4 Approach

In order to investigate such covert user identification by third

parties through external storage on a large scale, we carefully

devised an analysis pipeline, the overview of which is de-

picted in Figure 2. This pipeline, which takes Android .APK

files as inputs, comprises four modules: 1) Dynamic Analysis:

in this module, we employ a combination of app automating

techniques and kernel-level instrumentation, focusing on one

app at a time to capture all file operations during the app’s

runtime; 2) Candidate Finding: this module is based on the

collected file operations from the Dynamic Analysis module,

where we pool together file operations derived from a large

set of apps to pick out files that could potentially serve as can-

didates for storing identifiers using heuristics; 3) Candidate

Attributing: we further re-inspect the apps that accessed these

candidate files to locate the code facilitating the file operation

behavior utilizing Frida [18]. This step allows us to attribute

potential identifier behavior to a specific component within

the app, for instance, a component belonging to a tracking

SDK. 4) Manual Analysis: in this final module, we conduct

a thorough manual analysis through reverse engineering, to

verify if the candidate is indeed related to identifiers, and

to further dissect the identifiers in-depth to understand how

these identifiers are stored, generated, and (not) secured. It

is worth noting that while the first three modules of our ap-

proach are largely automated, the threshold selection (detailed

in Section 4.2) and the attributing module do require human

intervention. We now detail each module as follows.

4.1 Dynamic Analysis
The Dynamic Analysis module facilitates our experiments

on large-scale apps and allows us to comprehensively record

the file operations of apps at the kernel level. Prior to com-

mencing the analysis, we first initialize our testing devices to

simulate the usage patterns of daily-used devices. We then

use app automating techniques to traverse apps and record

their file operations at runtime for further analysis leveraging

instrumentation.

4.1.1 Initialization Settings

To prevent apps from exhibiting abnormal behavior in a com-

pletely empty environment (e.g., with no other apps installed,

no photos in albums, etc.), we carry out a set of initialization

procedures for our dynamic testing environment. Specifically,

we begin by installing several widely-used apps on our de-

vices. We then populate the devices with contacts, phone call

logs, and SMS message records. Additionally, we take a few

photos with the camera and generate some screenshots.

4.1.2 Kernel-Level Instrumentation

To comprehensively capture the file operations performed by

the app, we customize the Linux kernel and integrate it into

the Android system running on our devices. We monitor file

operations at the kernel level since all file operations are even-

tually handled by the kernel [49]. This approach also allows

us to circumvent common instrumentation detection, which

generally runs at the framework level [31, 37]. Specifically,

we record all system calls invoked by the app that is related to

file operations. We achieve this through the following steps:

First, as we aim to record the file operations of the target

app only, we flag the threads of the target app with a cus-

tomized tag at the Zygote process [9] (where all Android apps

init) through the system call prctl [7], and enable our kernel-

level instrumentation only for the flagged threads. This allows

us to reduce the impact of other running apps, performance

overhead, and log file size.

Second, we configure the kernel to perform system call

tracing when a system call (a) originates from a thread con-

taining the aforementioned customized flag, and (b) is related

to file operations. There are various types of system calls

for different file operation types (e.g., openat for opening,

read for reading, 120 system calls in total for both ARM and

ARM64 architectures). The kernel will then call functions

syscall_trace_enter and syscall_trace_exit before

and after the execution of the system call respectively, and

we can access the relevant information regarding the invoked

system call, including parameters and return value, in both

functions. We then determine the file operation type based on

the type of the system call, and extract the file path from the

system call parameters.

Finally, we add a logging module to the kernel that allows

us to store the obtained file operations for further analysis.

More specifically, we create a file within the proc filesystem

for logging file operations. Proc is a virtual filesystem that

provides an interface to access internal data structures in the

kernel memory [25]. Initially, we attempted to employ the

printk function, which is commonly used for logging output

in the kernel. However, we discovered that the printk func-

tion, which stores logs in a circular buffer, is inadequate for

handling extensive or high-frequency output [5]. In contrast,

our approach of logging within the kernel memory effectively

overcomes these limitations, offering enhanced reliability and

scalability with respect to the volume of log output.



Figure 2: Overview of Our Analysis Pipeline

4.1.3 Automated Testing

Our Dynamic Analysis module aims to record apps’ file op-

erations during runtime. To facilitate large-scale analysis,

we employ Fastbot [17], an automated GUI testing tool de-

veloped by ByteDance. Distinct from other state-of-the-art

testing tools, Fastbot is monkey-based (enabling fast action

input), and is enhanced by reinforcement learning, therefore

outperforming its counterparts in terms of code coverage [42].

During the automated testing, we focus on one app at a time,

recording the app’s file operations with our instrumentation.

After the testing is complete, we uninstall the target app and

reboot the device to restore the testing environment for the

next app.

4.2 Candidate Finding
After running all the apps in our dataset utilizing our Dynamic

Analysis module, we have collected a large number of file

operations of these tested apps. It is crucial to automatically

identify files on external storage that are potentially associated

with identifiers from this large collection of file operations

for further analysis. Upon examining the motivating exam-

ples and manually probing patterns within the collected file

operations, we have derived insights that can help us iden-

tify these potential candidates. Finally, we have summarized

these insights into the following heuristics to streamline this

identification process:

• Files associated with an identifier should be stored in a

shared directory on external storage, rather than in an

app-specific directory. The file location for storing an

identifier should be (a) readily accessible by all apps on

the device, and (b) steady enough for consistent user iden-

tification. However, files within an app-specific directory

are no longer accessible by other apps since Scoped Stor-

age, and more importantly, they are subject to deletion

upon the app’s uninstallation, making them unsuitable

for storing identifiers.

• Files associated with an identifier should not be subject

to frequent deletion. Ideal identifiers are device-specific

information such as IMEI and serial number, which will

remain unchanged even after a factory reset. Files asso-

ciated with an identifier should also maintain stability,

otherwise, it cannot serve its identification purpose.

• If a file is associated with an identifier, it should be ac-

cessed by multiple different apps during a large-scale

experiment. A tracking SDK needs to be integrated into

a large number of apps to facilitate cross-app user iden-

tification. As a result, the generated file for storing the

identifier is likely to be accessed by a number of different

apps in our experiments.

We implement our heuristics as follows. Recall that the

collected file operation logs contain both the file operation

type and the accessed file path, we first pick out file operations

on files in a shared directory on external storage based on the

accessed file path. We then eliminate files that are frequently

deleted, as indicated by the type of file operations. Next, we

count the number of distinct apps each remaining file is ac-

cessed by, and utilize this number for our candidate selection.

It is vital to note a specific observation from our study: some

apps iterate through files on external storage, inevitably inflat-

ing the access count for all files. This behavior underscores

the need for a heuristic approach when setting the threshold,

tailored to the scale of each experiment. For our study, we

determined the threshold by sampling files at varying counts.

