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Abstract

Machine learning models trained with differentially-private
(DP) algorithms such as DP-SGD enjoy resilience against
a wide range of privacy attacks. Although it is possible to
derive bounds for some attacks based solely on an (ε,δ)-DP
guarantee, meaningful bounds require a small enough pri-
vacy budget (i.e., injecting a large amount of noise), which
results in a large loss in utility. This paper presents a new
approach to evaluate the privacy of machine learning models
against specific record-level threats, such as membership and
attribute inference, without the indirection through DP. We
focus on the popular DP-SGD algorithm, and derive simple
closed-form bounds. Our proofs model DP-SGD as an infor-
mation theoretic channel whose inputs are the secrets that an
attacker wants to infer (e.g., membership of a data record)
and whose outputs are the intermediate model parameters
produced by iterative optimization. We obtain bounds for
membership inference that match state-of-the-art techniques,
whilst being orders of magnitude faster to compute. Addi-
tionally, we present a novel data-dependent bound against
attribute inference. Our results provide a direct, interpretable,
and practical way to evaluate the privacy of trained models
against specific inference threats without sacrificing utility.

1 Introduction

Privacy of training data is a central concern when deploying
Machine Learning (ML) models. Privacy risks encompass a
variety of adversary goals with corresponding threat models.
For example, if one wanted to prevent an attacker with access
to a model from inferring whether a specific data record was
in the training data, we would aim to train the model to make
it resilient against membership inference attacks [26, 29, 34].
On the other hand, if the concern is an attacker uncovering
sensitive attributes about training data records, we would
ensure resilience against attribute inference attacks [16, 34].
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Figure 1: Bayes Security (β∗) of DP-SGD against MIA and
AI on the Adult and Purchase datasets, w.r.t. the accuracy
of the model; a higher β∗ means a more secure model. When
possible, picking the weaker AI threat model enables achiev-
ing a better privacy-utility trade-off. For reference, we re-
port the corresponding (ε,δ)-DP (dashed green line), for
δ = 3.8×10−6 (Adult) and δ = 4×10−7 (Purchase).

In practice one may be mostly concerned about some spe-
cific privacy risks, such as membership or attribute inference.
However, because practitioners lack tools to analyze and mit-
igate these specific risks, they resort to enforce Differential
Privacy (DP), which regards any leakage of information about
individual records as a privacy violation. From a theoretical
perspective, this choice is convenient: with suitable param-
eters (ε,δ), DP provides quantifiable resilience against all
threats to individual training data records. There are numer-
ous ways of numerically accounting for the privacy budget
(ε,δ) spent when training a model [14, 17, 25], but few ways
of computing bounds against specific privacy attacks [27].

Threat-agnostic. Firstly, the definition of (ε,δ)-DP is gen-
erally applied in a threat-agnostic manner. However, in prac-
tice there are cases where specific threats give rise to privacy
concerns while others do not. For example, the fact that a per-
son participated in the Census dataset is not privacy sensitive;
but if an attacker were able to infer the values of sensitive



attributes such as race or age, we would rightly regard this as
a privacy violation. Furthermore, there is no principled way
to choose interpretable values for (ε,δ) without considering
a specific privacy threat. Even when the threat is specified,
we still need to find a relationship between this threat and
(ε,δ) in order to evaluate the risk; for example, prior work
has explored the relationship between DP and membership
inference [6, 20, 36]. This raises the question: if our aim is to
protect against specific threats, can we evaluate our models
directly against these threats?

Implementation challenges. Secondly, it is known that im-
plementations of (ε,δ)-DP accountants can be error-prone.
This may be due to implementation difficulties [15, 24] or
numerical errors (e.g., floating point precision) [17]. Further,
despite being considered optimal (up to discretization error),
accountants generally come with computational costs, which
researchers are currently trying to reduce [15].

Our approach. In this paper, we show that it is possible
to directly evaluate a trained model against specific privacy
threats, such as membership and attribute inference, without
actually performing these (often computationally expensive)
attacks. We focus on the mainstream training algorithm DP-
SGD, and derive simple closed-form bounds against these
threats. At the core of our proof technique is the approxima-
tion of the distribution of intermediate gradients produced by
DP-SGD with a Gaussian distribution. We characterize the ap-
proximation error, and show that it can be made negligible by
tuning the privacy parameters of the algorithm; importantly,
the error gets smaller for parameters that ensure good privacy.

Our theoretical analyses are facilitated by use of the Bayes
security metric (β∗) [6]. The main benefit of this metric is
its interpretability: it corresponds to the complement of the
attacker’s advantage, which is widely used in the privacy-
preserving ML literature (e.g., [34]). Furthermore, Bayes se-
curity is threat model specific, prior independent, and one
can easily match it to the (optimal) attacker’s accuracy for
a specific prior. Additionally, we prove that Bayes security
bounds the true positive rate (TPR) of an attacker aiming for
a certain false positive rate (i.e. TPR@FPR), which captures
particularly well the risk of membership inference [5].

Overall, the simplicity of our proofs suggests our tech-
niques can be extended to study other algorithms and privacy
threats. We summarize our contributions as follows:

• We propose a new approach to directly measure the
privacy of ML models trained using DP-SGD, which
addresses the drawbacks outlined above: 1) It is threat-
specific. 2) It streamlines the proof, in that the metric is
directly computed without going via (ε,δ), and it makes
for a straightforward implementation. Importantly, it is
orders of magnitude faster to compute than state-of-the-
art methods for measuring the risk against MIA [14, 17].

• We demonstrate that our new approach matches (tight)
existing techniques in computing bounds for member-
ship inference (MIA) while requiring orders of magni-
tude lesser computation time than prior work.

• We show a relationship between Bayes security and
TPR@FPR, a standard metric for MIA [5].

• We use our new approach to compute bounds for at-
tribute inference (AI). From our bounds, we observe that
DP-SGD is significantly more secure against AI than
MIA. This is important because, if a practical applica-
tion requires security against AI but not MIA, one can
achieve a better utility whilst maintaining acceptable
privacy, as shown in Figure 1.

Our results, as well as those in the previous literature,
assume that an attacker has access to intermediate model
weights during training. However, a more realistic (inference-
time) attacker only has access to the final weights of the
model. To assist future research effort, we also report on
our unsuccessful attempts towards obtaining tighter bounds
for inference-time attackers. We show how our framework
can model this scenario, and discuss what problems one may
need to solve in order to obtain such tighter bounds.

2 Background and Preliminaries

We study the security of DP-SGD against record-level infer-
ence, with a focus on MIA and AI. In this section, we provide
an overview of the DP-SGD algorithm, we formally define
MIA and AI, and we describe the security metric we use to
quantify the resilience of an ML model against both threats.

2.1 DP-SGD
Proposed by Abadi et al. [1], Differentially Private Stochas-
tic Gradient Descent (DP-SGD) is a modification of SGD to
satisfy (ε,δ)-DP, as shown in Algorithm 1. Consider a train-
ing set of data records {z1, . . . ,zN} ∈ ZN and a loss function
L(θ) = 1

N ∑i L(θ,zi), based on model weights θ. Let ηt be a
learning rate, σ a noise scaling factor, C a gradient clipping
norm, and L/N a sampling factor. DP-SGD trains a model
θT as follows: for each step t = 1, ...,T , sample on average
L records from the training set, clip their gradients’ norms
to C, and add Gaussian noise to their sum; use the resulting
noisy gradient g̃t to update the model weights according to
the learning rate, and repeat for the desired number of steps.

Typically, the privacy parameters (ε,δ) are obtained numer-
ically via accounting mechanisms; due to the iterative nature
of DP-SGD this is essential to obtain accurate privacy guaran-
tees. Abadi et al. [1] introduced the Moments Accountant for
computing the privacy guarantees for composed mechanisms.
More recently, Dong et al. [13] introduced f -DP which gives
rise to lossless composition: this notion of DP composes all



Algorithm 1: DP-SGD({z1, . . . ,zN}, L(θ), ηt , σ, L, C)

Initialize θ0 randomly
for t ∈ [T ] do

Take a random sample Lt with sampling
probability L/N

Compute gradient
For each i ∈ Lt , compute gt(zi)← ∇θt L(θt ,zi)
Clip gradient
ḡt(zi)← gt(zi)/max

(
1, ‖gt (zi)‖2

C

)
Add noise
g̃t ← 1

L

(
∑i ḡt(zi)+N (0,σ2C2I)

)
Descent
θt+1← θt −ηt g̃t

end
Output θT

possible (ε,δ) at once, and only afterwards it converts the
privacy guarantee back to a single (ε,δ) pair. Alas, comput-
ing this composition is challenging, and several numerical
approximations have been developed [14, 17, 24, 25]; these
are tight up to discretization error.

