
Go Go Gadget Hammer: Flipping Nested Pointers for Arbitrary Data Leakage

Youssef Tobah
University of Michigan

ytobah@umich.edu

Andrew Kwong
UNC Chapel Hill

andrew@cs.unc.edu

Ingab Kang
University of Michigan

igkang@umich.edu

Daniel Genkin
Georgia Tech

genkin@gatech.edu

Kang G. Shin
University of Michigan

kgshin@umich.edu

Abstract
Rowhammer is an increasingly threatening vulnerability that

grants an attacker the ability to flip bits in memory without di-

rectly accessing them. Despite efforts to mitigate Rowhammer

via software and defenses built directly into DRAM modules,

more recent generations of DRAM are actually more sus-

ceptible to malicious bit-flips than their predecessors. This

phenomenon has spawned numerous exploits, showing how

Rowhammer acts as the basis for various vulnerabilities that

target sensitive structures, such as Page Table Entries (PTEs)

or opcodes, to grant control over a victim machine.

However, in this paper, we consider Rowhammer as a

more general vulnerability, presenting a novel exploit vec-

tor for Rowhammer that targets particular code patterns. We

show that if victim code is designed to return benign data to

an unprivileged user, and uses nested pointer dereferences,

Rowhammer can flip these pointers to gain arbitrary read ac-

cess in the victim’s address space. Furthermore, we identify

gadgets present in the Linux kernel, and demonstrate an end-

to-end attack that precisely flips a targeted pointer. To do so

we developed a number of improved Rowhammer primitives,

including kernel memory massaging, Rowhammer synchro-

nization, and testing for kernel flips, which may be of broader

interest to the Rowhammer community. Compared to prior

works’ leakage rate of .3 bits/s, we show that such gadgets

can be used to read out kernel data at a rate of 82.6 bits/s.

By targeting code gadgets, this work expands the scope and

attack surface exposed by Rowhammer. It is no longer suffi-

cient for software defenses to selectively pad previously ex-

ploited memory structures in flip-safe memory, as any victim

code that follows the pattern in question must be protected.

1 Introduction

In recent decades, the field of computer architecture has made

great strides in boosting performance while reducing power

and area costs. Such aggressive optimization has reaped con-

siderable benefit for use in the common case, but has also

given rise to a plethora of security vulnerabilities. Of par-

ticular interest is the advancement of DRAM, packing more

information into denser areas while neglecting security risks.

Consequently, the Rowhammer bug [22] has shown how

attackers can take advantage of the tightly-packed capacitors

in DRAM to flip bits in memory without directly accessing

them. By rapidly accessing a row of memory, an attacker can

induce disturbance effects on adjacent rows, causing their

capacitors to leak charge and flip their values from 1 to 0, or

vice versa. This newfound ability to flip bits led to a wealth of

follow-up work, demonstrating both how to flip bits on newer

generation DIMMs [13, 19, 25] and how to exploit the flips

to escape sandboxes [40], gain root privilege [14, 40, 43, 44],

and leak secret keys [26], among other attacks [2, 10, 12, 15,

28, 31, 34, 36, 41, 42, 51].

However, a majority of these attacks focus on targeting

specific sensitive targets [14, 14, 40, 43, 44, 51]. These prior

works consider the dangers of bit flips in important structures

such as PTEs [40, 43, 44, 51] and security-critical code (e.g.

sudo password checks [14]). This led to various mitigation

proposals that protect PTEs from bit-flips. [49, 53].

In contrast, few have considered more general targets

Rowhammer can exploit to leak data. RAMBleed [26] demon-

strated that attackers can hammer their own memory to leak

individual bit-values of adjacent rows, and SpecHammer [42]

showed how Rowhammer can be used to leak data via Spectre

gadgets. However, RAMBleed only allows for leaking one

bit of information per flip, and SpecHammer is restricted to

leaking information while in the speculative state. Moreover,

to the best of our knowledge, no work beyond these has ex-

plored how Rowhammer can be used to read out victim data

without relying on flipping PTE bits or otherwise gaining root.

While defenses addressing the PTE vulnerability already ex-

ist [49,53], it is still unknown if the scope of these mitigations

is sufficient. Thus, we pose the following questions:

Do there exist additional, hitherto unknown, code se-
quences that yield an arbitrary confidentiality break under a
Rowhammer attack? If so, what would the implications be of
such a vulnerability?

1.1 Our Contributions
In this paper, we present a new type of Rowhammer gadget
that offers answers to these questions. This gadget, consisting

of nested pointer dereferences, shows that by flipping victim

pointers, Rowhammer can be used to gain arbitrary read ac-

cess to a victim’s address space. Furthermore, we found that

such gadgets are quite common, and discovered 29 unique

instances in the Linux kernel’s filesystem handler code alone.

We additionally developed an end-to-end exploit targeting

one such kernel gadget to gain arbitrary read access to a vic-

tim’s address space. Unlike prior work targeting bit-flips in

the kernel, we target kernel-stack variables, bypassing any de-

fenses that protect PTEs against flips [49, 53]. To the best of

our knowledge, this is the first exploit using kernel stack flips

without relying on deduplication or speculative execution.

1 func(initial_pointer){
2 pointerA = initial_pointer
3 pointerB = *pointerA
4 return_value = *pointerB
5 return return_value
6 }

Listing 1: GadgetHammer toy gadget.

Rowhammer Gadget. Our core contribution is the obser-

vation that a common code behavior serves as an exploitable

Rowhammer gadget. A simple exemplary gadget is shown in

Listing 1. In its most general form, the gadget has two key

requirements: 1) a nested pointer dereference and 2) the return

of data to a calling attacker. That is, a pointer (e.g. PointerA
in Listing 1) must first be dereferenced (Line 3) to retrieve a

second pointer value (PointerB) that is subsequently deref-

erenced (Line 4). Then, the data from the second dereference

should be sent back to the attacker (Line 5).

1 func(struct* init_pnt){
2 struct* strct_pntA = init_pnt ->mbr_pnt;
3 struct* strct_pntB = strct_pntA ->mbr_pnt;
4 ret_val = strct_pntB ->mbr_val;
5 return ret_val
6 }

Listing 2: GadgetHammer example kernel gadget.

If we assume the attacker has the ability to flip a bit in the

first pointer, she can redirect it to attacker-controlled data,

allowing an attacker to set an arbitrary value for the second

pointer. Consequently, this pointer can be set to point to any

arbitrary address in the victim’s address space, leading the

second pointer dereference to read out arbitrary values that

get passed back to the attacker.

Gadget Presence. While the prior listing demonstrated a toy

example, Listing 2 shows an example closer to the real-world

gadgets present in the Linux kernel. The danger of this gadget

comes from the fact that the Linux kernel relies heavily on

the use of struct and function pointers. Instead of passing

numerous arguments to function calls, custom structs can

be designed to carry all necessary information (represented

by init_pnt in Listing 2). While this style of programming

provides the convenience of passing a single struct pointer

to a function, it also leads to many nested pointer derefer-

ences, making kernel code ripe for exploitation. Furthermore,

gaining control of a struct pointer via bit-flipping gives the

attacker control over every member value of the struct as well,

allowing the attacker to inject her own data into numerous

variables, granting control over the victim function.