Our rationale for choosing a threshold of 100 is based on

the following observations: (a) we found no identifier-related

files in sampled files accessed by fewer than 100 apps; (b)

our further examination of the top 50 files accessed by fewer

than 100 apps yielded none identifier-related; and (c) with the

threshold set at 100, we successfully obtained a concise list

of only 30 file candidates accessed by 100 or more apps.

4.3 Candidate Attributing
After identifying potential file candidates, we perform a re-

inspection of apps to attribute the corresponding file operation

to a specific component within the app. To accomplish this,



Figure 3: An Example of the Call Stack

we use Frida [18], a dynamic code instrumentation toolkit

that allows us to hook common file processing APIs, includ-

ing Java APIs such as java.io.File and FileInputStre
am, as well as the Native API open in libc. While monitor-

ing calls to these APIs, we also obtain the call stack before

the API is executed. The call stack enables us to accurately

attribute the file operation to a specific component within

the app, as illustrated in Figure 3, where the attributed pack-

age name belongs to the Tencent Advertising SDK (package

name: com.qq.e). Note that the file processing functions we

initially instrumented may not be comprehensive, as it is diffi-

cult to enumerate all related APIs. If we fail to attribute a file

operation to a specific component, we manually analyze the

app to identify the missing file processing API and add it to

our hooking list.

In this module, for the apps selected for re-inspection, we

re-run the automated testing in the Dynamic Analysis mod-

ule. During this phase, we utilized Frida for attributing. This

decision stemmed from our understanding that directly access-

ing the caller’s package through kernel-level instrumentation

(as employed in our preceding module) is infeasible. Conse-

quently, we cannot directly perform the attributing during the

app’s initial run in the Dynamic Analysis module.

However, it is essential to highlight that Frida’s instrumen-

tation, unlike kernel-level instrumentation, can be readily de-

tected by apps, especially those that have undergone app pack-

ing. Some developers, in order to enhance app security, may

employ app packing techniques that often incorporate anti-

dynamic analysis measures, such as running environment

detection and anti-debugging techniques [34, 51]. Such mea-

sures can effectively thwart our attributing using Frida. Given

this context, for each file candidate, we selected one unpacked

app that had accessed this file for attributing (and the subse-

quent manual analysis). This strategy was driven by the strong

correlation between the file for identifier storage and the SDK.

We deem the attributing successful if we could trace the file

operation to a third-party component within the app. If the

attributing failed, we’d pivot to another unpacked app to con-

tinue attributing.

4.4 Manual Analysis

After attributing the file operations of our selected candidates

to a specific component within the app, we perform a thorough

manual analysis on the corresponding component. Our analy-

sis consists of two key aspects: first, we ascertain if the file

subject indeed contains identifiers; second, we delve deeper

into the storage, generation, and security methods applied to

these identifiers.

In terms of storage, Android’s ineffective management of

files on external storage often leads to an accumulation of

files in a disorganized manner. Typically, users do not perform

thorough cleanups of files on external storage. Consequently,

files stored in external storage receive minimal interference

from users. Nonetheless, tracking SDKs desire their identi-

fiers to remain as covert and persistent as possible. As such,

they may implement protective measures regarding the stor-

age of identifiers. Our manual examination seeks to explore

this aspect in greater detail.

For identifier generation, tracking SDKs could effortlessly

access unique and stable hardware identifiers via simple API

calls in the past, therefore eliminating their concerns over

identifier generation. However, in the new era where access

to hardware identifiers is restricted, SDKs must generate iden-

tifiers of their own. Two primary factors should be considered

during identifier generation: uniqueness and stability. Unique-

ness is the fundamental requirement for identifiers, as assign-

ing the same identifier to multiple devices would prevent the

tracking of a distinct device. Stability in identifier generation

means that the same identifier can be generated for a specific

device even after the identifier’s deletion, app reinstallation,

or system reset. While hardware identifiers inherently en-

sure uniqueness and stability, SDKs must carefully design the

identifier generation method to maintain these attributes.

Security should be a vital concern for SDKs when storing

identifiers on external storage. This encompasses two key as-

pects: confidentiality, to prevent unauthorized access or theft

of the identifier, and integrity, to ensure the identifier remains

unaltered and genuine. Given that files on external storage

can be readily accessed by apps with commonly granted per-

missions, identifiers are at risk of being stolen or even ma-

nipulated by other apps on the device or deliberate attackers,

which could affect user tracking or even introduce new attack

vectors as mentioned in Section 3.2.

Our Manual Analysis module is implemented as follows:

since we choose unpacked apps as our analyzing target, we

can directly decompile the app using reverse engineering

tools. For java code, we use GDA [13], a powerful Dalvik

bytecode decompiler, while for native code, we employ IDA

Pro [23]. With the rich functionality provided by the decom-

pilers (e.g. string searching, cross-referencing), we start the

analysis with the file operation function identified in the Can-

didate Attributing module, and backtrace the call stack for

the caller functions of the file operation function until we



found the file content stored on external storage is consumed

(for instance, decrypted and sent to the server). During the

backtracing process, we analyze all the code within the con-

trol flow, looking for evidence that the contents of the file are

identifiers (e.g., usage, function names, log messages). If we

establish that the file is indeed related to identifiers, we locate

all instances of identifier consumption and further investigate

code associated with identifier storage, generation, and se-

curity measures. Additionally, in this module, we also filter

out potential file operations stemming from external storage

scans, and map the package name of the attributed component

with its SDK or provider name through a manual lookup of

the package name and the associated information.

5 Experimental Results

To facilitate our large-scale investigation, we collect 8,000

Android apps from Google Play and several third-party mar-

kets’ top listings as inputs to our pipeline. The market split

for the apps collected and violating apps with such tracking

behaviors are summarised in Table 1. Our experiment is pri-

marily conducted on five Google Pixel3 smartphones running

our instrumented Android 9 system, This choice is driven

by the introduction of Scoped Storage in Android 10, which

could potentially impede the functionality of these third-party

tracking SDKs and thereby restrict our ability to fully observe

their behaviors. To supplement our study, we further retest a

selected group of apps on Android 12 to evaluate the impact

of Scoped Storage on these illegitimate tracking behaviors, as

detailed in Section 5.4. In our Dynamic Analysis module, we

configure Fastbot to perform automated GUI testing on each

app for 5 minutes, as we empirically discover that identifier-

related file operations are usually executed shortly after app

launch, and for scalability concerns.