2.2 Threat Models
We consider two specific threat models: membership infer-
ence (Game 2), and attribute inference (Game 3).

Membership inference (MIA). In (record-level) MIA, the
attacker aims to ascertain whether a data record appeared in
the model’s training set. This threat model is formalized in
Game 2. In this game, a challenge point z∗s is sampled from a
set of challenge points {z∗i }M

i=1 according to an arbitrary prior
distribution π on this set. The model is trained on D∪{z∗s} for
T steps, and the intermediate DP-SGD updates {θt}T

t=1 are re-
vealed to the attacker; the attacker is also assumed to know the
game parameters T ,T,π, as well as the set of challenge points.
The attacker’s goal is to guess which of the challenge points
was used for training the model. Game 2 generalizes common
MIA setups in two ways. First, the number of challenge points
M can be larger than 2. Second, the game enables associating
a prior distribution π to the choice of the challenge points.
Thanks to the metric we use (Section 2.3), it will suffice to
compute the security against MIA for the two worst-case
challenge points (M = 2) and a uniform prior (Section 3).

Game 2: MIA-record-level(TT ,D,{z∗1, ...,z∗M},π{1,...,M})
s← π{1,...,M}
{θt}T

t=1← TT (D∪{z∗s})
s′← Attacker({θt}T

t=1, {z∗i }M
i=1,D,TT ,π{1,...,M})

Attribute inference (AI). Let z∗ = ϕ | s be a data record,
composed of the concatenation of two vectors: ϕ and s. In
attribute inference, the attacker aims to infer the value of one
or more sensitive attributes of a data record, s, given access
to the remainder of that record, ϕ. As shown in Game 3, the
sensitive attribute s ∈ A is sampled according to some prior π

on the set. The model is trained for T steps on the training set
D∪{z∗}, and the intermediate updates {θt}T

t=1 are revealed
to the attacker; the attacker is also assumed to know all the
game parameters, including the set of sensitive attributes. The
goal of the attacker is to guess the sensitive attribute s.

Game 3: AI(TT ,D,ϕ,A ,πA)

s← πA
z∗← ϕ | s // The attributes are concatenated

{θt}T
t=1← TT (D∪{z∗})

s′← Attacker({θt}T
t=1, ϕ,A ,D,TT ,π{1,...,M})

2.3 The Bayes security metric
We define a metric of risk for these threats.

Generalized attacker advantage. The commonly-used
metric of advantage quantifies how much more likely an
attacker is to succeed, at either membership or attribute infer-
ence, when given access to the trained model, as compared
with not having this access. Formally, suppose the attacker’s
goal is to guess some secret information, measured by random
variable S. Let π denote any prior knowledge the attacker has
about S; mathematically, π is a probability distribution on the
range of S. We write Attacker(π,θ) to indicate an attacker
who has access to the model θ (and with prior knowledge π),
and Attacker(π) for an attacker who guesses purely based on
prior knowledge; we assume the former is at least as success-
ful as the latter. The generalized advantage [7] is defined to
be the difference between the probability of success of these
two attackers, normalized to a value between [0,1]: 0 implies
no advantage and 1 maximal advantage:

Advπ =
Pr[Attacker(π,θ) = S]−Pr[Attacker(π) = S]

1−Pr[Attacker(π) = S]
.

This is a generalized version of the notion of advantage
typically used in the literature (e.g., [34]): by letting S take a
binary value and setting π to be a uniform distribution over
the possible values of S, we get Pr[Attacker(π) = S] = 1/2;
substituted into the above, this gives the familiar expression
for advantage, as used by Yeom et al. [34]:

Advπ = 2Pr[Attacker(π,θ) = S]−1

Note that this specific notion of advantage cannot be ap-
plied to Games 2 and 3 because, in both cases, the secret may



Table 1: Summary of notation.

Symbol Meaning

z∗ Challenge point about which the attacker
wishes to learn some property.

f (z∗) Property of interest.
O1, ...,OT Intermediate weights output by DP-SGD.
G1, ...,GT Intermediate (noisy) gradients output by

DP-SGD for the challenge point.
PG(z∗)|S=s Distribution of the gradient vector G =

(G1, ...,GT ) given a point z∗ s.t. f (z∗) = s.
σ Noise parameter.
C Gradient norm clipping parameter.
p = L/N Sampling rate; N: training set size, L: user-

chosen parameter.

have more than two possible values, and they need not come
from a uniform prior distribution π.

Bayes Security. Based on the notion of generalized advan-
tage, we use the Bayes security metric [6, 7], defined as:

β
∗ = 1−max

π
Advπ (1)

This metric takes values in the range [0,1], where 1 indicates
perfect security (i.e., no information leakage). Importantly,
the following holds:

Theorem 1 (Bayes security and advantage [6, Theorem 1]).
Bayes security is achieved on (equivalently, the generalized
advantage is maximized on) a uniform prior on two secrets:

β
∗ = 1− max

s0,s1∈S
Advus0 ,s1

,

where us0,s1 is a uniform prior on two secrets s0,s1 ∈ S, i.e.,
Pr[S = s0] = Pr[S = s1] = 1/2, and Pr[S = s] = 0 ∀s 6= s0,s1.

Conveniently, by using Bayes security we further inherit
the following relations: 1) Bayes security is directly related
to the total variation distance between the two worst-case
distributions in the outputs of DP-SGD (Section 3), and 2) it
is related to (ε,δ)-DP (Section 4).

3 Proof Strategy and Main Result

In this paper, we derive bounds on the security of DP-SGD
against record-level MIA (Game 2) and AI (Game 3). First,
observe that these threats can be unified in a record-level prop-
erty inference setup as follows. Let z∗ be some data record
(i.e., the challenge point) about which the attacker aims to
infer some property f (z∗). In MIA, the challenge point is cho-
sen from a set of possible challenge points z∗ ∈ {z∗1, ...,z∗M},
and f (z∗) is an index to that set such that z∗ = z∗f (z∗). In AI,

for an arbitrary challenge point z∗, composed of the concate-
nation z∗ = ϕ | s, where s ∈ A represents a sensitive attribute,
the property is f (z∗) = s. In our main result, we assume that
f is a bijection: there is exactly one challenge point f (z∗) for
each property s ∈ dom( f ); observe that this assumption is
satisfied by construction in our two threat models.1

Let S = f (z∗) be a random variable representing the secret
property. The attacker aims to guess S given the intermediate
models output by DP-SGD, which we denote by the random
vector O = (O0,O1, ...,OT ). In the spirit of quantitative infor-
mation flow [30], this can be seen as an information theoretic
channel, where the relation between S and O is ruled by the
posterior distribution PO|S. The Bayes security of this channel,
β∗(PO|S), measures the additional leakage about the secret S
that an attacker can exploit by observing O.

Looking ahead. In this section, we prove our main result:
a bound on the Bayes security of DP-SGD against the record-
level property inference attack; we later specialize this bound
to the cases of MIA (Corollary 7) and AI (Corollary 10). We
proceed as follows:

1. First, we show one only needs to measure the risk for
the two worst-case property values (challenge points)
(Section 3.1), as a consequence of Theorem 1.

2. We show that the noise on the model weights coming
from the training set can be neglected for our analysis:
it suffices to compute Bayes security for the gradient of
the challenge point z∗. We then observe that gradients
follow a Gaussian mixture distribution.

3. We prove that a mixture of Gaussians can be approxi-
mated by a single Gaussian distribution, with an error
term that gets smaller as the noise parameter (σ) in-
creases (Proposition 4).

4. We obtain a bound on the Bayes security of DP-SGD
by bounding the total variation distance between the
distribution of the gradients for the two challenge points
that correspond to the two worst-case property values.

3.1 All You Need Is Two Points ...

In both Games 2 and 3, S takes values from a potentially
large set. Further, its prior distribution may be skewed: some
values of S may be more likely than others. For example, in
MIA, one data record may be more likely than another to be
a member; this is captured by our formalization in Game 2,
where π may assign more weight to one particular record.

1We suspect that this assumption can be relaxed: if f was not a bijection,
there may be two challenge points z∗0 6= z∗1 satisfying the same property
f (z∗0) = f (z∗1) = s; but this can only make the attack easier, as it skews the
prior distribution on s, thereby making it a more probable guess.