1.2 Challenges
Performing an end-to-end attack against the Linux kernel

has several key requirements that form the following core

challenges:

• Challenge 1: We must precisely flip pointer values in a

particular thread in the kernel’s address space.

• Challenge 2: We must run Rowhammer in parallel with the

victim gadget, flipping values in "real-time" synchronously

with the victim process.

• Challenge 3: We must point to data that we control within

the victim address space.

• Challenge 4: Finally, we must demonstrate an end-to-end

attack on an example gadget to show the practicality of

exploiting such gadgets.

Primitive 1: Flipping Kernel Stack Bits. The attack re-

quires flipping a pointer located within a victim process. Fur-

thermore, in the case of the Linux kernel, this means flipping

a pointer residing on the kernel stack. Typically, Rowham-

mer attacks “massage" flip-vulnerable physical pages into the

victim address space to subsequently flip victim data at will.

However, in the case of the Linux kernel, prior work either

flipped page table entries (PTEs) or relied on other vulnera-

bilities such as Spectre [2, 40, 42]. In particular, kernel stack

massaging is a probabilistic process, involving allocating nu-

merous kernel stacks across many threads. The low accuracy

of this technique, along with the challenge of pin-pointing

which thread contains the flip-vulnerable page, has prevented

its use in real-world attacks.

To overcome this challenge, we improved upon existing

kernel memory massaging techniques and devised a primi-

tive for accurately identifying which thread contains the flip-

vulnerable page in a time-efficient manner. For massaging,

we observe that we can identify numerous flip-vulnerable

pages and massage them all into the kernel at once, improving

the chance that a flippable page will be used by the kernel

stack. For identifying flippable threads, we observe that we

can run, hammer, and check all victim threads simultaneously,

requiring us to perform Rowhammer only once to identify

which thread contains the flip-vulnerable page. By employing

these primitives, we can flip target kernel bits.

Primitive 2: Real-time Flips. In order for the target bit-flip

to be useful, we need the ability to flip the bit in synchro-

nization with the victim code’s execution. In the case of a

kernel target, the victim is a pointer variable residing on the

kernel stack. Thus, whenever the victim function is called,

the target variable will first be initialized with pointer data

before the pointer is used. Our bit-flip needs to occur between
initialization and pointer-use, while the victim function is run-
ning. If the flip happens before initialization, the flipped data

will simply be overwritten by initialization data. If the flip

occurs after the pointer is used, the flip has no affect on the

victim function. Furthermore, Rowhammer bit-flips occur in

DRAM, but the pointer’s initialization will cause its value to

be cached. If we manage to flip the pointer’s value in DRAM,

but subsequent use of the pointer reads cached data, our flip

will effectively be “masked” by the cache and rendered use-

less. Therefore, we must also ensure victim data is evicted

from the cache between pointer initialization and pointer use.

To overcome these timing issues, we utilize kernel stalling

techniques to delay kernel execution long enough to flip bits.

We show such stalling can be achieved either by running par-

allel threads that contend for resources required by the gadget,

or by using the Filesystems in USErspace (FUSE) interface

to create a file system handler that can stall such shared re-

sources indefinitely. Additionally, we show that forming an

eviction set for the flip-vulnerable page allows us to efficiently

evict cache lines and prevent the cache from masking flips.

Primitive 3: Pointing to Attacker Controlled Data. The

goal is to read out arbitrary data from the victim address space.

However, Rowhammer can realistically flip one or two bits

at best, making it difficult to overwrite a pointer to point to

arbitrary addresses. We therefore flip a pointer to point to data

that we control in order to populate a second pointer with our

data. This means we must control data that is one bit-flip away

from the original, unflipped address. For a kernel attack, this

means populating the kernel with attacker-controlled values.

To this end, we devised a technique utilizing pipes that

allows the attacker to fill the kernel heap with arbitrary values.

By sending data into a pipe and not reading it out, we can

indefinitely store data in the heap. This allows us to fill the ker-

nel with “artificial” malicious structs. Thus, when the victim

struct pointer is flipped to point to our kernel data, the struct

will populate its member variables with our malicious values,

granting us control of the syscall’s variables. From here, we

can direct the syscall to read out any address in memory.

Primitive 4: End-to-end Attack. Finally, in order to demon-

strate the practicality of this attack compared to prior work,

we demonstrate an end-to-end attack on code identified in a

Linux kernel-syscall. We demonstrate a maximum leakage

rate of 82.6 bits/s, improving the 0.3 bit/s leakage reported in

prior confidentiality-based Rowhammer work [26, 42].

Contributions. We make the following contributions:

• Identifying a new class of code patterns that can be ex-

ploited as a Rowhammer gadget. (Section 4.1)

• Improving memory massaging techniques for flipping ker-

nel bits (Section 4.2).

• A novel technique for testing for kernel flips (Section 4.3).

• New synchronization techniques (Section 4.3).

• Performing an end-to-end attack on a Linux Kernel syscall,

demonstrating a leakage rate of 82.6 bits/s (Section 5).

1.3 Disclosures
We sent a copy of our paper to the Linux kernel security team

on April 26, 2023 and ran all experiments on our machines.

2 Background

2.1 Gadget-based Attacks
Orthogonal to Rowhammer is a class of attacks that takes

advantage of exploitable patterns in victim code. These ex-

ploitable code snippets are referred to as gadgets. The central

idea of such attacks is to identify gadgets in victim code and

use them to lead the victim process to do malicious work

for the attacker. For example, return oriented programming

(ROP) attacks work by redirecting control flow to sequences

of instructions that end in the return instruction. Attackers

scan memory for these "ROP gadgets" (i.e., series of instruc-

tions that can be chained together for malicious purposes),

and overwrite return addresses to point to them.

A more recent class of gadget-based attacks has spawned

from Spectre [42] and subsequent work in the speculative

domain [4]. These attacks are based on finding victim gadgets

that can trigger states of speculative execution. With Spectre,

attackers train branch predictors to predict a particular execu-

tion path, then force the opposite execution path to occur. This

results in a misprediction, meaning any speculatively executed

code will eventually be undone. While in the speculative state,

however, attackers can use gadgets to access out of bounds

data [1, 24, 39] or perform arbitrary code execution [29], and

retrieve speculatively read data via a covert-channel. Spectre

is difficult to mitigate [4] as it not only leverages performance-

critical processor features (branch prediction), but can target

any victim containing a gadget.

2.2 Pipes
Pipes are channels in the kernel used for passing data be-

tween processes. The convenience of pipes is that transmitters

and receivers do not need to synchronize. Transmitters can

send data into a pipe, and data will be stored in the kernel

indefinitely until it is read out of the same pipe.

2.3 Caching

Cache Interference. One important consideration with

Rowhammer is cache interference. Rowhammer requires re-

peatedly accessing rows of DRAM to induce flips in adjacent

DRAM rows. Therefore, between each aggressor access, the

attacker must flush these addresses from the cache. This en-

sures each access activates a DRAM row and does not simply

interact with the cache instead. Additionally, the attacker must

ensure the target victim address has been flushed from the

cache as well before hammering begins. Otherwise, even if a

bit is successfully flipped in DRAM, the victim may subse-

quently read data from the cache, "masking" the bit-flip.