In total, we collected over 640K file operations for the

8,000 apps in our dataset during the Dynamic Analysis mod-

ule. Our Candidate Finding module enables us to select 30

file candidates corresponding to 13,735 file operations us-

ing heuristics. Through our Attributing and Manual Analysis

modules, we verify that 22 of the file candidates contain third-

party identifiers. Of the 8 file candidates that did not pass

our manual verification, 2 were temporary files for identifier

processing4, while the remaining 6 were unrelated to iden-

tifiers, from which we also have some intriguing findings

(elaborated in Section 5.5). Therefore, 80% (24/30) of the

file candidates are indeed related to identifiers, demonstrating

the effectiveness of our heuristics. These 22 confirmed file

candidates correspond to 17 tracking SDKs (one SDK might

store the identifier in multiple locations, as demonstrated in

our motivating example). Among the 8,000 apps subject to

our testing, we found 3,337 apps accessed at least one of these

4Specifically, the files "Alvin2.xml.bak" and "ContextData.xml.bak" are

later renamed to "Alvin2.xml" and "ContextData.xml", respectively, both of

which are associated with the Alibaba Identifier SDK, as shown in Table 2.

identifier files, and 1,947 apps accessed files from multiple

tracking SDKs. The name and the number of involved apps

for each SDK, along with its storage, generation, and secu-

rity attributes, are summarized in Table 2. We also list the

SDK split for each market and the SDKs’ package names in

our Appendix. Additionally, we have disclosed the associated

apps hosted on Google Play to Google’s Trust & Safety Team.

They have identified it as an "Abuse Risk". We now detail

our findings regarding the storage, generation, and security

aspects of the identifiers in the following sections.

5.1 Storage
We empirically find out that tracking SDKs employ a range

of storage techniques to ensure their identifiers remain covert

and persistent on user devices.

Hidden Files. Out of the 17 SDKs we discovered, 13 of

them, including Alibaba, Baidu, and Amap SDKs, store their

identifiers in hidden files, which is a relatively common yet

effective approach. By default, hidden files are not visible

to users. Users need to install third-party file management

apps and enable specific settings to access hidden files on

external storage. Consequently, this method greatly reduces

the possibility of users deleting their identifiers.

Storage Path. Some SDKs store their identifiers in specific

directories that could potentially give the impression the file

containing the identifier is essential for app functionality.

For example, the ByteDance SDK store its identifier in the

directory /storage/emulated/0/Android/data, which is

the root directory of app-specific directories for all apps.

Therefore, users tend to believe that files in this direc-

tory are for valid use. In addition, Getui SDK stores the

identifier in a file with a "db" suffix in the directory

/storage/emulated/0/libs, which is a directory com-

monly used by apps to store databases. After the completion

of our experiment, we find hundreds of "db" files in this di-

rectory on each of our testing devices. Hiding the identifier

file among them can also effectively confuse users.

Multiple Backups. Though users typically do not clean files

in shared directories on external storage, there is still a possi-

bility that these files may be lost or damaged. Following the

adage, "don’t put all your eggs in one basket", 9 SDKs ensure

the persistence of their identifiers by backing up the identifier

in multiple files, as shown in our motivating example 5.

On top of that, 12 SDKs, such as the Alibaba identifier

SDK mentioned in Section 3, go a step further to protect their

identifiers by also storing them on internal storage (e.g., using

SharedPreference), which is accessible only by the host

app. After the initial run, the SDK copies the identifiers from

5Certain SDKs from the same organization, namely the two from Baidu

and another two from Mob, employ a shared identifier with multiple backups.



Table 1: Distribution of Apps and Violations Across Markets
# Apps Collected # Violating Apps % Violating Apps # Cumulative Downloads of Violating Apps # Violating SDKs

Google Play 3,000 102 3.40% Over 1.9B 16

Huawei 1,000 704 70.40% Over 84.3B 17

Xiaomi 2,000 1,382 69.10% Over 11.0B 17

Wandoujia 2,000 1,042 52.10% Over 529.5M 17

Total 8,000 3,230 40.38% Over 97.7B 17

Table 2: Summary of Our Findings on Identifiers of the 17 Tracking SDKs

SDK Name # Involved Apps Generation Method Stability Uniqueness Security Storage Method

Alibaba ID 1,647 System-provided Identifier ◦ • ◦ /storage/emulated/0/.UTSystemConfig/Global/Alvin2.xml

� /storage/emulated/0/.DataStorage/ContextData.xml

ByteDance AD 1,206 Random ◦ • ◦ /storage/emulated/0/Android/data/com.snssdk.api.embed/cache/clientudid.dat

Tencent AD 722 Random ◦ • � /storage/emulated/0/Tencent/ams/cache/meta.dat

/storage/emulated/0/Android/data/com.tencent.ams/cache/meta.dat

Baidu Mobstat
542 System-provided Identifier � • � /storage/emulated/0/backups/.SystemConfig/.cuid2

Baidu Map /storage/emulated/0/backups/.SystemConfig/.cuid

Amap 294 Remote Server ◦ / � /storage/emulated/0/backups/.adiu

Mob Share
171 System-provided Identifier � • ◦ /storage/emulated/0/Mob/comm/dbs/.duid

Mob SMS � /storage/emulated/0/Android/data/.mn_1006862472

DCloud 173 Random ◦ • ◦ /storage/emulated/0/.imei.txt

/storage/emulated/0/.DC4278477faeb9.txt

Umeng* 453 System-provided Identifier ◦ • • /sdcard/Android/obj/.um/sysid.dat

/sdcard/Android/data/.um/sysid.dat

Alibaba Quick Login 330 Random ◦ • ◦ /storage/emulated/0/.pns/.uniqueId/<id>

Kuaishou 265 Remote Server ◦ / � /storage/emulated/0/.oukdtft

Getui Push 212 Remote Server ◦ / ◦ /storage/emulated/0/libs/com.igexin.sdk.deviceId.db

Jiguang 175 Random ◦ • ◦ /storage/emulated/0/data/.push_deviceid

iFLYTEK 160 System-provided Identifier ◦ � ◦ /storage/emulated/0/msc/.2F6E2C5B63F0F83B

Linkedme AD 29 Remote Server � • ◦ /storage/emulated/0/.lm_device/.lm_device_id

/storage/emulated/0/LMDevice/lm_device_id

Shuzilm ID 56 Random ◦ • � The earliest created screenshot or photo file

Note: ◦ stands for "none", � stands for "partial", • stands for "complete"

*: Unlike other SDKs, the Umeng SDK generates a new identifier for each app, and only saves the SHA1 hash of the identifier on external storage. There-

fore, it does not employ an actual external storage identifier for user tracking. We will discuss this further in Section 5.3.

the external storage to internal storage. When the identifier is

used later, the identifier in the internal storage takes priority,

and the value of the identifier is synchronized with the file in

external storage once retrieved successfully. In our manual

analysis, we attempted to delete the file storing the Alibaba

identifier on external storage, but quickly discovered that the

file was recreated by the Taobao app running in the back-

ground, one of the most popular shopping apps in China, and

the identifier value in the file remained the same.