To solve this issue, we apply the fact that the generalized
advantage is maximized over a uniform prior; this is an im-
mediate consequence of Theorem 1 by Chatzikokolakis et al.
[6]. This implies that, when studying the security of DP-SGD
against these threats, it is sufficient to limit the range of S
to the two values that are the easiest to distinguish for the
attacker, and set π to the uniform prior.

For example, under the MIA threat model, this means that
by measuring the security for just two challenge points (M =
2) that are equally likely to be members, we obtain a bound
on the security for arbitrary values of M ≥ 2. Equivalently, for
AI, it is sufficient to look at the two leakiest attribute values.

3.2 ... and Intermediate Gradients
The second step in our analysis is the observation that an
attacker obtains maximal advantage if they are given direct ac-
cess to the intermediate gradients, rather than model weights.
Formally, the attacker observes a random vector O(z∗) =
(O0(z∗), ...,OT (z∗)), the intermediate model weights; in our
notation, we make the dependence on the challenge point z∗

explicit where needed. O is such that O0 = θ0 and for t ≥ 0

Ot(z∗) =
1
L

(
N−1

∑
i=1

ḡt(zi)B (p)+ ḡt(z∗)B (p)+N (0,σ2C2I)

)

where B (p) a Bernoulli distribution, with p = L
N , and

N (0,σ2C2I) is isotropic Gaussian noise with variance σ2C2.
We use the notation PO(z∗)|S=s to indicate the distribution

of the intermediate weights, conditioned on the fact that the
challenge point satisfies z∗ : f (z∗) = s.

Now, consider the random vector G = (G1, ...,GT ):

Gt = ḡt(z∗)B
(

L
N

)
+N (0,σ2C2I) (2)

We observe that the distribution PO|S can be obtained via
postprocessing from PG|S; since the Bayes security of a chan-
nel cannot decrease by postprocessing, we have:

Corollary 2 (Consequence of Theorem 4 in [6]).

β
∗(PO|S)≥ β

∗(PG|S) .

Intuitively, an attacker has a better (or equal) advantage
when attacking channel PG|S than PO|S. The reason is that G
carries at least as much information about the challenge point
z∗ as O. We shall henceforth study the security of PG|S.

Gradients distribution. We provide an explicit expression
for PG(z∗), for a generic challenge point z∗.

At each step, the intermediate gradient is a Gaussian, cen-
tered either in ḡ(z∗) with probability p, or 0 otherwise. This
means that PG is a mixture of 2T Gaussians: intuitively,
G takes values from a Gaussian centered in (0, ...,0) with

probability (1− p)T (i.e., the gradient is never sampled),
from a Gaussian centered in (ḡ(z∗),0, ...,0) with probabil-
ity p(1− p)T−1 (i.e., ḡ(z∗) is sampled in the first step only),
and so on. Let b ∈ {0,1}T be a binary vector, where bt = 1
means that Gt is centered in ḡ(z∗), and bt = 0 means that
Gt is centered in 0; here, the role of b is that of a mask that
indicates in which steps the challenge point is sampled. Then
we can write the distribution as:

PG = ∑
b∈{0,1}T

cb

T

∏
t=1

N (ḡ(z∗)�b,σ2I) ,

where x� y is the Hadamard (i.e., entrywise) product of
vectors x and y, and cb is the probability of observing b,
cb = p|b|(1− p)T−|b|, where |b| is the number of 1’s in b.

3.3 Bayes Security of DP-SGD
To determine the Bayes security of DP-SGD, we will use the
following relation.

Proposition 3 (Bayes security and total variation [6]). Let
M : S→O be a randomized algorithm. Then:

β
∗(M ) = 1− max

s0,s1∈S
tv(PM (S)|S=s0

,PM (S)|S=s1
) ,

where PM (S)|S is the posterior distribution of the mechanism’s
output M (S) given some input random variable S, and tv is
the total variation distance2.

Based on this, we compute the Bayes security of DP-SGD
as the maximal total variation between PG|S=s0 and PG|S=s1 ,
across all pairs s0,s1 ∈ S; as observed above, PG|S is a mixture
of Gaussians. Unfortunately, there are no known tight bounds
on the divergence between mixtures of Gaussians.

This is not an unknown obstacle: all previous DP-SGD
analyses (e.g., DP-based) have encountered its analog. FFT-
based accountant methods address this issue by discretization:
for a fine enough grid, one can empirically measure the diver-
gence between the distributions. Recent work by Mahloujifar
et al. [27] uses Monte Carlo estimations, by sampling from the
mixture distribution. Both approaches, although valid, come
with high computational costs.

In this paper, we study the benefits of a different strategy:
we observe that the mixture distribution generated by DP-
SGD can be approximated with a Gaussian distribution for
certain choices of parameters. Fortunately, these parameter
choices happen to be of interest for most practical purposes.

Approximating a mixture with a Gaussian. The proof of
our main result relies on computing the total variation be-
tween two Gaussian mixtures. Our first observation is that, in

2Consider two measures P and Q on the same measurable space (Z,F );
their total variation distance is: tv(P,Q) = supA∈F |P(A)−Q(A)|.



Figure 2: We compare the error induced by approximating a
mixture of Gaussians with a Gaussian (Proposition 4). The
error, measured as the total variation between the original and
approximate distributions, is computed via numerical integra-
tion for a fixed T = 1. A small ratio between the sampling
rate p and the noise parameter σ ensure the error is negligible.

some cases, a mixture of Gaussians can be approximated by
a Gaussian. We formalize this in the following result, which
shows the error committed when making this approximation
in terms of the total variation between the original and ap-
proximate distributions. For clarity, we let p = L/N.

Proposition 4. Let fM be a Gaussian mixture defined
as follows. For a mean vector µ = (µ1, ...,µT ) and co-
variance matrix σ2C2IT , and C = maxT

j=1 µ j, let fM (x) =
∑b∈{0,1}T πb fN (µb,σ2C2)(x) . The i-th component takes values
from fN (µi,σ2C2) with probability p ∈ [0,1], or from fN (0,σ2C2)

otherwise. Here, πb = p|b|(1− p)T−|b|. The error committed
in approximating fM with fN (pµ,σ2C2) is:

tv( fM , fN (pµ,σ2C2)) = O
(√

pT
σ

)
Proofs are in the appendix.

The total variation between two Gaussians. The Bayes
security of DP-SGD reduces to computing the total variation
between two Gaussian distributions that are identically-scaled
(with isotropic covariance matrix). For this step, we use the
following closed form expression, which was derived by De-
vroye et al. [12] using a result by Barsov and Ul’yanov [4]:

Corollary 5 (From Barsov and Ul’yanov [4], Theorem 1).
Let d ≥ 1, µ0,µ1 ∈ Rd , σ > 0. Then,

tv
(
N
(
µ0,σ

2I
)
,N
(
µ1,σ

2I
))

= erf
(
‖µ0−µ1‖

2
√

2σ

)

Main result. We can now state our main result: a closed-
form bound on the security of DP-SGD against record-level
property inference. The bound depends on a variable, ∆ f ,

whose value depends on the threat model (and, consequently,
property of interest f ), defined as:

∆ f = max
s0,s1∈dom( f )

‖ḡ( f−1(s0))− ḡ( f−1(s1))‖F . (3)

Here, ḡ(z∗) = (ḡ1(z∗), ..., ḡT (z∗)) is the sequence of gradients
computed by DP-SGD on a challenge point z∗; f−1(s) is the
challenge point that satisfies f ( f−1(s)) = s, which is unique
by assumption; ‖·‖F is the Frobenius norm (see Definition 11
in the appendix).

Intuitively, ∆ f indicates how much influence each property
value has on the gradients, and it takes higher values the more
the gradients change when the property value changes; in par-
ticular, it captures the worst-case scenario, when the attacker
has to distinguish between the two property values that leak
the most information. We will provide an explicit value for
∆ f for the case of MIA (Corollary 7) and AI (Corollary 10)
in the next sections.

The Bayes security of DP-SGD against record-level prop-
erty inference is as follows:

Theorem 6. Assume that f is a bijection, and let ∆ f be de-
fined as in Equation (3). The Bayes security of DP-SGD with
respect to the record-level property inference threat described
in Section 3 is:

β
∗(PO|S)≥ 1− erf

(
p

∆ f

2
√

2σC

)
−O

(√
pT
σ

)
.