Cache Eviction. If the attacker has access to a clflush in-

struction and target addresses, she can directly flush addresses

from the cache to prevent interference. However, in scenarios

where there is no clflush [15] the attacker may need to rely

on cache eviction. This is a technique in which an attacker

identifies a group of addresses (called the eviction set) that all

belong to the same cache set as a flush target. Since the cache

can only hold a limited number of entries from a particular

set, accessing all of the addresses in the eviction set causes the

flush target to be evicted from the cache, providing a substitute

to direct flushing. Prior work has demonstrated techniques for

efficiently generating minimal eviction sets [45].

Cache Side-channels. Caches are also useful as a source of

side-channel leakage. Accessing cached data is faster than ac-

cessing data from DRAM, meaning timing memory accesses

can reveal information about victim access patterns and physi-

cal memory. For example, the PRIME+PROBE [33] technique

begins by filling (or "priming") the cache with attacker con-

trolled addresses. Then, the victim is left to run. Next, the

attacker attempts to access the same set of addresses that ini-

tially filled the cache, timing (or "probing") how long each

access takes. If the accesses are all fast, the attacker knows

the victim never accessed memory occupying the same cache

set. If any accesses are slow, however, another process must

have accessed a conflicting address, revealing information

about victim memory accesses.

2.4 Rowhammer

Exploits. Rowhammer [22] demonstrated how attackers

can flip bits in memory without accessing them, spawning

a plethora of new attacks taking advantage of these bit-flips

[2, 7, 8, 12, 14, 15, 26, 28, 36, 40–43, 52]. Most notably, the

first exploit [40] showed how Rowhammer can flip values

in page table entries (PTEs), which could in turn be used to

gain root access. This was followed up by numerous attacks

focused on achieving the same goal of flipping PTEs to gain

root under new threat models, such as attacks targeting mobile

devices [43, 44], and attacks that flipped PTEs through the

browser [15] among others [31].

Defenses. To counter the threat posed by Rowhammer, vari-

ous defenses have been developed to either prevent bit-flips

or protect sensitive data. The only widely deployed defense

in the former category is Target Row Refresh (TRR), which

can be easily bypassed with more advanced hammering tech-

niques [13, 19, 25]. Next-generation DDR5 DIMMs use a

new technique called refresh management (RFM), but even

this has shown to be inadequate [30]. Software defenses have

sought to protect sensitive structures, by, for example, placing

buffers between user space and kernel space [3] or placing

PTEs in flip-safe memory [49].

DRAM Organization. At its core, Rowhammer takes advan-

tage of DRAM design and its reliance on capacitors. DRAM

organizes memory into channels, ranks, banks, rows, and cells.

The lowest level of DRAM is the cell, which stores a single

bit of information using a capacitor. A fully charged capacitor

represents a 1 and discharged capacitor a 0 (or vice versa).

Upon accessing a DRAM address, an entire row of cells

is activated, meaning the charge from each cell in the row is

pulled into the corresponding row buffer, where the bit values

can be passed to the processor. Once the memory access is

complete, the charges are restored to their original cells.

Flipping Bits. Rowhammer made the observation that ca-

pacitors are being packed more and more tightly together in

newer generations of DIMMs, and can thus have disturbance
effects on adjacent capacitors. In particular, accessing a row

of memory and temporarily discharging and recharging the

corresponding cells can slightly accelerate the leakage rate of

adjacent capacitors. Repeatedly accessing a row of memory

can thus pull an adjacent capacitor’s charge below their thresh-

old value, flipping the capacitor’s value from 1 to 0 (or vice

versa), before it has the chance to be refreshed. Rowhammer

therefore enables bit-flips in addresses attackers should not

be able to modify by repeatedly accessing (or "hammering")

their own accessible rows.

DDR4. Rowhammer was first demonstrated on DDR3

DIMMs. In response to the attack, a defense called Target

Row Refresh (TRR) was added to DDR4 [20]. TRR tracks row

activations, and if the number of activations on a particular

row crosses a set threshold, adjacent rows are refreshed im-

mediately, preventing bit-flips in these targeted victim rows.

However, TRRespass [13] demonstrated that Rowhammer

accesses can be scattered to multiple addresses across a bank,

preventing the TRR counter from properly tracking activa-

tions while still inducing leakage in the row at the center of all

these accesses; a technique called multi-sided Rowhammer.

Thus, TRRespass demonstrated that even DDR4 is vulner-

able to Rowhammer. This was followed up by numerous

works [8, 19, 25] that all demonstrated new techniques for

flipping bits on DDR4, revealing that these new DIMMs were

even more vulnerable to bit-flips underneath TRR.

2.5 Memory Massaging
With Rowhammer, an attacker can trigger bit-flips on a tar-

get physical page. However, for a flip to be exploitable, the

attacker must force a victim process to use the flip-vulnerable

(or "flippy") page. This is typically done via a primitive re-

ferred to as memory massaging, which manipulates (or "mas-

Figure 1: Flipping a pointer to return secrets to an attacker.

sages") a physical memory allocator into a state that is likely

to serve its next allocation request using the flip-vulnerable

page [6, 26, 36, 42, 43]. The attacker can then force the victim

to use a flippy page and flip victim variables at will.

For user-space attacks, the attacker can simply deallocate

the flip-vulnerable page, placing it in a page frame cache

(PFC) [6]. Subsequent victim allocations on the same proces-

sor core will pull from the flip vulnerable page from the PFC,

allocating its variables on a flip-vulnerable page. Kernel at-

tacks are more complex since kernel and user-space memory

use different pools of physical pages. The general idea is to

drain kernel memory to the point where the kernel is forced to

pull from the pool of free user-space pages. For a PTE attack,

the attacker can force PTE allocations by mapping virtual

addresses to physical memory [40]. For an attack on kernel

stack variables, kernel stacks can be allocated by creating new

threads, which each allocate their own kernel stack [42].

3 Threat Model

We assume the attacker can use unprivileged software on the

victim machine. We also assume the victim machine uses an

uncompromised operating system. Additionally, we assume

the victim machine uses a DIMM vulnerable to Rowhammer.

4 GadgetHammer

4.1 Attack Overview

Example Gadget. The central idea of the GadgetHam-

mer attack is to target gadgets which grant arbitrary read

access upon flipping a victim pointer. An example gadget is

shown in Listing 1. The requirements for a gadget are that a

pointer (pointerA, Line 2) is dereferenced to obtain a second

pointer value (pointerB, Line 2), and the second pointer is

subsequently dereferenced (Line 3). The value of this second

dereference should be returned to the user calling the gadget.

Exploiting the Gadget. As shown in Figure 1 the gadget

can be exploited if we assume the attacker has the capability

of flipping pointerA (Line2, Listing 1) to lead pointerA to

point to attacker controlled data. Having pointerA point to

an address we control effectively gives us control the value

of pointerB (due to the dereference in Line 3). With full

control over the value of pointerB, we can effectively read

any data from the victim’s address space into return_value
(Line 4) which gets returned to the attacker (Line 5).

Technical Challenges. Exploiting the gadget as described re-

quires the use of several key primitives. We must first identify

DRAM addresses containing bits that can be flipped as needed

for the attack. Then, we need to force the victim gadget to use

a physical page corresponding to this flip-vulnerable address.