Attached to Existing Media Files. Most SDKs store their

identifiers separately in individual files, but one SDK employs

a more discreet approach. The Shuzilm SDK conceals the

identifier within an image file of users. Figure 4 shows the data

at the end of a PNG image before and after the SDK embeds

its identifier. If a screenshot exists on the user’s device, the

SDK stores the identifier in the earliest created screenshot;

otherwise, the earliest created photo is selected as the storage

medium. The SDK stores its identifier by inserting specific

data at the end of the image file (either JPG or PNG format).

For example, a PNG file starts with an IHDR chunk and

ends with an IEND chunk. Adding data after the image end

flag typically does not cause the image to display incorrectly.

The Shuzilm SDK adds 40 bytes of data to the end of the

image file: the first 4 bytes serve as a signature flag, while the

remaining 36 bytes store the encrypted identifier.

(a) The End of Image before SDK Inserts Identifier.

(b) The End of Image after SDK Inserts Identifier.

Figure 4: Shuzilm SDK Identifier Storage.

5.2 Generation

In terms of identifier generation, we focus on the uniqueness

and stability of identifiers (here, stability means that the same

identifier can be generated for a specific device even after

the identifier’s deletion, app reinstallation, or system reset,

as previously mentioned in Section 4.4). Ensuring identifier

uniqueness is relatively simple. In our experiment, the ma-

jority of SDK identifier generation methods can guarantee

uniqueness. However, ensuring the stability of an identifier



is more challenging for SDKs. We observe that no SDK can

entirely guarantee identifier stability.

Uniqueness. 5 SDKs employ UUID (i.e., Universally Unique

IDentifier) for generating their identifiers. UUID is a 128-

bit value generated by the Java class java.util.UUID and

can guarantee uniqueness across space and time. Some

SDKs directly use UUID as the identifier (e.g., Tencent and

ByteDance), while others use variants of the UUID. For exam-

ple, the Alibaba Quick Login SDK uses the MD5 hash of the

concatenated UUID, the package name and signature of the

app that initially generated the identifier, and the timestamp

as its identifier.

1 S t r i n g g e n e r a t e I d e n t i f i e r ( ) {

2 S t r i n g s y s t e m P r o v i d e d I d e n t i f i e r = " " ;

3 i f ( APILevel <= 23) {

4 s y s t e m P r o v i d e d I d e n t i f i e r = getIMEI ( ) ;

5 i f ( i sEmpty ( s y s t e m P r o v i d e d I d e n t i f i e r ) ) {

6 s y s t e m P r o v i d e d I d e n t i f i e r = getMacAddress ( ) ;

7 i f ( i sEmpty ( s y s t e m P r o v i d e d I d e n t i f i e r ) ) {

8 s y s t e m P r o v i d e d I d e n t i f i e r = g e t A n d r o i d I d ( ) ;

9 i f ( i sEmpty ( s y s t e m P r o v i d e d I d e n t i f i e r ) ) {

10 s y s t e m P r o v i d e d I d e n t i f i e r =

g e t S e r i a l N u m b e r ( ) ;

11 }

12 }

13 }

14 } e l s e i f ( APILevel >= 29) {

15 s y s t e m P r o v i d e d I d e n t i f i e r = g e t A d v e r t i s i n g I d ( ) ;

16 i f ( i sEmpty ( s y s t e m P r o v i d e d I d e n t i f i e r ) ) {

17 s y s t e m P r o v i d e d I d e n t i f i e r = g e t A n d r o i d I d ( ) ;

18 i f ( i sEmpty ( s y s t e m P r o v i d e d I d e n t i f i e r ) ) {

19 s y s t e m P r o v i d e d I d e n t i f i e r = g e t S e r i a l N u m b e r

( ) ;

20 i f ( i sEmpty ( s y s t e m P r o v i d e d I d e n t i f i e r ) ) {

21 s y s t e m P r o v i d e d I d e n t i f i e r = getMacAddress

( ) ;

22 }

23 }

24 }

25 } e l s e {

26 . . . . . .

27 }

28 S t r i n g i d e n t i f i e r = MD5( s y s t e m P r o v i d e d I d e n t i f i e r

) ;

29 r e t u r n i d e n t i f i e r ;

30 }

Figure 5: Code Snippet of Umeng SDK Identifier Generation.

Another 7 SDKs, including Baidu, Umeng, and iFLYTEK,

attempt to generate their identifiers using the identifiers pro-

vided by the system. For example, the Umeng SDK adopts

different identifier generation strategies depending on the sys-

tem version, as shown in Figure 5. As mentioned in Section

2.1, different types of identifiers are allowed to be accessed

on different Android versions. When the Android API level is

less than or equal to 23, the Umeng SDK sequentially tries to

obtain IMEI, Mac address, ANDROID_ID, and serial number

from the system, and uses the first available one to generate its

identifier. For API levels between 23 and 29, Umeng changes

the acquisition order to IMEI, serial number, ANDROID_ID,

and Mac address. When the API level is greater than or equal

to 29, the SDK first attempts to obtain the Advertising ID,

followed by ANDROID_ID, due to the system restriction on

accessing hardware identifiers. Since system-provided identi-

fiers ensure uniqueness, generating identifiers based on them

also guarantees uniqueness.

It is worth noting that the iFLYTEK SDK also tries to

generate its identifier using system-provided identifiers: it

attempts to obtain IMEI and ANDROID_ID. However, if

both attempts fail, the SDK simply generates the identifier

with a timestamp, potentially compromising the uniqueness.

In addition, 4 SDKs (Kuaishou, Amap, Linkedme, and

Getui) do not generate identifiers locally. Instead, they re-

quest identifiers directly from remote servers. In this case, the

uniqueness of the identifier is determined by the remote server.

Lastly, the Shuzilm SDK employs its proprietary algorithm

to generate random UUID-style identifiers in the native code.

Stability. As mentioned above, some SDKs use the UUID to

generate their identifiers. Since UUID is given a unique value

in each generation, these identifiers possess no stability.

Generating identifiers using system-provided identifiers,

particularly hardware identifiers, is more likely to maintain

stability. However, in the new era where hardware identi-

fiers become inaccessible, their stability is also compromised.

From Android 10 onward, ANDROID_ID and the advertising

identifier are the only accessible system-provided identifiers,

both of which change upon system reset. As ANDROID_ID

is given distinct values for different apps, identifiers gener-

ated using ANDROID_ID will lose stability if the app that

originally generated the identifier is uninstalled. Identifiers

generated using the Advertising ID will lose stability when

the user manually resets the Advertising ID or the system.

For SDKs that obtain their identifiers from a remote server,

their stability is determined by the remote server.

5.3 Security
We proceed to examine the security aspects of these identifiers

in terms of confidentiality and integrity. Our findings reveal

that almost all (16/17) SDKs do not implement effective pro-

tective measures, some even disregard security considerations

entirely. Specifically, 8 SDKs entirely neglect the confiden-

tiality of their identifiers, while 7 SDKs overlook the integrity

of their identifiers completely. Even among the SDKs that do

consider these security aspects, their protective measures are

largely ineffective against deliberate attackers.