The proof combines the approximation of a mixture with a
Gaussian (Proposition 4) with the bound on the total variation
between two Gaussians (Corollary 5).

In the next two sections, we apply this result to bound the
security against MIA (Section 4) and AI (Section 5).

4 Membership Inference

Theorem 6 gives a bound for the Bayes security of DP-SGD
against a record-level property inference attack. In this section,
we apply this result to derive a bound on MIA, we study its
tightness in comparison with existing estimates based on DP
accountants, and we show how our bound relates to other
metrics, such as the TPR@FPR of an optimal attacker.

The Bayes security of DP-SGD against MIA follows as a
corollary to Theorem 6:

Corollary 7. The Bayes security of DP-SGD against record-
level MIA (Game 2) is:

β
∗ ≥ 1− erf

(
p

√
T√
2σ

)
−O

(√
pT
σ

)
.

DP-SGD parameters selection. Theorem 6 makes it pos-
sible to cheaply decide on which parameters to select before
running DP-SGD, given a desired level of MIA-resilience.



Figure 3: Bayes security against MIA: picking the noise and
sampling rate to achieve a desired level of security (T = 5k).

Suppose that an application requires β∗ ≥ 0.98; assuming
a uniform prior between members and non-members, this
corresponds to at most a 51% attack success probability. Fur-
thermore, suppose we wish to train for T = 5k steps. We can
select the noise σ and sampling rate p based on the relation:

p =
erf−1(1−β∗)

√
2√

T
σ ; (4)

in this example, p≈ 0.00035σ, which guarantees the desired
level of protection. Figure 3 shows this in general, for T = 5k.

4.1 Comparison with the PLD accountant
For the MIA threat model, there is a direct relation between
Bayes security and (0,δ)-DP:

Proposition 8 (Bayes security and (0,δ)-LDP [6]). Let M :
S→ O be a randomized algorithm that is also (0,δ)-LDP,
and assume S= {0,1}. Then:

β
∗(M ) = 1−δ .

Thanks to this relation, we can compare our security bounds
with equivalent ones estimated via state-of-the-art (ε,δ)-DP
numerical accountants. We use the PLD accountant [24, 25],
which supports the substitution adjacency relationship; this
matches our MIA threat model (Game 2), where the attacker
has to distinguish two datasets that differ on a single record.3

The goal of this comparison is twofold. First, we evaluate
under what parameter choices our bounds are tight (i.e., when
the approximation error derived in Proposition 4 is small).
Second, we compare their computational costs.

The tightness of our MIA bound. Our main result (Theo-
rem 6) and, consequently, our bound on MIA (Corollary 7)
are based on the approximation of a mixture of Gaussians

3The PLD accountant also supports the add-remove adjacency relation-
ship, which is not relevant for our threat model.

Figure 4: Approximation error between our bound (Corol-
lary 7) and the PLD accountant, w.r.t. the noise level σ and
the number of epochs (pT ), with a sample rate p= 0.001. The
error is measured as the absolute difference between the two
estimates. A label for the error is shown only if it is ≥ 0.01.

to a Gaussian distribution (Proposition 4). Naturally, we do
not expect this approximation to work well for all parameter
choices. Based on our initial evaluation for T = 1 (Figure 2),
we suspect it will perform better for larger values of σ.

In these experiments, we compare β∗ obtained as in Corol-
lary 7 with a (0,δ) estimate given by the PLD accountant;
because PLD is tight up to discretization error, we use its
estimate β∗ ≈ 1−δ as the ground truth for these experiments.
Figure 4 shows the absolute error between the two estimates.
We observe that our bound has a small error (≤ 0.01) for
σ ≥ 1 up to 50 epochs (i.e., T = 50k for p = 0.001); as the
number of epochs grows to 100, the error increases to ≈ 0.02.
This shows that our bound is tight for a wide range of realistic
parameters. On the other hand, we observe that for σ < 1 the
error is large; intuitively this is because the approximation of
a mixture with a Gaussian gets worse the smaller the variance
of the Gaussian is. In practice, this means it is not advisable
to use our bound for σ < 1.

Computational efficiency. We compare the costs of our
bound with the PLD accountant. Figure 5 shows that our
bound is orders of magnitudes faster to compute than the
respective PLD estimate.4 The time efficiency of our bound
enables practitioners to select the parameters for DP-SGD
interactively, in real-time, and with a high level of accuracy.

4.2 Bayes Security and (ε,δ)-DP
An important drawback of (ε,δ)-DP is that it may be harder
to match to a specific threat model; in turn, this makes it
difficult to select appropriate values (ε,δ). In this section, we
compare Bayes security with DP in terms of their ability to
capture metrics of interest for MIA. We do this analysis by
relating Bayes security and (ε,δ)-DP to two quantities that
are commonly used for evaluating MIA threats: the advantage,

4Comparisons with other state-of-the-art accountants led to similar con-
clusions.



Figure 5: Computational cost of our bound (Corollary 7) and
the PLD accountant, w.r.t. the number of epochs, with a sam-
ple rate p = 0.001. The time is measured in seconds.

and the true positive rate at a certain false positive rate (hereby
denoted by TPR@FPR).

MIA advantage. The MIA advantage, Adv, measures how
much more likely an attacker is to guess the membership of
a data record having access to the trained model, compared
to an attacker who only guesses based on prior knowledge.
Intuitively, Adv describes the additional risk that one incurs
by releasing the model, w.r.t. the MIA threat.

The equivalence between Bayes security is direct: β∗ =
1−Adv. The relation between Adv and (ε,δ)-DP was shown
by Humphries et al. [20]: if a mechanism is (ε,δ)-DP, then
the advantage is bounded as follows:

Adv≤ eε−1+2δ

eε +1
. (5)

In Figure 6, we illustrate the behavior of this bound for
progressively decreasing values of ε. The curves are obtained
by computing (ε,δ) via the PLD accountant for DP-SGD, and
then plugging them into Equation (5).

Results indicate that, by taking smaller values of ε, we get
tighter bounds on the advantage. In particular, the tightest
bound is achieved when ε = 0; this corresponds to the case
when β∗ = 1−δ. This validates the use of a notion related to
(0,δ)-DP: under this configuration, we can hope to achieve
the tightest analysis from an advantage perspective.

TPR@FPR. Carlini et al. [5] recommended measuring the
true positive rate of attacks at low false positive rates (i.e.,
TPR@FPR). Their reasoning is that attacks with high accu-
racy may be unhelpful in practice; e.g., an attack can have
99% accuracy yet not be able to identify members confidently
without an unreasonable number of false positives.

To facilitate a comparison, we first prove a relation between
Bayes security and TPR@FPR:

Proposition 9. Consider a randomized mechanism M : S→
O with S= {0,1}, and let S be a random variable on S with
π = Pr[S = 1]. Let s′ = Attacker(π,M (S)) be the guess that

Figure 6: (ε,δ)-DP of DP-SGD. We set N = 100k, L = 10,
C = 1, T = 1. Here, β∗ is computed via Corollary 7.

Attacker makes for S given the output of the mechanism. Let
the true positive rate (TPR) be the probability that attacker
Attacker guesses correctly when S = 1, and the false positive
rate (FPR) be the probability that they guess incorrectly when
S = 0. If the mechanism is β∗-secure then for every attacker:

TPR≤ 1+FPR−β
∗ if π≤ 1/2

TPR≤ π

1−π
(1+FPR−β

∗) otherwise.

We have equality for a uniform prior, π = 1/2.

We observe that the special case π = 1/2 was known (e.g.,
[34]). However, we believe the general case is novel. In prac-
tice, we expect the case π ≤ 1/2 to be more relevant; for ex-
ample, in MIA, the prior probability that a data record is a
member is typically smaller than the alternative case.

We compare this with the bound given by f -DP, which
gives the best possible bound on TPR@FPR; we remark that
obtaining f -DP bounds is computationally expensive. In Fig-
ure 7, each method gives an upper bound on the TPR for a
chosen FPR value. We observe that Bayes security is optimal
for TPR@FPR=0.5; this matches the case when β∗ is the com-
plement of the advantage. The bound given by Bayes security
becomes worse for lower levels of FPR. However, we observe
a relatively small discrepancy with respect to the f -DP bound.
For example Bayes security bounds TPR@0.1FPR by 0.128,
while f -DP bounds it by 0.113; for a smaller FPR, Bayes
security indicates TPR@0.01FPR ≤ 0.038, while the f -DP
bound is 0.012.