Additionally, we must control data at an address that is one

bit-flip off from the address the victim would normally point

to. Lastly, we must flip the victim while the gadget is running

and efficiently flush victim data from the cache to ensure the

victim directly reads the flipped data from DRAM.

The following sections explain how we overcome each of

these challenges, beginning with the "offline stage" where we

identify flip-vulnerable addresses and force the victim to use

them, followed by the "online stages" where we confirm the

presence of our bit-flip and finally use the gadget to leak data.

4.2 Offline Stage

Memory Templating. The first step of any Rowhammer

attack is to find which physical addresses in victim mem-

ory are subject to "useful" bit-flips (i.e., bit-flips at the same

page offset as our target victim), a step commonly referred to

as "memory templating". We follow the same steps as prior

work [13,26,40], allocating transparent huge pages, and ham-

mering groups of addresses until finding useful flips, relying

on TRRespass [46] to induce flips in DDR4.

Massaging Physical Memory We now control physical

pages containing useful bit-flips, as well as the corresponding

aggressor rows that we can use to induce these flips. However,

to run the exploit, we need these flips to occur in target victim

values, not pages that we control. We must therefore "massage

memory" to force the victim into using the flippy page.

In the case of targeting a kernel variable, we must massage

our physical page onto the kernel stack. To this end, we can

use a kernel memory massaging primitive from [42]. We

drain kernel memory such that it is forced to steal user space

pages for subsequent allocations. We can then free the flip-

vulnerable page and spawn numerous threads, which each

allocate memory for their own kernel stack, relying on one of

these threads to allocate the flippy page for its stack.

Improving Memory Massaging Probability. A weakness

of memory massaging techniques is their probabilistic nature.

A low success rate technique requires the attacker to repeat

the time-consuming step of finding bit-flips and checking if

they landed in the kernel (see Section 4.3). In order to better

ensure that we can land a flip in the kernel once we find it, we

template to find many useful flips, instead of just a single flip,

before attempting massaging. As shown in Figure 2, finding

numerous flippy pages, freeing them all into the page allocator,

Figure 2: : Improving memory massage probability. The left side shows the lower chance that a kernel stack will allocate a

flip-vulnerable page if there is only one flip-vulnerable page in memory. The right side shows how these odds can be improved if

more flip-vulnerable pages are freed before forcing kernel stack allocations.

and then forcing kernel stack allocations, can greatly increase

the probability that a flippy page can land in the kernel.

4.3 Online Stage: Testing Flips
At this point we control numerous threads and hope at least

one thread has allocated this flippy page for its kernel stack.

In the steps that follow, we must call the victim syscall and

trigger bit-flips while the syscall is running in order to first

identify which thread contains the flippy page and then subse-

quently begin leaking data from the kernel.

Checking for kernel flips. For the memory massage step, we

allocated many threads to drain any remaining kernel memory

and then steal pages from userspace until our recently-freed

flippy page was used for a kernel stack allocation. To continue

the attack, we must first identify which thread contains the

flippy page. At this stage, we cannot simply attempt the attack

to verify whether a flip landed, since additional uncertainties

remain in upcoming stages of the attack. Thus, to reduce one

unknown at a time, we need a method to test for flips that is

isolated from the rest of the attack.

Flip-check Syscall. In order to check which thread holds

our flippy page, we rely on a second syscall, separate from

our target gadget, that returns a binary result dependent on the

presence of the flip. This syscall served a similar purpose to

the Spectre-based oracle used in prior work [25], however, it

does not rely on the use of a speculation-based exploit. Such a

syscall, which we will call the tester syscall should meet two

requirements. The first, is that is must contain a local variable

at the same page offset as the target gadget syscall. Second,

the syscall returns a value that is dependent on said local

variable. We find that meeting both requirements is feasible.

Requirement 1: Variable Offset. In the case of the first

requirement (matching page offset), the page offset depends

entirely on the local variable’s position on the stack. This, in

turn, is a direct result of the total number of local variables
allocated and nested function calls made over the course of

the entire tester syscall.

See Figure 3 for a simplified example. If we call our tester

syscall from userspace, and the highest-level function of this

syscall, FunctionA allocates three local variables, those vari-

ables might occupy page offsets 0x100 through 0x110. If

FunctionA calls another function, FunctionB, which allo-

cates three additional variables, those variables may reside

further down the stack at offsets 0x120 through 0x130. To

find a suitable target for a tester syscall, we thus only need to

find a local variable that resides a similar number of function

calls deep among the myriad of syscall options in the kernel.

Furthermore, many variants of similar syscalls exist (e.g.

write and writev or setxattr and getxattr) which will

have paths similar to each other, with slight differences in

number of function calls made and local variables allocated.

This effectively allows for "sliding" the position of target local

variables up and down the stack until finding a suitable target.

Requirement 2: Flip Dependent Result. We can meet the

second requirement thanks to the good programming prac-

tices followed by the kernel. Syscalls commonly have many

checks throughout their functions to catch errors, preventing

bad values from propagating through kernel code and causing

crashes. Thus, if a local variable is flipped to an incorrect

value, the syscall may detect something is wrong and grace-

fully return an error code as opposed to crashing, creating a

flip-dependant result. Otherwise, if the syscall behaves prop-

erly, we can move on to check the next thread. As we will see

in Section 5.1, we find filesystem syscalls work quite well

as tester syscalls.

Working Around Cache Flushes. Challenges still remain

in flipping syscall bits. The first is the issue of cache flushing.

Upon calling our victim gadget, our target flip variable will

first be initialized before we can induce our flip. This will

likely cause the victim variable to be cached, thus "masking"

any potential flips with cached data.

Therefore, we take advantage of cache eviction techniques

[45]. Instead of directly flushing our victim from the cache,

we will fill the same cache set with arbitrary data, forcibly

Figure 3: Function calls placing data on the stack. The left side shows the target gadget’s stack, and that the variable we seek to

flip happens to reside at page offset 0x128. The right side shows the tester gadget, which stores variables at a similar stack depth,

also storing a local variable at page offset 0x128.

evicting our target victim, exposing it Rowhammer. We ob-

serve that with physically-indexed caches, we can easily form

eviction sets for our victim during the templating phase, since

during that phase, we control the victim physical page and

know the lower physical address bits. When we release the

victim page and force the syscall to use it, we can use the same

eviction set made of userspace pages, giving us the ability to

flush kernel data from the cache at will.

Stalling Kernel Execution. The last remaining challenge

for our tester syscall is flipping the victim variable in parallel

with syscall execution. We must wait for the victim variable

to be first initialized with its pointer value, and then flip the

pointer before it gets dereferenced. If the syscall is left to

run normally, this window will likely be too tight to induce

a bit-flip, especially in the case of DDR4 where we require

multi-sided hammering. Furthermore, since our victim runs

in the kernel, we have no direct way of knowing which line

of code the victim is executing at any given time and cannot

precisely synchronize our hammering to begin when needed.

FUSE. Prior work relied on the userfaultfd syscall, which

can be used to indefinitely stall the kernel [9, 42]. However,

this syscall has recently been restricted to superuser privilege.

Alternatively, Linux’s filesystem in userspace (FUSE), can be

used to achieve a similar effect [17]. With FUSE, we can map

files to an attacker-defined filesystem, force the victim syscall

to interact with such files, and define the filesystem handlers

to stall indefinitely. This consequently stalls the victim syscall,

giving us room to flip bits.