Confidentiality. 8 SDKs, including Tencent, DCloud, and

Getui SDKs, store identifiers on external storage without any

encryption. Since no confidentiality protection is in place,



other apps on the device can directly access the identifier,

which poses privacy risks and enables new attack vectors as

described in Section 3.2.

The remaining SDKs employ encryption for the identifier.

However, they all resort to hard-coded keys locally stored

within the SDK. This practice compromises the intended

confidentiality, especially in the face of determined attackers.

For example, the Amap SDK implements AES in CBC mode

with a hard-coded static key (the binary format of the ASCII

code of a specific string) and an all-zero initialization vector,

and further uses string obfuscation techniques to protect the

static key and the initialization vector.

Integrity. 7 SDKs (e.g., Alibaba Quick Login, Kuaishou,

and Linkedme) do not take identifier integrity into account.

After retrieving the identifier on external storage, the SDK

directly utilizes it without any input validation. Other apps

on the device can directly modify the identifier, and the SDK

remains oblivious to any potential tampering.

The other 6 SDKs (e.g., Alibaba, iFLYTEK, and Jiguang

SDKs) only perform basic format verification on the identifier

and do not examine the actual identifier value. For instance,

the ByteDance SDK, which uses the UUID directly as its iden-

tifier, only checks the identifier’s length and verifies if each

character is a number, letter, or hyphen. Moreover, the Amap

SDK saves the MD5 hash of a specific string at the beginning

of the file where the identifier is stored and checks it when

accessing the identifier. In essence, these format verification

methods can only to an extent determine if the identifier is

damaged but cannot fully ensure integrity. When an attacker

alters the identifier value, it can still pass the verification.

1 / / Example o f f i l e c o n t e n t : {" v " : 1 , " u " : " d4c22e74

−4762 −4 ad1 − a fce −3 ee2b7525308 " , " t

" : 1667216542434 , "m" : "

C9863EB3B042C74A1374EC82F231A869 "}

2 b o o l e a n i n t e g r i t y C h e c k ( S t r i n g f i l e C o n t e n t ) {

3 JSONObject f i l e C o n t e n t J s o n = new JSONObject (

f i l e C o n t e n t ) ;

4 S t r i n g f i l e V e r s i o n = f i l e C o n t e n t J s o n . g e t S t r i n g ( "

v " ) ;

5 S t r i n g i d e n t i f i e r = f i l e C o n t e n t J s o n . g e t S t r i n g ( " u

" ) ;

6 S t r i n g t imes t amp = f i l e C o n t e n t J s o n . g e t S t r i n g ( " t "

) ;

7 S t r i n g f i l e S i g n a t u r e = f i l e C o n t e n t J s o n . g e t S t r i n g

( "m" ) ;

8 S t r i n g f i l e S i g n a t u r e C a l c u l a t e d = MD5( i d e n t i f i e r

+ t imes t amp + " [ a _ s p e c i f i c _ s t r i n g ] " ) ;

9 i f ( f i l e S i g n a t u r e == f i l e S i g n a t u r e C a l c u l a t e d ) {

10 r e t u r n t r u e ;

11 }

12 r e t u r n f a l s e ;

13 }

Figure 6: Integrity Checking of Tencent SDKs.

Additionally, 3 SDKs (Tencent, Mob share, and Mob SMS

SDKs) use hashing algorithms to perform integrity checks on

identifiers. We take the Tencent SDK as an example, whose

integrity checking method is shown in Figure 6. Tencent

stores a JSON string on external storage that contains the

file version, identifier, timestamp, and file signature. Upon

generating the identifier, the SDK calculates the file signa-

ture, which is a hash of the concatenation of the identifier,

file version, timestamp, and a specific string, and stores it in

a file. When using the identifier, the SDK calculates the file

signature in the same way and compares it with the value in

the file. If the two signatures match, the SDK assumes the

identifier has not been tampered with. While this method can

to an extent verify the identifier’s integrity, it cannot defend

against a deliberate attacker who analyzes the SDK’s verifica-

tion method. A critical weakness of this approach is storing

both the signature and identifier together on external storage,

enabling the attacker to tamper with the identifier and modify

the file signature simultaneously according to the signature

calculation method to pass the validation. A more reliable

alternative would involve storing the signature in a secure

location, such as internal storage. However, it is difficult for

SDKs to find a location that is both secure and shareable by

other apps that integrate the SDK.

One exception is the Umeng SDK, which ensures both the

confidentiality and integrity of the identifier. Upon our manual

analysis, we confirm that Umeng generates a new identifier

using available system-provided identifiers (as detailed in

Section 5.2) for each app. The SDK then stores the identifier’s

plaintext in each app’s internal storage, and only saves the

SHA1 hash of the identifier on external storage, potentially for

verifying if the device can be identified cross-app. Umeng‘s

approach does not employ an actual external storage identifier

for user tracking.

Other Security Issues. In addition to the missing or inef-

fective identifier confidentiality and integrity protection mea-

sures, we found inconsistencies in security measures in Al-

ibaba and Mob SDKs. For example, the Mob SDK stores the

identifier in two files on external storage. One of the files (/
storage/emulated/0/.mn_1006862472) adopts a higher

level of security protection (using AES encryption in ECB

mode for confidentiality and file signature verification for

integrity). However, the other file (i.e., /storage/emulate
d/0/Mob/comm/dbs/.duid) stores the identifier in plaintext

and is retrieved by the SDK directly with no integrity check,

rendering the protection on the first file ineffective.

5.4 Impact of Scoped Storage

As discussed in Section 2.2, Scoped Storage is introduced in

Android 10 (and fully deployed in Android 11 [28]) to restrict

the use of external storage. Since accessing non-media files in

shared directories created by other apps requires the strictly

regulated MANAGE_EXTERNAL_STORAGE or user con-



sent on a file-by-file basis, Scoped Storage should, in theory,

prevent SDKs from identifying users through external storage.

We thus retest a selected group of apps integrated with these

SDKs on Android 12 to assess its impact. As expected, when

Scoped Storage is active, the external storage identifiers of

all the SDKs we identified become inoperative. However, we

find that most SDKs can still track users via external storage

under certain conditions: (a) apps targeting Android 10 or

lower can opt out of the shared storage restrictions imposed

by Scoped Storage, leaving their integrated tracking SDKs un-

affected [28]; (b) certain apps from third-party markets (even

job-hunting apps and medical apps) significantly abuse the

MANAGE_EXTERNAL_STORAGE permission, which is intended

solely for apps with specialized functions as mentioned in Sec-

tion 2.2. We further unpack the implications of such tracking

practices post Scoped Storage in Section 6.1.

One exception is the ByteDance SDK, which stores iden-

tifiers in a folder under the root directory of the app-specific

directories. Although this directory does not belong to any

specific app, it still becomes inaccessible after Scoped Storage

is introduced and cannot be opted out of.