These experiments suggest that one can use the (cheap
to compute) Bayes security to obtain a good bound on
TPR@FPR, and then use f -DP to tighten the bound if needed.

4.2.1 Corollary 7 as an (ε,δ)-DP Estimator

We observe that, in addition to having a direct expression for
the security of DP-SGD against MIA, one could use Corol-
lary 7 to obtain a rough estimate of (ε,δ)-DP. To this end, we
can once again exploit Equation (5) by Humphries et al. [20].

By the correspondence between the advantage and Bayes
security (Adv = 1−β∗), we obtain a bound on ε as follows.



Figure 7: Bounds on TPR@FPR for DP-SGD, computed via
Bayes security (Proposition 9) and f -DP. The viable region
according to β∗ is highlighted in orange. DP-SGD parameters:
p = 0.0001, N = 10k, 50 epochs (i.e., T = 50/p), σ = 2.

Let β∗ be the Bayes security of DP-SGD computed as per
Corollary 7; then for any choice of δ ∈ [0,1), we get:

ε≥ log−2δ+β∗−2
β∗

.

This bound can be a cheap alternative to more computa-
tionally expensive methods (e.g. numerical accountants) for
estimating ε. However, it should be remarked that this bound
is loose. The inequality by Humphries et al. [20], whilst tight,
applies to any (ε,δ)-DP algorithm: one might improve on
their inequality and the above estimate for the case of DP-
SGD; this is what more advanced (ε,δ)-DP estimators do.

Related work. The (ε,δ)-DP literature has explored the
privacy guarantees of many basic mechanisms. In particu-
lar, Balle and Wang [2] and Sommer et al. [31] studied the
privacy of a Gaussian mechanism without subsampling. By
applying our observation that the distribution of the gradients
can be approximated with a Gaussian, the special case p = 1
of Corollary 7 can be obtained as a consequence of their re-
sults, thanks to the relationship between Bayes security and
(ε,δ)-DP. Further, the effect of subsampling in the context
of DP is understood to amplify the privacy level by a factor
of p [1, 28, 32]. In concurrent work, Mahloujifar et al. [27]
suggested the following strategy: for a specific threat (mem-
bership inference, in their case), determine the advantage of
an attacker who observes the intermediate models output by
DP-SGD. Their proposal is to estimate this advantage via
Monte Carlo simulations. Our analysis strategy is similar to
theirs in spirit: we aim to quantify the leakage for specific
threats. Differently from them, we tackle a more general case
(which subsumes membership and attribute inference), and
we obtain closed-form expressions for our bounds.

5 Attribute Inference

In this section, we apply Theorem 6 to measure the security
of DP-SGD against AI. First, we discuss the limits of any
security analysis: without making assumptions, one cannot
improve on MIA bounds (e.g., Corollary 7). We mitigate
this issue by providing data-dependent bounds for AI, and
by instrumenting DP-SGD to compute them. Second, we
study whether a data-dependent security analysis has any
security implications. Finally, we discuss the computational
time overheads of our method and ways to improve it.

5.1 Limits of any AI Analysis

Before stating our AI bound, it is important to understand
what is achievable by a DP-SGD security analysis under this
threat. As it turns out, it is impossible to obtain a non-trivial
bound for AI (i.e. a bound for AI that is better than the MIA
bound) without making assumptions on the gradient function.

This is easy to see by the following example. In AI, the
attacker tries to guess the secret value S given partial infor-
mation ϕ and the model’s weights. By the arguments made
in Section 3.2, we can simplify this and limit the informa-
tion available to an attacker to ϕ and the clipped and noisy
gradient: ḡt(z∗)+Noise; further, by the arguments made in
Section 3.1, we can assume there are just two secrets (i.e.
S ∈ {0,1}). Let us now consider a contrived gradient func-
tion, which returns ḡt(ϕ | s0) =−ḡt(ϕ | s1) = (C,0, ...,0) for
every t, where C is the clipping gradient. It is easy to see that
this case matches record-level MIA, and that the bound on the
Bayes security against AI will be Corollary 7, which cannot
be improved upon without further assumptions. Even then, it
is unclear what reasonable assumptions one could make on
ḡt without affecting the validity of a security analysis.

We address this problem by instrumenting DP-SGD to keep
track of the sensitivity ‖ḡt(ϕ | si)− ḡt(ϕ | s j)‖, for all training
points z and all possible attribute values si,s j. This comes with
an extra computational cost, which is although acceptable for
various real-world tasks. In the next part of this section, we
derive the bound on Bayes security, describe an algorithm
for measuring the bound, and then describe optimization and
approximation strategies.

5.2 Bayes Security of DP-SGD against AI

We can now adapt our main result (Corollary 7) to the case of
AI; as before, we do this by specializing the definition of ∆ f .
We write ϕ(z∗) to denote the non-sensitive part of z∗.

Corollary 10. The Bayes security of DP-SGD against AI is:

β
∗(PO|S)≥ 1− erf

(
p
‖R‖

2
√

2σC

)
−O

(√
pT
σ

)
,



where R = (R1, ...,RT ) with

Rt = max
z∗∈Lt

max
s0,s1∈A

‖ḡt((ϕ(z∗),s0))− ḡt((ϕ(z∗),s1))‖ ,

where Lt is the batch sampled at step t.

Algorithm 4: AI-resilient-SGD({z1, . . . ,zN},L(θ) =
1
N ∑i L(θ,zi),ηt ,σ,L,C,A)

Initialize θ0 randomly
for t ∈ [T ] do

Take a random sample Lt with sampling
probability L/N

Compute gradient
For each i ∈ Lt , compute gt(zi)← ∇θt L(θt ,zi)
Compute gradient bound w.r.t. attribute’s
value
Rt = maxz∗∈Lt maxs0,s1∈A ‖ḡt((ϕ(z∗),s0))−
ḡt((ϕ(z∗),s1))‖
Clip gradient
ḡt(zi)← gt(zi)/max

(
1, ‖gt (zi)‖2

C

)
Add noise
g̃t ← 1

L

(
∑i ḡt(zi)+N (0,σ2C2I)

)
Descent
θt+1← θt −ηt g̃t

end
Output θT

We describe how DP-SGD can be adapted to compute the
values Rt . We observe that bounds computed in this manner
are data-dependent: the value of Rt at step t depends on the
model’s parameters at that step, and on the data itself. In the
next part of this section, we discuss why this has no privacy
implications for the attack under consideration (AI).

Algorithm 4 modifies DP-SGD for calculating Rt . For every
batch Lt and every point z∗ ∈ Lt , the algorithm augments ϕ(z∗)
with all completions s ∈ A , and determines the maximum
distance between the two. The Bayes security is determined
by plugging the vector R = (R1, ...,RT ) in Corollary 10.

5.3 Privacy Implications of Data-dependence
One may wonder whether computing a security metric that
depends on the data may have any privacy implications; in-
deed, β∗, computed as per Algorithm 4, contains information
about the secret. The main concern raises when revealing β∗

to a malicious party: would they be able to infer any privacy
information about the training set if given access to it?

We analyze this concern w.r.t. to two threat models: MIA
and AI. We can describe each case similarly to Games 2-
3, with the difference that the output O communicated to
the attacker is the security metric β∗. Equipped with this
information, the attacker’s goal is to guess the secret S (i.e.,
membership of a challenge point or attribute value).

MIA. Revealing the Bayes security β∗ of DP-SGD against
AI, computed as described in Algorithm 4, may leak the mem-
bership of a data record. An example that supports this claim
follows. Suppose the challenge points, z∗0 and z∗1, are both
such that Rt = maxs0,s1∈A ‖ḡt((ϕ(z∗b),s0))− ḡt((ϕ(z∗b),s1))‖;
the parameter Rb

t , computed for either challenge point z∗b, is
maximized by that challenge point. Further, suppose R0

t 6= R1
t .

In this special case, the attacker can infer the challenge point
from β∗. Based on this observation, we recommend that when-
ever both MIA and AI are a concern, the security parameter
estimated for the AI analysis is not revealed to the public.

AI. If the main concern is AI, no information is revealed by
β∗ itself. The reason for this is that Rt is computed based on all
possible values A for the attribute. Therefore, Rt (hence, β∗)
is the same regardless of the value of the sensitive attribute s.
Therefore, if AI is the only threat of concern for a deployment,
it is safe to reveal the estimated security metric to the public.