Additionally, even if the target syscall does not directly

trigger any of our handlers, so long as the syscall requests a

lock, semaphore, or mutex, we can call other syscalls that use

the same resources, wait for them to hold the lock, and then

stall them indefinitely. Without access to the lock, our target

syscall will not be able to run until our handler completes.

Moreover, since the kernel forbids mixing declarations and

code, and since optimal code holds locks for as briefly as pos-

sible, lock requests tend to be conveniently located between

victim variable initialization and use.

Thread Contention. For distributions of Linux that may

not have FUSE installed, we devise an alternate technique

that can delay the tester syscall. We simply allocate numerous

threads that each request the same lock as our tester syscall

and have the syscall run in parallel with all threads. With

numerous threads contending for the same resource, the tester

syscall’s execution becomes delayed, giving us enough time

to hammer and flip bits. This technique is less reliable than

FUSE, as the tester syscall may get the resource ahead of its

contenders, before we have time to flip the victim. We show

that despite this disadvantage, this technique can work against

the tester syscall in practice (see Section 5.1).

Simultaneous Thread Hammering. We can now hammer

a syscall to identify which thread contains the flip-vulnerable

page. However, consider that a single "round" of Rowham-

mering typically requires tens to hundreds of thousands of

accesses to flip a bit. Additionally, its helpful to perform mul-

tiple repeated rounds of hammering to ensure bit-flips. This

means our hammering operations will require time on the or-

der of milliseconds. Furthermore, as explained in Section 4.2,

we have identified multiple flip-vulnerable pages, each with

their own aggressor set, that could each have been success-

fully massaged into our target victim. This means we need

to hammer every aggressor set for each test, and we need to

repeat this process for every thread that potentially contains a

flip-vulnerable page. Multiplying the time needed for a sin-

gle hammer procedure by the number of aggressor sets and

number of threads results in a process that takes several hours.

To reduce the time required, we instead hammer all threads

in parallel. In the case of using FUSE for stalling, we create a

single file shared by all threads, and run every thread until it

is forced to stall by our file system handler. This causes every

thread to load its local variable data in DRAM and keep it

there until the filesystem allows the threads to continue. Now,

running our eviction sets and hammering our aggressors for

one round will simultaneously hammer all threads, flipping

any variables that use a flip-vulnerable page. We therefore

only need to perform our hammering rounds once, reducing

the required time from hours to seconds.

Reducing Risk of Bad Flips. Simultaneously massaging

numerous flippy pages into kernel memory introduces a new

risk. We may potentially cause an important kernel structure

(other than our target) to use a flip-vulnerable page and inad-

vertently flip a critical value. In the worst case, this can cause

a kernel panic and crash the victim system, which is undesired

since our goal is to target confidentiality, not availability.

To help alleviate the risk of a crash, we can take advantage

of a PRIME+PROBE side-channel. Note that we have already

formed an eviction set of addresses that occupy the same

cache set as our flip-vulnerable victim. Besides directly using

these addresses for eviction, we can also use them for PRIME+

PROBE testing. Before we perform any hammering, we first

access every address in our eviction set to ensure the cache is

occupied by our data. We then repeatedly access our eviction

set, timing how long each access takes, and run a candidate

victim thread in parallel. If the victim thread uses the flip-

vulnerable victim page, it will affect the time required to

access our eviction set addresses, revealing which threads

may use the massaged flip-vulnerable pages.

PRIME+PROBE tends to be a noisy measurement, and re-

peating measurements enough times to eliminate noise would

take impractically long. We therefore use the noisy mea-

surement with conservative thresholds to filter which threads

should be hammer tested. The hammer testing then shows

which thread uses the flippy page with 100% accuracy.

4.4 Online Stage: Leaking Data
The remaining step is to flip the target syscall pointer, leading

it to point to data we control, granting arbitrary kernel reads.

Targetting the Kernel Heap. The first challenge is how

to point this victim to our own controlled data. An obvious

choice might be to flip a high order bit and force a point to

userspace, where we could control a large region of mem-

ory. However, recent processors come with supervisor mode

access prevention (SMAP). This prevents the kernel from

accessing any data in userspace. We must therefore inject

our own data directly into the Linux kernel. Even though our

target pointer resides on the stack, the pointer value may point

either to kernel stack or heap data. Since we can realistically

Figure 4: Filling victim memory with artificial structs that

contain attacker data. Flipping a struct pointer to point to our

structs gives us control of the true struct’s member variables.

flip only a single bit, it is most practical to attempt changing

this pointer to point to an alternate address also within the

same memory region. Since the gadget chosen for our ex-

ample end-to-end attack uses a heap pointer (Section 5), we

focus on injecting our data into the kernel heap, noting that

injecting data into the stack is possible as well [9, 42].

Spraying the Heap. The first question is how to inject heap

data. Prior works have explored different techniques for heap

spraying [50], however, here we have an advantage in that we

have none of the usual constraints characteristic of heap spray

exploits, such as reusing dangling pointers.

We find that pipes act as a convenient mechanism for stuff-

ing the kernel with data that we control, as previously demon-

strated on non-Linux operating systems [18]. Pipes are de-

signed to act as files that users can read and write from, but

instead of storing values in an actual file, they are stored in

the kernel heap. Pipes can store 16 pages of data, and multiple

pipes can be allocated up to the operating system’s hard limit

of about 1 million files. Furthermore, we can swap data in and

out of the pipe at any time by simply writing to our pipe of

choice, which will prove useful for the final step of the attack.

Spray Contents. We need to fill the heap with values such

that if the victim pointer points to our heap data, we can lead

subsequent instructions in the syscall to point to secret data.

We thus consider the structure of the victim struct and form

artificial structs to populate the kernel heap. When the vic-

tim is flipped to point to an artificial struct, every subsequent

dereference will pull from our artificial struct, allowing us

to fill the victim syscall with our own values and take over

the execution path. As an example, suppose the target gad-

get behaves as show in Figure 4. The key to this gadget is

the pointer p pointing to a struct of type ft. We can flip this

pointer to point to a location of memory we control, contain-

ing an artificial ft struct. From here, malicious, len, pt, and

idx values can be set to control the number of addresses the

syscall will read , and what each of those addresses will be.

Positioning Heap Contents One challenge is positioning

our data so that its address is one flip away from the victim

pointer. Like any address, the victim address consists of two

components, the higher order bits signifying the page, and the

lower order bits signifying the page offset. Our injected heap

data will reside on a separate page from the victim, meaning

our bit-flip must occur in the page field of the address, and the

page offset of our injected data must match that of the victim

variable’s original pointer.

Since this victim value is pointing to the heap, the page and

offset values are randomized, as the heap values are allocated

at random. To counter the random nature of the page value,

we spray the heap with as many artificial structs as possible,

maximizing the odds that we control a page one bit-flip away.

The page offset value is also random, but, since we target

struct pointers, the lower order bits of the page offset are

restricted based on the size of the struct being pointed to,

as the struct must be aligned in memory. For example, we

find that pointer value in our target in Section 5.1 is always a

multiple of 0x40. Therefore, within the pages we control in

the heap, we can position our artificial struct at every multiple

of this value over the space of the entire page. This guarantees

that if we point to the page containing our data, the victim

struct will point to an offset containing our data as well.