Exploit post Scoped Storage. In summary, Scoped Storage

only offers partial protection against these illegitimate identi-

fiers—when an app targets Android 11 or higher and does not

request MANAGE_EXTERNAL_STORAGE. With some optimism,

we can envision a future where opting out of Scoped Storage

is disallowed and the MANAGE_EXTERNAL_STORAGE usage is

rigorously controlled. However, even in that scenario, Scoped

Storage still cannot entirely eradicate user identification via

external storage. As detailed in Section 5.2, the Shuzilm SDK

utilizes the earliest-created image files to conceal its identifier.

While this method becomes ineffective post Scoped Storage,

as writing to media files not created by the host app requires

file-by-file consent, it has enlightened us to propose a new

exploit. An adversarial SDK could hide the identifier within

a media file generated by its host app with no permission

required. Other apps integrated with the same SDK can then

access this identifier using commonly granted read permis-

sions. We have developed a demo app that proves the viability

of this exploit and reported this to Google’s BugHunter Team.

They acknowledged and thanked us, but ultimately catego-

rized this exploit as “Won’t Fix”. We speculate it is because

devising a fix for this exploit on system level is very chal-

lenging, given the difficulty of implementing controls more

rigorous than the present Scoped Storage to an app or SDK (a)

writing superfluous data to their self-generated media files, or

(b) reading other apps’ media files with relevant permissions.

Nevertheless, the Shuzilm method, along with our proposed

exploit, represents an adaptation to Android’s evolving secu-

rity measures, indicating an ongoing arms race between both

sides. There is also nothing preventing other tracking SDKs

from adopting this exploit in the future. The Android system

must devise more effective solutions to gain the upper hand

in this never-ending struggle.

5.5 Other Findings

In addition to the identifiers on external storage, we have also

found that some SDKs share other types of data between apps

through external storage.

Sensitive User Data. Some SDKs store sensitive user

data on external storage. For example, the Amap SDK stores

encrypted detailed device location data (including latitude,

longitude, and place names nearby) in a file on external stor-

age. Other apps with the SDK can access user location data

(although possibly outdated) by reading this file, even without

location permission. In our experiment, we have captured

cases where apps integrated with Amap retrieve user location

information from this file without location permission, which

significantly infringes upon user privacy. Additionally, ma-

licious actors can also gain access to user location data by

decrypting this file.

SDK Log Data. Some SDKs export log data to files on

external storage. For example, the Meizu push SDK outputs a

large amount of logs generated during app execution to exter-

nal storage. These logs contain server response data and what

appears to be a secret key used in network communications.

Upon closer inspection, we found that this "key" correlates

with a component in the source code named "HttpKeyMgr".

This component is subsequently referenced multiple times

across different app runs. Storing these logs on external stor-

age is not only superfluous but also poses potential risks to

the SDK and user privacy.

6 Discussion

6.1 Implications

By storing identifiers on external storage, these third-party

tracking SDKs could circumvent Android’s identifier usage

restrictions to track users cross-app stealthily, therefore posing

significant risks to user privacy.

The latest Android defense mechanism for external stor-

age, i.e., Scoped Storage, should effectively eliminate such

illegitimate identifier usage, in theory. However, it falls short

in practice. Firstly, this protection is only activated when an

app targets Android 11 or higher and does not request the

MANAGE_EXTERNAL_STORAGE permission. Although

Google Play enforces strict target API level and permission

requirements, other third-party markets do not share the same

level of scrutiny. For example, SAMSUNG’s markets only

recently (late 2022) mandated their apps to target Android 8

or higher [8], while HUAWEI and other Chinese app markets

require Android 9 [3]. Furthermore, no explicit restrictions

on MANAGE_EXTERNAL_STORAGE permission control

have been implemented for the two markets, to our knowl-

edge. In addition, Android devices such as smart TVs, tablets,

VR devices, and smartwatches running lower system versions

are still exposed. Android’s fragmentation issues severely un-



dermine the effectiveness of its proposed defense mechanism,

making it likely that such practice will persist for a relatively

long time.

Moreover, our proposed exploit demonstrates that even in

the best-case scenario where all enforcement measures are

in place, the latest Android defense mechanism for external

storage can still be breached. These concerns call for the de-

velopment of more robust solutions to safeguard user privacy.

6.2 Chinese SDKs

A notable observation from our study is the predominance

of tracking SDKs originating from China, as highlighted in

Table 1. While our experimental dataset encompasses 3,000

top-listed apps from Google Play, which undoubtedly utilize

major SDKs from other regions, it was primarily the Chinese

SDKs that exhibited such tracking behavior. In fact, among the

102 Google Play apps that we discovered with such tracking

behavior, the responsible SDKs were still from China. This

phenomenon resonates with findings from previous research,

such as that by Reardon et al. [49].

From our experiences, Chinese SDKs do tend to be more

aggressive in general. This could partially be attributed to

the unavailability of Google Play in China. However, while

Google’s Advertising ID hinges on the Google Play service

and is thus inaccessible in China, this factor alone cannot

justify the aggressive tracking strategies employed by these

Chinese SDKs. Upon our further investigation, we found that

China has introduced an alternative: the OAID (Open Anony-

mous Device Identifier) [6]. Launched in 2019 by the China

Mobile Security Alliance and backed by major Chinese smart-

phone manufacturers like Xiaomi and Huawei, the OAID mir-

rors Google’s Advertising ID functionally, with capabilities

for end-users to reset or disable it. Notably, global advertising

SDKs such as AppsFlyer [14] and Adjust [2] have integrated

support for OAID since late 2019.

Upon scrutinizing the 17 Chinese SDKs from our study, we

found that 12 do access the OAID. However, they also employ

external storage identifiers, possibly to circumvent OAID’s

reset or disable features. While the exact motivation remains

elusive due to the opaque server-side processing logic of both

identifiers, the simultaneous collection of these identifiers

alone raises concern. Moreover, the remaining 5 SDKs have

yet to adopt OAID, even four years since its debut.

These tracking methodologies also contravene the policies

of Chinese app stores. Apart from Xiaomi Store’s requirement

for identifiers to be revocable as mentioned in Section 3.2,

both Xiaomi and Huawei mandate that a new advertising

identifier, once reset, should not correlate with the previous

identifier or its derived data without explicit user consent [22,

30]. Such a stipulation can be easily violated when an SDK

gathers both OAID and external storage identifiers.

Additionally, 16 out of the 17 SDKs neither disclose such

external storage tracking in their EULAs nor offer reset or

disable features akin to OAID or Google’s Advertising ID.

We further sampled 50 violating apps and found no disclosure

of such tracking practices in the apps’ privacy policies.

In conclusion, while regional differences might influence

SDK practices, the tracking techniques employed by these

Chinese SDKs still raise significant concerns about user pri-

vacy. It underscores the need for more transparent practices

and robust regulatory oversight to ensure user data protection.