5.4 Computational Costs and Optimization
The cost of Algorithm 4 grows quadratically in the number
of attributes |A |. In our experiments (Section 6), we observe
that the time overhead is acceptable for small attribute spaces.
Nevertheless, as A grows, this cost becomes too high. We
explore two strategies for reducing this cost.

Domain knowledge. As a first strategy, we can use the fact
that Bayes security is maximized over two secret values only
(Theorem 1); in particular, these should be the two values
s0,s1 ∈ A that maximize the attacker’s advantage. In many
practical applications, we can exploit domain knowledge to
decide in advance what values will likely give the attacker
the best advantage. For example, consider the MNIST dataset,
where each data record is a pixel matrix, and where each
pixel is represented by a value in [0,1]. Suppose the sensitive
attribute is one of such pixels.5 In this case, we can make the
assumption that the two values maximizing the risk for the
attribute will be the two extremes, {0,1}. This observation
can substantially reduce the computation cost of Algorithm 4.

The point set diameter problem. A second strategy is to
approximate the value Rt . To this end, we observe that finding
the distance between the two maximally distant gradients is
an instance of the well-known point set diameter problem,
which is defined as follows. Let (M,d) be a metric space
on a finite set M for some metric d. A solution to the point
set diameter problem is an algorithm that returns diamM =
maxx,y∈M d(x,y). Various exact and approximate solutions
exist for this problem [6, 21, 33]. In this paper, we consider a
simple O(N) solution, where N = |M|, which gives a lower

5We could equivalently define the risk for a set of pixels at once. A similar
argument would apply.



bound based on the triangle inequality: for any choice x ∈M,
we have diamM ≤ 2maxy∈M d(x,y).

Let v be the mean vector of the gradients
{ḡt((ϕ(z∗),a))}a∈A ; we estimate Rt as:

Rt ≤ 2max
a∈A
‖ḡt((ϕ(z∗),a))− v‖ .

Naturally, the choice of a lower bound here is security-
motivated: it measures the worst-case for the victim.

Note that this estimate can be improved either by picking
more carefully the point v, or by running this algorithm for
various choices of v and then choosing the one giving the tight-
est bound. Despite the approximation given by the triangle
inequality, in our experiments we observed this approxima-
tion to be good enough. Nevertheless, practical applications
may consider solutions that give tighter bounds (e.g., [21]).

Related and Future work. With an appropriate choice of
adjacency relationship, one can capture the AI threat in DP.
One may wonder whether this observation enables adapt-
ing accountant-based analyses of DP-SGD to this threat. We
observe that DP-SGD uses gradient-clipping to bound sen-
sitivity. Since gradients are computed per-example, there is
no stronger data-independent sensitivity bound for AI than
MIA when adapting neighboring datasets as differing in one
attribute in one record [22]. Unfortunately, attribute-DP mech-
anisms [37] are impractical for ML.

Opportunities for future work include further improvements
to the computational efficiency of our AI bounds analysis.
When using the approximate algorithm, the bottleneck of the
analysis becomes computing the gradients of data records
obtained by replacing their sensitive attribute. A promising
strategy is to use influence functions (IF) [10, 23] to approx-
imate this more efficiently. The main idea behind IF is to
efficiently approximate the addition and removal of a train-
ing point to a trained model via a Taylor approximation of
a Newton step. We observe that future work may explore
further strategies. In addition to using alternative solutions to
the point set diameter problem, one could use optimization
algorithms such as gradient descent to obtain the value of Rt
more quickly. Future work may also explore approximations
of the Rt expression, e.g. by using a Newton approximation
by taking inspiration from the influence functions literature.

6 Empirical evaluation

We evaluate our security analyses on models trained via DP-
SGD on two datasets. First, we study the computational costs
of the AI analysis, and the effectiveness of its approximation
(Section 5). Second, we compare the privacy-utility trade-offs
that our MIA and AI analyses can offer.

Datasets. We use two tabular datasets; this makes it mean-
ingful to conduct an attribute inference analysis. They are

the Adult Census Income dataset (Adult) and the Purchase
dataset (Purchase). The Adult dataset has 32,561 records
with 108 attributes each (after one-hot-encoding). It contains
data from the 1994 US Income Census, and the learning task
is to predict the income of a person (precisely, whether it
is above 50K/year or not), given attributes such as age and
education. Importantly, it has attributes taking more than 2
possible values; this facilitates a comparison between the
“full” and “approximate” AI analyses. We select age to be the
sensitive attribute for the AI analysis: this attribute has 73
unique values, ranging between 17 and 90. For the purpose of
the AI analysis, we consider the entire range {17,18, ...,90}.

The Purchase dataset has 197,324 records and 600 at-
tributes. Each record correspond to one customer, and each
(binary) attribute indicates whether the customer bought a
particular item. This dataset enables evaluating how well our
analyses scale to larger datasets. For the AI analysis, we select
the first attribute (purchase) to be the sensitive one.

Models and setup. We train two fully connected neural
networks as described by Bao et al. [3], implemented via
pytorch. We instrumented Opacus [35] to support our AI
analysis, as a callback function that is run at every step.

Privacy parameters. We use Equation (4) for selecting
the privacy parameters p and σ. For illustration purposes,
we aim at a MIA Bayes security β∗ = 0.9 after 20 epochs;
this sub-optimal security against MIA enables observing the
benefits of the AI analysis. We run DP-SGD for 30 epochs;
this enables observing the behavior of β∗ after the predicted
number of epochs. We let L = 256 for the Adult dataset, and
512 for the Purchase dataset. This, paired with the training
set size, enables determining the following noise parameters
(Equation (4)): σ = 3.51 (Adult) and σ = 1.8 (Purchase).

6.1 AI analysis
Running Time. First, we evaluate the computational costs
of our analysis. We present the measurements for the Adult
dataset, which is harder to tackle from an AI analysis per-
spective; indeed, for each step we need to compute N×|A |
gradients, where N is the size of the training set, and A are the
possible values for the sensitive attribute; further, for every
step we need to solve the point set diameter problem for the
set of generated gradients, which is expensive (Section 5).

We train the model enabling one of the following analyses:
DP accountant, MIA, AI (approximate), AI (full). As a base-
line, we include the training time for the same model without
DP. We run this for 10 epochs (26 steps per epoch). Figure 8
shows the average time taken to train for one epoch.

The cost of training with DP is roughly twice the cost of
training without. We can see that running our MIA analysis
gives a rather marginal improvement over a DP accountant;
indeed, we expect that the computational advantages of our



Figure 8: Average running time per epoch, across 10 epochs.
Adult dataset (sensitive attribute has 73 possible values).

analysis (Section 4) would prove more useful during param-
eter search than during training. Unsurprisingly, we can see
that both AI analyses have large costs relatively to the others.
In Section 6.2, we observe that this may be a fair price to pay
given their advantages from a privacy-utility perspective.

Finally, the approximate analysis reduces the costs by one
order of magnitude. In the next part, we measure how much
this approximation affects the quality of the analysis.

Full vs Approximate AI Analysis. In the previous part, we
observed that the approximate AI analysis heavily reduces the
computational costs. Figure 9 compares the Bayes security
estimates of the two analyses. These experiments are run on
the Adult dataset, whose sensitive attribute has more than 2
values; this enables appreciating the difference between the
approximate and full version. We remark that the approximate
analysis can never indicate more security than the true one: it
is a lower bound of the full AI analysis by construction. The
results suggest that the price one has to pay when running
the approximate AI analysis as opposed to the full one is
fairly small. The estimated bounds on Bayes security after 20
epochs are β∗ ≈ 0.945 for the full analysis and β∗ ≈ 0.950
for the approximate analysis.

Overall, while the costs of the approximate AI analysis
are much larger than standard DP-SGD training, it is still a
relatively scalable way of training, and it has advantages in
the privacy-utility tradeoff, as illustrated in the next section.

6.2 Bayes Security of DP-SGD

Figure 1 relates the Bayes security (MIA and AI) with the
accuracy of the trained model; to avoid jitters, we round the
accuracy to the closest multiple of 10%, and show the cor-
responding confidence region. For reference, we include the
(ε,δ)-DP estimate provided by a numerical accountant.

Comparison with (ε,δ)-DP. We observe that, for the cho-
sen parameters, the risk of MIA is relatively high even for low
values of ε: for ε≈ 0.5, the risk of MIA is β∗ ≈ 0.9 (Adult).