Checking Heap Spray Using Flip. At this point, we have

filled the heap with data we control. However, we need to be

sure we control data that is one flip away from our victim (See

Figure 5). Therefore, we must first set our attacker-controlled

heap values such that they point to fixed control data in the

kernel, before we attempt to leak secrets. This way, we can

spray the heap, flip our bit, and check if the gadget leaks out

control data to confirm a successful heap spray. For the control

data, we use tables used for Linux’s AES encryption libraries,

as they contain 16KB of contiguous, constant, unique data. If

we’re able to successfully read out bytes from this table, we

know our heap data landed in a useful position. Otherwise,

we simply deallocate our heap data and attempt a reallocation.

We can point to control data in presence of KASLR by relying

on existing techniques to derandomize kernel addresses [38].

It is worth noting here that the repeated attempts at landing

heap data at a useful address is precisely why the tester syscall

is needed. Without the tester syscall, we would be unsure

whether we are unable to flip bits due to not controlling a

flippy page in the kernel or due to an unsuccessful heap-spray

attempt, and would have to run numerous heap-spray attempts

on each thread to be confident the issue is due to the lack

of a flippy bit. Fortunately, the tester syscall guarantees the

presence of a flip in a given thread, allowing us to repeatedly

heap-spray and hammer a single thread, while being fully

confident in the presence of a bit-flip.

Pointing to Leak Target. At last, we are ready to arbitrarily

read data from the kernel. For this final step, we simply write

to the pipes containing our heap data, filling the pipes with

pointers to whichever address we wish to leak. We then run the

syscall again, flip the gadget pointer, and read out data from

the chosen address. For example, we can point to the physmap,

and read all physical memory on the victim machine.

Results. The leakage rate depends on the data returned by

the victim syscall. Each time we hammer and call the syscall,

we get one return value with leaked data. Since we stall for

about 0.5 seconds to give time for hammering, the maximum

theoretical leakage rate is 128 bits/s (when the return value

is 64 bits). See Section 5.2 for an empirical evaluation on a

chosen example gadget present in the kernel.

5 Attacking the Linux Kernel

As a proof-of-concept of the risk posed by GadgetHammer

we demonstrate an end to end attack on the Linux kernel,

successfully mounting our attack on an existing syscall.

5.1 Target Victims

Target Gadget. We identify a suitable GadgetHammer gad-

get in the ioctl syscall. In particular, within the pipe_ioctl
function located in fs/pipe.c. A simplified version of this

gadget is shown in Listing 3. The usual use case of this func-

tion is for the user to pass in a file descriptor referring to

a pipe (filp on Line 1), and receive the number of unread

bytes contained in that pipe. The syscall begins by extracting

the private_data pointer from filp and passing the pointer

value to the local pipe variable (Line 2). The pipe variable

now points to a struct containing all corresponding metadata.

1 pipe_ioctl(struct file *filp , unsigned int
cmd, unsigned long arg){

2 struct pipe_inode_info *pipe = filp ->
private_data;

3 int count , head , tail , mask;
4 ...
5 __pipe_lock(pipe);
6 count = 0;
7 head = pipe ->head;
8 tail = pipe ->tail;
9 mask = pipe ->ring_size -1;

10 while(tail != head){
11 count += pipe ->bufs[tail & mask].len;
12 tail++;
13 }
14 __pipe_unlock(pipe);
15 return put_user(count , (int _user *)arg);
16 }

Listing 3: GadgetHammer example kernel gadget

The syscall then locks a semaphore (Line 5) to ensure the

pipe will not be modified while values are read out. On Lines

7-9 meta data is extracted giving the starting address (head),

ending address (tail) and maximum size of the pipe data

Figure 5: Confirming heap spray results. The left side shows that if our heap sprayed data does not land at an address one bit-flip

away from the victim, the gadget will return junk values. We repeat the heap spray until we can read out our "control" data from

the kernel, as shown on the right side.

(ring_size). This data is used to iterate through the pipe’s

buffers, starting from the tail and ending at the head (Lines

10 - 12), using count to keep a running sum of the number of

bytes in each buffer. Finaly, the pipe semaphore is unlocked

(Line 14) and the number of bytes is passed back (as count)

to the calling function via put_user (Line 15).

Flipping the Target Gadget. The target victim for bit-

flipping is the pipe pointer variable declared and initialized

on Line 2. Note that this gadget follows the pattern of heavily

relying on this pointer for passing arguments, as the struct

pointer is repeatedly dereferenced such that its members pop-

ulate the function’s local variables.

The goal, then, is to flip the value of pipe such that it points

to our data. This data is then subsequently used as the base

address for the bufs array (Line 11). Therefore, we can set

this base address of bufs to point to any kernel address and

read out its contents as an array access. From here, the tail
variable is masked by a mask variable, and used as an index

into our base array address to read out leaked data. This leaked

data then gets added to the count variable (Line 11). After

this, the tail index variable is incremented and additional

data will be read out from the next entry in bufs and added

to count. This process repeats as many times as specified by

the loop and head variables, due to the loop in Line 10.

In a hypothetical scenario of controlling only the bufs
array, the target data becomes partially scrambled by the ad-

dition of subsequent values. Even then, it would be possible

to leak sums of secret data at various starting addresses and

then filter out the noisy additions from the desired target data.

However, here lies the strength of controlling the pipe struct

pointer itself, as we can control all the variables of this func-

tion and consequently control the number of loop iterations

and the array index. By setting our injected data to populate

tail with 0 and head with 1, we can ensure the victim will

loop only once, writing the desired leak target to count and

then immediately returning this value to the calling attacker.

Tester Gadget. As explained in Section 4.3, it is useful to

have a tester gadget that we can use to confidently check for

bit-flips in the kernel. We identify the removexattr function,

located in the fs/xattr.c file as such a gadget, shown in

Listing 4. We can reach this gadget via the fremovexattr
syscall. This syscall is part of the xattr family of syscalls,

which are used to interface with "extended attributes," essen-

tially adding additional properties to files for security and file

management. As the name suggests, removexattr removes

an attribute from a specified file. To specify which attribute

to remove, users pass the name of the attribute (as a string) as

one of the syscalls arguments.

The function starts by copying an attribute name passed by

the user via name into the local kernel variable kname (Line

4). Lines 5-8 simply check if a proper attribute name with an

appropriate length was used before calling vfs_removeattr
to remove the specified attribute (Line 9).

1 removexattr(....,const char __user *name){
2 int error;
3 char kname[XATTR_NAME_MAX + 1];
4 error = strncpy_from_user(kname , name ,

sizeof(kname));
5 if(error == 0 || error == sizeof(kname))
6 error = -ERANGE;
7 if(error < 0)
8 return error;
9 return vfs_removexattr(..., kname);

10 }

Listing 4: GadgetHammer example tester gadget

Flipping Tester Gadget. The key to this syscall is the

kname variable shown at Line 3. This is a 256 byte long array

that stores the name of the attribute, passed in as a string

from userspace. To use the syscall as a tester gadget, we

first open any arbitrary file and add an attribute with a name

consisting of 256 characters. We then call fremovexattr to

remove the attribute we just added, meaning kname (Line 3)

will be occupied by 256 characters of our choice. Normally,

removexattr would then continue execution and remove our

attribute via vfs_removexattr (Line 9).