6.3 Mitigation

To counteract the privacy risks posed by third-party tracking

SDKs storing identifiers on external storage, we propose the

following mitigation suggestions:

Further expanding security requirements for third-party
markets. While Google Play enforces strict requirements for

apps, such as targeting recent API levels and conducting rig-

orous permission reviews, third-party markets often do not

uphold the same standards. Given that these markets also

serve as popular venues for app downloads, it is imperative

they align their security requirements with those of Google

Play. In early 2019, we have already seen a collective ef-

fort by major Chinese app markets to expand the API level

requirements up to Android 8.0, a commendable move high-

lighted by Google [4]. However, subsequent progress has

been stagnant over the years. As Android’s fragmentation

continues to amplify security and privacy concerns, it is vital

for Google to take the initiative in expanding these stringent

security requirements across more app markets worldwide.

This effort could involve enhancing communication between

third-party markets, offering technical support, and advocat-

ing for a uniform adoption of rigorous security standards. In

doing so, we can ensure a consistent application of security

measures, thereby reducing the avenues for SDKs to exploit

user identifiers.

Permission separation on Android. Although the imple-

mentation of Scoped Storage has made strides toward a more

secure and organized external storage, our identified exploit

has demonstrated that it still remains possible for SDKs to il-

legitimately identify users through external storage even with

the full enforcement of Scoped Storage. One potential solu-

tion could involve the adoption of a permission management

system on Android to separate SDK permissions from app

permissions. Although several permission isolation prototype

schemes [35, 50, 52] have been proposed over the years, the

current Android system still allows integrated SDKs to share

the same permissions as their host apps, thereby enabling

them to covertly exploit sensitive permissions requested by

the apps. Luckily, in early 2023, Google initiated a beta

project called the Privacy Sandbox on Android [24], which

they envision as a "multi-year effort". A standout feature of

this project is the SDK Runtime [27], which runs app SDKs in

a separate process from the app. By doing so, it meticulously

governs the permissions and data access rights of SDKs, effec-



tively curbing potential misuse of external storage and other

critical system resources.

Collective efforts between end-users and phone ven-
dors/app stores. While the aforementioned mitigation strate-

gies are promising, their realization involves collaborations

between Google, third-party markets, and advertising com-

panies that could easily take years. Thus, we advocate for a

more immediate mitigation strategy, pivoting on the collab-

oration between end-users and their phone vendors or app

stores. Firstly, app stores can harness our approach to peri-

odically scrutinize their apps, identifying and subsequently

addressing tracking malpractices by the responsible SDKs

and the apps that integrate them. Secondly, leveraging the

identifier file paths located by our approach, phone vendors

or app stores can devise tools that exploit the identifier’s lack

of integrity to continuously reset these files. Such tools can

be integrated into market apps or system ROMs to empower

users to routinely clean these identifier files.

6.4 Threats to Validity

Several threats to the validity of our study should be consid-

ered. First, the Android ecosystem is vast and fragmented,

encompassing numerous third-party app stores that do not

adhere to the strict guidelines imposed by Google Play. Our

analysis includes 8,000 apps, which, although sizable, cannot

cover every third-party tracking SDK or strategy due to the

sheer scale and complexity of the Android app ecosystem.

Also, our pipeline relies on automated GUI testing, which

is inherently subject to the limitations of dynamic testing.

Therefore, it cannot achieve full code coverage or trigger

all relevant functionality within an app. Consequently, we

may not obtain a comprehensive view of how each app and

its integrated tracking SDKs interact with external storage.

Moreover, while our pipeline is largely automated, manual

analysis is still required to examine the storage, generation,

and security of identifiers, which, to some extent, limits our

ability to expand the scope of our experiments and may intro-

duce potential biases in our findings. In addition, despite our

pipeline’s ability to identify a significant number of covert

identifier storage instances, it might not capture every instance

or technique. There may be more sophisticated strategies that

remain undiscovered. Therefore, our analysis should serve

as a foundation for understanding the current landscape and

a starting point for further research into third-party tracking

SDK practices in the Android ecosystem.

While our heuristics were effective in identifying file candi-

dates associated with identifiers, there is still a possibility of

false negatives. Evaluating the recall of our approach is chal-

lenging, as this study is the first to investigate this issue on a

large scale, and no ground truth dataset is available. However,

before our experiment, we found references to three SDKs ex-

hibiting this behavior: Alibaba (from a blog [1]), Salmonads,

and Baidu (from Reardon et al. [49]). Our experiment suc-

cessfully identified two of these SDKs, with Salmonads being

the exception due to it being out of service. This, to some

extent, demonstrates the recall of our approach and is the best

validation we can provide.

Lastly, our dynamic analysis environment is deployed in

an AOSP userdebug version of the Android system, which

could potentially impact the validity of our results. Although

we have made specific modifications (e.g., system properties

and system fingerprint) to resemble a release version, it is

uncertain whether these adjustments sufficiently evade all

detection techniques employed by apps.

6.5 Future Work
Exploring such tracking practices from multi-dimensional
perspectives. By examining a set of apps during a specific

timeframe, our study captures a snapshot of such tracking

behaviors of that period, thus naturally confining the scope of

our analysis. It is essential to highlight that the identifier re-

strictions that led SDK developers to seek workarounds have

been in the Android ecosystem for quite some time. To attain a

more holistic view, future investigations should examine these

tracking methods through various dimensions. This would

encompass (a) temporal analysis: delving into the historical

trajectory of these tracking methods and SDKs to identify

when these techniques initially emerged and observe their

progression over time; (b) SDK interrelationships: investigat-

ing the intricate dependencies and dynamics among different

SDKs to reveal collaborative or potentially competitive nu-

ances within the SDK landscape; (c) emerging practices: as

technological landscapes evolve, new tracking methods, for

instance, through other covert channels, might surface. Moni-

toring these developments will ensure our analysis remains

current and relevant.

Branching out to other mobile platforms, such as iOS.
The iOS system might also be susceptible to such tracking

practices. Achieving such tracking would necessitate a shared

location accessible by other apps for storing identifiers. While

iOS already enforces a sandboxing mechanism to ensure app

isolation, crafty methods might find their way around these

barriers. For instance, one could employ a method similar

to the one we proposed under the inspiration of Shuzilm in

Section 5.4. In the iOS system, apps with commonly granted

photo access permissions can read any image without users’

attention (though, akin to Android post Scoped Storage, they

generally cannot write to photos created by others). This

opens up a potential avenue for covert tracking on iOS. We

plan to further investigate this in our future research.

7 Related Work

Our study investigates how third-party tracking SDKs covertly

store identifiers on external storage to bypass Android’s iden-

tifier restrictions. In this section, we briefly review relevant



literature, including user identifiers and tracking practices,

security issues on external storage, and other covert channels

in mobile app ecosystems.