Figure 9: Bayes security on the Adult dataset, estimated via
the full and approximate AI analysis.

By the relation between Bayes security and the attacker accu-
racy, and assuming a uniform prior on the membership, this
value of β∗ implies that the attacker can guess the member-
ship correctly with 55% probability. Similarly, for an attacker
aiming for a maximum FPR or 10%, their TPR is at most
20% (Adult). This is a relatively high risk, considering that it
matches a value of ε that would generally be considered to be
extremely safe. Of course, this analysis depends on various
assumptions: i) that the attacker knows the entire training set
minus the challenge point, ii) that they can access all the gra-
dient updates, and iii) that the MIA threat model is a concern
for the particular deployment. We now show empirically how
relaxing the last assumption offers important privacy-utility
benefits; we discuss the other two assumptions in Section 7.

Empirical comparison between threat models. A princi-
pled way of relaxing a security analysis is to adopt a weaker
threat model; e.g., there are practical applications where MIA
may not be a concern, but AI is.

Consider the best models trained on Adult (83% accuracy)
and Purchase (73% accuracy). We compare their resilience
against MIA and AI by mapping their Bayes security to i) the
attacker’s success rate, and ii) TPR at FPR≤10%. To compute
the former, we need to assume a prior on the membership
(resp., values of the sensitive attribute); for simplicity, we
assume a uniform prior. As for TPR@FPR, we notice it is
not well-defined in general for AI. We define it as follows:
assume that there is a particularly damaging value of the sensi-
tive attribute, which the attacker aims at predicting precisely;
for example, in the Purchase dataset, the attacker may be
interested in the value ‘1’, corresponding to a product pur-
chase. We define TPR@FPR by considering this value to be
the “positives” class. The table below summarizes the results;
we denote the attacker’s success rate by V .

β∗ V TPR
Task AI (MIA) AI (MIA) AI (MIA)

Adult 0.93 (0.88) 53% (56%) ≤ 16% (20%)
Purchase 0.99 (0.87) 51% (57%) ≤ 11% (23%)

We observe that, for both tasks, the AI analysis gives



a much tighter bound on the attacker’s probability of suc-
cess, and on the TPR@FPR, than the MIA analysis. In
particular, we observe that best performing model on the
Purchase dataset, while relatively unsecure against MIA
(e.g., TPR≤23%), is almost perfectly secure against AI
(TPR≤11%). This emphasizes the benefits of a more nuanced
analysis of the privacy risks of DP-SGD, which takes into
account the attacker’s knowledge and goals.

7 Towards Inference-time Attackers

We apply our formalization to capture an inference-time at-
tacker, and discuss obstacles and future directions.

Training-time attacker. Both DP-guided analyses and our
techniques have an important underlying assumption: that the
attacker is able to inspect (and, possibly, modify) the inter-
mediate gradients produced during training. This training-
time attacker is widely used throughout the literature, and
has led to state-of-the-art results, such as the tight bounds
for MIA obtained using the PLD accountant or the approach
by Humphries et al. [20]. However, this assumption is quite
strong in practice. Whilst it might hold in a federated learning
setting, where the attacker can inspect (and possibly modify)
the gradients during training, it it not representative of settings
in which the adversary cannot observe the training process,
e.g., a model trained privately in a secure environment.

Inference-time attacker. In contrast to the training-time at-
tacker, the inference-time attacker cannot observe the training
process, and only has access to the final model. Note that we
can still consider the standard white-box vs. black-box duality
for the inference-time attacker, which refers to whether the
attacker has either full access to the model’s weights or only
the ability to query the model and receive responses. Intu-
itively, the inference-time attacker has less information about
the model than the training-time attacker, so it is reasonable
to assume that the former should be weaker than the latter.
Evaluating security against an inference-time attacker may
therefore yield significantly better bounds.

Modelling inference-time attackers with our framework.
We expect our analysis techniques can be used for studying
this weaker (albeit more realistic) threat scenario. Formally,
this is modelled by an attacker who tries to guess secret S
given only the final model weights OT ; note that the secret
S would be left unchanged. As for deriving the bounds, one
may be tempted to use a similar strategy to the one we used
in Section 3. Unfortunately, we found this to be non-trivial.

The main difficulty in applying our results to this problem
comes from the effect that the challenge point z∗, (possibly)
sampled at step t, has on the subsequent gradient functions
ḡt+1(·), ḡt+2(·), . . . . In our analysis (Section 3.2), we could

disregard the effect of ḡt(z) for points z 6= z∗ for t > 1. The
reason is that ḡt(z) did not bear additional information about
the challenge point to the adversary (who has access to ḡt−1(z)
as well). This reasoning does not apply to an inference-time
attacker: since ḡt(·) might have seen the effect of z∗ in a
previous step, and the attacker does not know ḡt−1(·), we
cannot disregard it as a potential source of leakage.

Explored directions. One way to approach this problem is
via a taint analysis. Let p be the probability that the challenge
point z∗ is sampled at step t. Then we can write a combina-
torial expression that factors the likelihood that gradients (at
points z 6= z∗) were tainted by the presence of z∗. Unfortu-
nately, this approach does not improve substantially on the
analysis that we discussed in this paper: since DP-SGD is
usually run for a number of steps that is proportional to the
number of batches, the probability “z∗ was sampled before
step t” grows exponentially with t; leading to trivial bounds.

We suspect that to obtain a tighter analysis of the security
of DP-SGD against inference-time attackers, one may need to
quantify the influence of the challenge point on the gradient
function. Influence functions [18, 23] may be a good tool
to approximate this; however, it should be noted, this would
require making assumptions about the gradient function. An
alternative is to use black-box leakage estimation methods
(e.g., [9]), which however require an infinite amount of data
to provably convergence [8, Theorem 2.7].

8 Conclusion

The privacy of DP-SGD has historically been measured via
DP-guided moment accountants. This practice comes with
various issues: i) computational complexity, ii) accountants
are hard to implement correctly [15, 17, 24], iii) and DP is
traditionally applied in a threat-agnostic manner.

Our proposal gives closed-form bounds for the privacy of
DP-SGD, which are both easy to implement and orders of
magnitude faster to compute than state-of-the-art DP estima-
tors. Additionally, our bounds are threat-specific. This has
two main benefits: i) they are arguably more interpretable,
as they capture the risk for each threat individually; and ii)
in circumstances where a weaker threat model (e.g., AI) is
acceptable, one can achieve a much better utility at the same
privacy level (Figure 1). Finally, our bound on the resilience
against the AI threat model is data-dependent; this enables
further pushing the utility depending on the inherent leakage
of the data itself. Given the simplicity of modelling training
algorithms (and respective threats) as information theoretic
channels, we expect our analysis strategy can be used to de-
rive bounds for other threats for existing training algorithms,
or new ones designed with this strategy in mind.
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A Proofs

Proposition 4. Let fM be a Gaussian mixture defined
as follows. For a mean vector µ = (µ1, ...,µT ) and co-
variance matrix σ2C2IT , and C = maxT

j=1 µ j, let fM (x) =
∑b∈{0,1}T πb fN (µb,σ2C2)(x) . The i-th component takes values
from fN (µi,σ2C2) with probability p ∈ [0,1], or from fN (0,σ2C2)

otherwise. Here, πb = p|b|(1− p)T−|b|. The error committed
in approximating fM with fN (pµ,σ2C2) is:

tv( fM , fN (pµ,σ2C2)) = O
(√

pT
σ

)
Proof. First, observe that the total variation distance is re-
lated to the KL divergence DKL as follows: tv(pS,qS) ≤√

1
2 DKL(pS,qS).
We use the following bound on the KL divergence between

two Gaussian mixtures (see Cover [11] and Eq. 13 in [19]):

DKL( fM , fN (pµ,σ2C2))≤ ∑
b∈{0,1}T

πbDKL( fN (µb,σ2C2), fN (pµ,σ2C2)) ,

where the KL divergence between two d-variate Gaussians,
respectively centered in µ0 and µ1, is:

DKL( fN (µ0,σ
2
0)
, fN (µ1,σ

2
1)
) =

1
2
(
(µ0−µ1)

ᵀ
Σ
−1
1 (µ0−µ1)

+ tr(Σ−1
1 Σ0)− ln

|Σ0|
|Σ1|
−T

)
;
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Observe that, for Σ0 = Σ1 = σ2IT , we have tr(Σ−1
1 Σ0)−

ln |Σ0|
|Σ1| −T = 0. From the above, we obtain:

DKL( fM , fN (pµ,σ2C2))≤ ∑
b∈{0,1}T

πb

2σ2C2

(
T

∑
i=1

µ2
i (bi− p)2

)

≤ ∑
b∈{0,1}T

πb

2σ2C2

(
T

∑
i=1

T
max
j=1

µ2
j(bi− p)2

)

= ∑
b∈{0,1}T

πb

2σ2

(
T

∑
i=1

b2
i + p2T −2p

T

∑
i=1

bi

)

= ∑
b∈{0,1}T

πb

2σ2

(
p2T +(1−2p)

T

∑
i=1

bi

)

=
1

2σ2

p2T ∑
b∈{0,1}T

πb +(1−2p) ∑
b∈{0,1}T

πb|b|


=

1
2σ2

(
pT − p2T

)
We used the fact that b2

i = bi.