However, here we use Rowhammer to flip one of the char-

acters stored in kname. If we successfully flip one of these

characters, kname will no longer have a string that properly

specifies an attribute, meaning vfs_removexattr will be un-

able to remove our attribute and will return an error instead

(Line 9). Thus, by calling fremovexattr, hammering, and

checking if our attribute is still on the specified file, (or simply

checking if an error was returned) we can test for flips in the

kernel. Furthermore, the 256 addresses the kname array occu-

pies in the kernel stack overlaps with the address of the pipe
variable, our flip target in our main leakage gadget (Listing 3,

Line 2). This allows us to use fremovexattr (via kname) to

test for bit-flips at the required offset in the kernel stack.

Simultaneous Hammering In order to avoid the impracti-

cally long time required to hammer each thread one by one,

we run all threads simultaneously until they have all loaded

their syscall stack variables into memory and are stalled on our

filesystem. This allows us to perform our hammering rounds

once and simultaneously test all threads for flips. However,

this also requires the fremovexattr call in every thread to

use the same file. Furthermore, we test each thread by at-

tempting to remove an attribute, where unsuccessful removal

means no flip occurred. Since all threads use the same file,

each thread needs to add a unique attribute, otherwise removal

of the attributes by any thread would cause subequent threads

to have unsuccessful removals (regardless of flips) since the

file no longer holds the attribute.

However, a file can store only a limited number of attributes,

preventing us from adding thousands of unique attributes that

would be required for the thousands of threads. Therefore,

we organize threads into groups, with each group sharing

a single, unique file. Since each group contains a limited

number of threads, each thread is free to add a unique attribute

to its group’s file without hitting the limit. We can then stall

all of these "group files" simultaneously and test all threads,

each with a unique attribute. Any thread that returns an error

contains a flip-vulnerable page.

Stalling. We use FUSE to stall execution for a guaran-

teed 0.5 seconds to allow a comfortable hammering window.

This is accomplished by first using FUSE to create our own

filesystem, including the handlers for any files mapped to our

system. We define these handlers such that any basic inter-

actions with corresponding files (e.g., writing, reading) will

stall indefinitely. Next, we map a pipe to our filesystem and

attempt to write to this pipe via pipe_write. Writing to a

pipe requires holding a mutex via pipe_lock, and since this

write interaction is defined by our filesystem, the write to the

pipe will stall and the mutex will be held indefinitely. Thus,

any subsequent calls to pipe_ioctl will stall indefinitely

upon hitting pipe_lock (Listing 4, line 5), as the mutex is

held by our pipe_write call, thereby allowing us to create a

stalling window for hammering.

While FUSE provides the advantage of creating an indef-

inite stalling window, the FUSE package is not installed by

default on all distributions of Linux. Thus, we have also suc-

cessfully flipped tester gadget bits without FUSE by relying

only on thread contention. We spawn 1000 threads, each si-

multaneously attempting to write to a pipe, causing them to

contend over the pipe_lock mutex. This leads to a delay

in pipe_ioctl as well, as it must contend with 1000 other

threads for the mutex before the syscall can complete. Since

we do not control the order in which mutex requests are served,

the delay can vary from completely negligible to above the re-

quired 0.5 second needed for hammering, depending entirely

on the order in which threads are given the mutex. We observe

that repeating this approach 100 times per gadget-flip-attempt

is sufficient to guarantee at least one attempt will encounter a

stalling window large enough to allow for bit-flipping.

Thus, while FUSE grants a guaranteed stalling window,

and guaranteed bit-flips within a single hammering round,

thread contention does not rely on a potentially unavailable

package, but requires more attempts per bit-flip.

Deallocating the Tester Gadget. Lastly, now that we have

successfully flipped a bit in our tester gadget, we need to use

the same flip in our target gadget. This can be achieved simply

by calling the target gadget within the same thread as the tester

gadget. That is, when we return from the tester gadget syscall,

all the tester gadget variables will be popped off the kernel

stack, making room for the target gadget variables.

5.2 Attack Execution

Experimental Setup. Having identified our targets, we

conducted the attack following the steps laid out in Section 4.

We ran our evaluation on an Intel i9-9900K processor, using

a Samsung M378A1K43BB1-CPB DDR4 DIMM, running

an unmodified Linux kernel version 5.16.2 (Ubuntu 18.05.5

LTS) as well as an Intel i7-7700 CPU, using a Samsung

M378A1K43BB2-CRC DDR4 DIMM running an unmod-

ified Linux kernel version 5.16.2 (Ubuntu 20.04.6 LTS). To

better understand the performance and success rate of each

stage of the attack, we ran each stage in isolation repeatedly

for 24 to 72 hours before running all stages together in a

complete end-to-end attack.

Memory Templating We began by searching for 5 bit-flips

during the templating stage, as well as an evictions set for each

flip. We restricted our search only to flips at the page offset of

our flip-target, pipe (0xecb through 0xec9). Within a 48 hour

period of repeated hammering, we observed 7682 bit-flips

within pages at these offsets. Of these flips, 370 were reliably

reproducible. On average, it took 5.8 minutes to obtain 1

reproducible flip. Searching for flips at 5 different addresses

strikes a reasonable balance between the time needed for

bit-flip search and success rate of memory massaging.

Memory Massaging We unmapped our 5 reproducible

flippy pages and allocated 8192 threads, hoping at least 1

flippy page would be successfully massaged into the kernel

stack. Additionally, to reduce the risk of hammering a bit in a

dangerous position, we used our PRIME+PROBE side-channel

to check if our victim threads contained one of our flippy

pages in the required position on the stack. Note that the stack

allocated multiple pages, but we only consider an attempt

successful if the flippy page is allocated to the stack page

containing our flip-target. We observed that an unmapped

flippy page landed at the required position in the kernel stack

3 times out of 37 attempts, yielding an accuracy of 8.1%.

While the accuracy is quite low, massaging attempts can be

repeated until the page lands, as done in prior work [40].

Additionally, to better understand how increasing the num-

ber of simultaneously massaged flips affects massaging, we

ran tests unmapping a single flippy page and unmapping 50

flippy pages. The 1 flip test showed a success rate of 0.65%,

landing 1 out of 153 attempts, while the 50-flip test showed a

33% accuracy, landing 4 out of 12 attempts.

Prime+Probe. Finally, we tested the ability of PRIME+

PROBE to detect cases in which a flippy page landed in the

kernel stack. Massaging attempts for these experiments were

made using 5-flippy pages at a time. In this case, the flippy

page was considered to have landed if it resided anywhere

among the 4 pages of kernel stack (rather than the specific tar-

get page) since that is the extent to which PRIME+PROBE can

detect. Among 13 cases of the victim kernel stack containing

a flippy page, 8 were correctly identified via PRIME+PROBE,

yielding an accuracy of 61.5%. Any of the remaining false

negatives would result in another massaging attempt, giving

a total average time of 25 hours for the offline stage.