User Identifiers and Tracking Practices. Numerous studies

have investigated user identifiers and third-party tracking prac-

tices in mobile apps. Binns et al. [32] presented an empirical

study of the prevalence of third-party trackers on 1 million

apps from Google Play. The authors found widespread user

tracking in apps but concentrated on a few trackers such as

Google and Facebook. Kollnig et al. [38] presented a study

of 24K Android and iOS apps, and compared the perfor-

mance of Android and iOS in terms of user privacy, observing

widespread usage of user identifiers in both mobile operating

systems. Rahaman et al. [48] proposed a novel taint analy-

sis technique to address inaccurate static analysis resulting

from the use of device identifier variants in Android apps, re-

vealing the abuse of identifiers by popular apps and libraries.

Leith et al. [40] investigated the data sent to manufacturers

by mobile operating systems, finding that device identifiers

and other user data were transmitted to back-end servers even

when users configured their systems for minimal data shar-

ing. While these studies examined the use of identifiers in

user tracking by Android apps and the Android system, they

did not explore the application of identifiers beyond those

provided by the system.

External Storage Security. Many previous studies have ex-

amined the security issues arising from the use of external

storage in mobile apps. Liu et al. [41] investigated sensitive

user information stored in external storage by apps, and pro-

posed three attacks that exploit the sensitive data to compro-

mise users’ privacy. Du et al. [33] systematically analyzed app

usage of external storage, discovering that most apps failed to

perform valid input validation when accessing sensitive files

on external storage, which enabled various attacks with severe

impacts on users. Reardon et al. [49] discovered the behavior

of unauthorized sensitive information exchange using exter-

nal storage, and briefly mentioned third-party tracking SDKs

storing identifiers (e.g., IMEI) on external storage. However,

they did not investigate this issue in depth. These studies

primarily focus on high-level sensitive user data stored on

external storage without addressing the more basic yet highly

sensitive identifiers stored on external storage.

Other Covert Channels. Outside of external storage, there

have been some notable investigations into potential covert

channels within the Android system. In 2012, Gasior and

Yang [36] implemented a network covert channel within an

Android app that could potentially allow data leaks. A more

recent exploration by Reardon et al. [49] identified various

covert channels in Android that were utilized to bypass per-

mission restrictions to access sensitive information. They

observed that certain SDKs utilize a range of covert channels,

including ioctl (UNIX “input-output control”), UPnP/SSDP

discovery protocols, and the ARP table, to obtain the device’s

MAC address. Furthermore, some SDKs were found to ex-

tract geolocation data from photographs by reading the em-

bedded the EXIF metadata. Lyons et al. [43] systematically

examined the presence of sensitive information within an-

other covert channel: the Android system log, and found that

high-privileged apps could leverage the log to obtain sensi-

tive data such as the WiFi Router’s MAC address and user

locations. However, the required high privilege is exclusive

to pre-installed apps. In summary, while prior studies have re-

vealed sensitive data, such as hardware identifiers, that could

be utilized for user tracking, being obtained through covert

channels, these channels alone cannot be exploited for the

tracking methods highlighted in our study, owing to the fact

that they cannot serve as a shared location to store identifiers

where other apps can readily access.

In contrast to existing work, our study specifically investi-

gates the practice of third-party tracking SDKs covertly stor-

ing identifiers on external storage, examining the techniques

they employ and the implications for user privacy. We con-

tribute an extensive large-scale analysis of this phenomenon,

which has not been previously explored in the literature.

8 Conclusion

In conclusion, our research has shed light on the covert prac-

tices of third-party tracking SDKs in the Android ecosystem,

revealing their persistent efforts to bypass Android’s identifier

usage restrictions by storing identifiers on external storage.

Our study not only highlights the need for enhanced defense

mechanisms on Android but also underscores the importance

of greater scrutiny of third-party tracking practices to protect

user privacy. Through our extensive analysis on 8,000 An-

droid apps, we have identified 17 tracking SDKs employing

various storage techniques to make their identifiers more dis-

creet and persistent. Our work provides a valuable foundation

for understanding the current landscape of third-party track-

ing SDKs and serves as a starting point for future research.

As user privacy continues to be a growing concern in this

digital age, it is essential for the research community, industry

stakeholders, and policymakers to work together to develop

robust solutions and enforce stricter scrutiny to safeguard user

privacy in the ever-evolving mobile app ecosystem.

Availability

Our artifact, including the implementation of the first three

modules in our approach and all file operations collected

in the experiment, is available at https://github.com/security-

pride/tpt.
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APPENDICES

Table 3: Distribution of SDK Appearances Across Markets

SDK Google Play Huawei Xiaomi Wandoujia Total

1 56 387 667 537 1,647

2 5 230 576 395 1,206

3 3 150 352 217 722

4 16 151 233 142 542

5 6 78 122 88 294

6 8 41 65 57 171

7 2 25 70 76 173

8 7 102 177 167 453

9 4 72 149 105 330

10 1 51 128 85 265

11 5 59 82 66 212

12 2 38 74 61 175

13 1 49 67 43 160

14 0 8 10 11 29

15 12 22 11 11 56

Note: 1 – Alibaba ID, 2 – ByteDance AD, 3 – Tencent AD, 4 – Baidu,

5 – Amap, 6 – Mob, 7 – DCloud, 8 – Umeng, 9 – Alibaba Quick Login,

10 – Kuaishou, 11 – Getui Push, 12 – Jiguang, 13 – iFLYTEK,

14 – Linkedme AD, 15 – Shuzilm ID.

Table 4: Package Names of the Tracking SDKs
SDK Name Package Name of the Attributed Component SDK Package Name

Alibaba ID com.ta.utdid2.b.a.d com.ta.utdid2

Baidu Mobstat com.baidu.mobstat.bv com.baidu.mobstat

Baidu Map com.baidu.b.g com.baidu.lbsapi

Shuzilm ID libdu.so (a native library) cn.shuzilm

Umeng com.umeng.commonsdk.statistics.idtracking.j com.umeng

Mob Share com.mob.tools.utils.ResHelper cn.sharesdk

Mob SMS com.mob.tools.utils.DeviceHelper cn.smssdk

Getui Push com.getui.gtc.dim.c.a com.getui.gtc

Amap com.loc.o.S com.loc

ByteDance AD com.bytedance.embedapplog.y com.bytedance

Tencent AD com.qq.e.comm.plugin.i.c.j com.qq.e

Alibaba Login com.nirvana.tools.logger.storage.FileStorage com.nirvana.tools

iFLYTEK com.iflytek.cloud.msc.util.k com.iflytek

Jiguang cn.jiguang.ca.c cn.jiguang

DCloud io.dcloud.common.util.TelephonyUtil io.dcloud

Kuaishou com.yxcorp.kuaishou.addfp.android.a.d com.yxcorp.kuaishou

Linkedme AD com.microquation.linkedme.android.util.i com.microquation.linkedme