For a fixed T , the goodness of this approximation depends
on the choices of σ and of the sampling rate p. In our main
result, T is the number of DP-SGD steps. The result matches
expectations: if one wants to run DP-SGD for longer and
retain strong security, one either needs to increase the noise
multiplier or reduce the sampling rate.

In Figure 2, we compare the approximation error between
the two distributions for a varying ratio between noise and
sampling rate parameters. We observe that Proposition 4 holds
when the ratio is small. In particular, for realistic regimes
with p/σ < 10−3, we observe a negligible approximation error
(< 10−4). In Section 4, we observe that these values for the
parameters are not only practical; they are recommended to
achieve stronger levels of security against MIA threats.

Theorem 6. Assume that f is a bijection, and let ∆ f be de-
fined as in Equation (3). The Bayes security of DP-SGD with
respect to the record-level property inference threat described
in Section 3 is:

β
∗(PO|S)≥ 1− erf

(
p

∆ f

2
√

2σC

)
−O

(√
pT
σ

)
.

Proof. By Corollary 2, the relation between Bayes security
and the total variation Proposition 3, and Theorem 1:

β
∗(PO|S)≥ β

∗(PG|S)

≥ 1− max
s0,s1∈dom(S)

tv(PG|S=s0 ,PG|S=s1)

We now determine the total variation term. Observe the
following basic consequence of the triangle inequality. Let

νa and ξa be two distributions parameterized by a ∈ {0,1}.
Then:

tv(ν0,ν1)≤ tv(ξ0,ξ1)+ tv(ν0,ξ0)+ tv(ν1,ξ1) .

We use this to replace the Gaussians mixture PG|S with a Gaus-
sian, replacing the two pairwise distances tv(ν0,ξ0), tv(ν1,ξ1)
with an error term as defined in Proposition 4.

For any two s0,s1 ∈ dom(S), we have:

tv(PG|S=s0 ,PG|S=s1)

=tv( ∑
b∈{0,1}T

cbPG|B=b,S=s0 , ∑
b∈{0,1}T

cbPG|B=b,S=s1)

≤tv(N (pḡ( f−1(s0)),σ
2C2),N (pḡ( f−1(s1)),σ

2C2))

+O
(√

pT
σ

)
=erf

(
p
‖ḡ( f−1(s0))− ḡ( f−1(s1))‖F

2
√

2σC

)
+O

(√
pT
σ

)
In the first step, we used the above consequence of the

triangle inequality. In the second step, we used the fact that
PG|B=b,S is a Gaussian distribution and applied Corollary 5.

Proposition 9. Consider a randomized mechanism M : S→
O with S= {0,1}, and let S be a random variable on S with
π = Pr[S = 1]. Let s′ = Attacker(π,M (S)) be the guess that
Attacker makes for S given the output of the mechanism. Let
the true positive rate (TPR) be the probability that attacker
Attacker guesses correctly when S = 1, and the false positive
rate (FPR) be the probability that they guess incorrectly when
S = 0. If the mechanism is β∗-secure then for every attacker:

TPR≤ 1+FPR−β
∗ if π≤ 1/2

TPR≤ π

1−π
(1+FPR−β

∗) otherwise.

We have equality for a uniform prior, π = 1/2.

Proof. Chatzikokolakis et al. [6] show that Bayes security
is the minimum of the ratio between the probability that the
attacker guesses incorrectly having access to the mechanism,
Pr[Attacker(π,M (S)) 6= S], and the probability that the at-
tacker guesses incorrectly without access to the mechanism,
Pr[Attacker(π) 6= S]; that is:

β
∗ ≤ Pr[Attacker(π,M (S)) 6= S]

Pr[Attacker(π) 6= S]
∀π ∈ (0,1) .

We rewrite the above in terms of TPR and FPR. Say the
mechanism is run k times, each time for a secret S sampled
according to the prior distribution π. Let FP and TP be the



count of false positives and false negatives across these k
trials. Then:

Pr[Attacker(π,M (S)) 6= S] =
FP+FN

k

Pr[Attacker(π) 6= S] =
min(P,N)

k
By combining the above, we have:

β
∗ ≤ Pr[Attacker(π,M (S)) 6= S]

Pr[Attacker(π) 6= S]

=
k

min(P,N)

(
FP+FN

k

)
=

P
min(P,N)

(FPR+(1−TPR))

where P = πk and N = (1−π)k are the number of positive
and negative samples, respectively. The proof is concluded by
considering separately the cases P≤ N and P > N.

Before discussing the proofs for Corollary 7 and Corol-
lary 10, we define the Frobenius norm.

Definition 11. Let A be an m×n matrix; let Ai, j be the ele-
ment at row i and column j, and let Ai indicate the i-th row
vector. The Frobenius matrix of A is:

‖A‖F =

√
m

∑
i=1

n

∑
j=1
|Ai, j|2 =

√
m

∑
i=1
‖Ai‖2 ,

where ‖v‖ is the L2 norm of a vector v.

Corollary 7. The Bayes security of DP-SGD against record-
level MIA (Game 2) is:

β
∗ ≥ 1− erf

(
p

√
T√
2σ

)
−O

(√
pT
σ

)
.

Proof. Observe that in the MIA threat model (Game 2)
f (z∗s ) = s is a bijection. Then:

∆ f = max
z∗0,z
∗
1∈D
‖ḡ(z∗0)− ḡ(z∗1)‖F

= max
z∗0,z
∗
1∈D

√
T

∑
t=1
‖ḡt(z∗0)− ḡt(z∗1)‖2

≤ 2C
√

T .

Applying Theorem 6 concludes the proof.

Corollary 10. The Bayes security of DP-SGD against AI is:

β
∗(PO|S)≥ 1− erf

(
p
‖R‖

2
√

2σC

)
−O

(√
pT
σ

)
,

where R = (R1, ...,RT ) with

Rt = max
z∗∈Lt

max
s0,s1∈A

‖ḡt((ϕ(z∗),s0))− ḡt((ϕ(z∗),s1))‖ ,

where Lt is the batch sampled at step t.

Proof. Observe that f is a bijection: as per Game 3, for every
z∗, there is exactly one value s ∈ A such that f (z∗) = s. We
bound ∆ f as defined in Equation (3):

∆ f ≤ max
s0,s1∈A ,z∗∈D

‖ḡ(ϕ(z∗) | s0)− ḡ(ϕ(z∗) | s1)‖F

= max
s0,s1∈A ,z∗∈D

√
T

∑
t=1
‖ḡt(ϕ(z∗) | s0)− ḡt(ϕ(z∗) | s1)‖2

≤
T

∑
t=1

max
s0,s1∈A ,z∗∈D

‖ḡt(ϕ(z∗) | s0)− ḡt(ϕ(z∗) | s1)‖

We then apply Theorem 6. Note that in this corollary’s state-
ment, we range z∗ ∈ Lt , where Lt is the batch sampled at time
t. This is allowed by observing that, if z∗ is not included in
the batch at step t, it cannot influence the model weights (and
gradients) at that step.

B Tightness of MIA bound (Corollary 7)

We report results for further sample rates in Figure 10. Results
for p = 0.001 (Figure 4) are reported again, for comparison.
We observe that our observations hold for these parameters:
the approximation error is small when σ ≥ 1; in general, a
larger sampling rate p may further increase this error, but not
significatively.

We also note that the PLD accountant failed to provide a
bound for p = 0.0001 and σ = 0.5. Further, we observe that
for the same sample rate, the approximation increases for a
larger σ. We attribute this to numerical errors in the PLD
accountant.



Figure 10: Approximation error of the PLD accountant for different sample rates p and noise multipliers σ.
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