It is also worth noting that of all the massaging attempts,

the PRIME+PROBE side-channel reported 5 false positives

out of 34 instances (14.7%) of a flip not landing in the victim

stack, allowing hammering to occur when a bit-flip is in a

potentially dangerous position in the kernel. However, we

additionally ran a test consisting of 60 5-flip massage tests

without the PRIME+PROBE side-channel and observed only

2 crashes. Thus, even when allowing a small percentage of

false negatives, we did not observe any dangerous kernel flips

while the side-channel was active, making PRIME+PROBE a

useful filter for preventing kernel panics.

Checking for Flips. Next, we checked which threads contain

flippy bits. For each thread, we called our tester syscall, and

stall operation for 0.5 second, while performing simultaneous

hammering on all threads. Thanks to the simultaneous ham-

mer, this step completed within a single stalling window of

0.5 second. Since our bit-flips are reliably reproducible, this

step completed with 100% accuracy in one attempt.

Heap Spraying. Finally, we sprayed the heap with artificial

structs. We then called ioctl within the thread containing

the flippy page, and hammered in parallel. If we did not leak

the expected data, we assumed the heap spray did not land our

target data at a location one bit-flip away and sprayed again.

For our evaluation, we made 3485 attempts to land our

attacker-controlled data into the heap at a position 1 bit-flip

away from our target gadget. On average, each attempt re-

quired 129 spray attempts, averaging 38.9 seconds to land

data at a useful position in the heap. Once the spray had suc-

cessfully landed, we could swap the sprayed data without

changing its position in the heap, allowing us to point to any

address in the kernel without needing to heap-spray again.

Leakage Rate. After completing the previous stages end-to-

end on an unmodified kernel, we left the attack to leak data

over a 48-hour period. This process consisted of repeatedly

running the victim gadget, hammering our aggressors, reading

out arbitrary kernel data, swapping the sprayed data to point

to a new arbitrary kernel address, and repeating. We observed

an average leakage rate of 82.6 bits/second over this period.

5.3 Effects of Noise
To evaluate the performance of our attack under noisy con-

ditions, we ran our attack code in parallel with benchmarks

from the Phoronix Test Suite [35] running the default CPU and

memory (RAM) benchmarking suites.

The average time needed to find a reproducible bit-flip

increased from 5.8 minutes without noise to 25.15 minutes

under a CPU-heavy load and 309 minutes under a memory

heavy load. The drastic effect of the memory benchmark is

likely due to DDR4 Rowhammer relying on striking memory

in particular patterns to trigger bit-flips. Interference with this

careful pattern of accesses likely triggers TRR and causes

early refreshes before the bits have a chance to flip.

In contrast, the heap spray is not as sensitive to noise. The

CPU-intensive benchmarks increased the average time to land

heap data from 38 seconds to 52.4 seconds, and the memory-

intensive benchmarks increased the time to 55 seconds. This

is likely due to the heap spray relying on controlling large con-

tiguous regions of the heape, and that ordinary user processes

are unlikely to allocate large amounts of kernel heap.

Finally, the leakage rate under a CPU-heavy load decreased

from 82.6 bits/s to 41.9 bits/s and under a memory-heavy load

to 45.75 bits/s. The reduced rate is largely due to noise slow-

ing down the process of swapping out all the heap-sprayed

values when switching to a new address to leak.

5.4 Additional Gadgets

Read Gadget Search Tool. To explore the prevalence of gad-

gets in the kernel, we modified an existing gadget search tool.

We extended smatch [27] to report any instance in which a

nested pointer dereference sends data to a user via put_user,

copy_to_user, or copy_to_iter, which all have the prop-

erty of passing kernel data to a calling unprivileged user. We

classify such patterns as read gadgets.

Write Gadgets. We also observed that a similar pattern

can be exploited to form a potential write gadget. Compli-

mentary to copy_to_user is copy_from_user, which writes

user space data to a specified, safe kernel address. Further-

more, with the read gadget, we require a nested pointer deref-

erence. First, to point to data we control, which in turn points

to a target address to leak. With a single dereference, we

would simply read out data we already control back to our-

selves. However, with the write gadget, we only require a sin-
gle derefrence. If we flip a pointer to point to data we control,

and the kernel writes to that address we can arbitrarily write

to any address in memory. In other words, copy_from_user
itself includes a guaranteed pointer dereference, giving us

the same exploitable behavior as the read gadget without an

explicit nested dereference occurring prior to the function

call. We thus extend smatch further to report any instance of

a pointer dereference in which the result is used as the target

of get_user, copy_from_user, or copy_from_iter.

Results. We ran our modified smatch on Linux kernel

version 5.16.2 and observed 192 read gadgets, and 28 write

gadgets. We demonstrate an end-to-end attack on one such

gadget in Section 5. We note smatch’s known deficiencies in

reporting both false positives [4] and false negatives [42], but

believe it is the best option for detecting gadgets on the Linux

kernel [5]. We leave the development of a more precise tool

for future work.

6 Prior Attacks, Mitigations, and Conclusion

6.1 Prior Attacks
The first Rowhammer exploit demonstrated how the phe-

nomenon could be used to flip PTE bits and give an attacker

root privilege [40], and numerous follow-up studies have

demonstrated new techniques for reproducing PTE flips under

various attack scenarios [15, 31, 43, 44]. GadgetHammer is

complimentary to PTE flipping in that it demonstrates how

Rowhammer can be used to exploit general code patterns in

the Linux kernel. In contrast to prior work focused on PTE

flipping, GadgetHammer cannot be neutralized by protecting

a specific kernel structure (e.g., page tables) but requires more

holistic defenses to be considered. Similarly, other Rowham-

mer works present new ways to flip bits [13] or suggest alter-

nate structures to target [14]. GadgetHammer is, to the best of

our knowledge, the first work to consider targeting gadgets.

6.2 Mitigations

Code Patches. One defense option is to patch victim code

to remove any gadgets. However, creating such a defense

is non-trivial. As seen from attempts at patching Spectre

gadgets [4] the challenge is two-fold. First, it is difficult to

design tools that can automatically detect gadgets. They either

use methods too slow to scale to large code bases, such as

the kernel [16], or lack full coverage of all possible code

paths, relying on approximate techniques such as fuzzing [32].

Second, defenses designed to protect against specific patterns

can be bypassed by exploiting slight variations [23].

Software Mitigations for Rowhammer. Numerous attempts

have been made at preventing exploits via software. For ex-

ample, CATT [3] proposed placing buffers between user and

kernel memory. That way, hammering user-space aggressor

rows can cause flips only in the buffer addresses. However,

prior work has demonstrated that it is possible to flip sensitive

data despite these buffers [14]. Other defenses use a more di-

rect approach, storing only key kernel structures, specifically

PTEs, in flip-safe memory [49]. However, we have shown that

Rowhammer attacks do not need to target specific structures,

but rather can target general code patterns (nested pointers).

Hardware Mitigations for Rowhammer. The root of the

Rowhammer problem is the ability to flip bits in DRAM.

Therefore, numerous mitigations have attempted to prevent

Rowhammer by adding defenses directly to DIMMs to de-

tect and prevent flips. However, as mentioned in Section 2,

both DDR4’s Target Row Refresh [20], and DDR5’s Refresh

Management [21], have proven to be inadequate [13, 30].

Additional prior works have proposed ways to allow for

bit-flips, but prevent the use of flipped data by the CPU or

reallocating hammered rows of memory [11,37,47,48]. How-

ever, such mitigations require area and performance overheads

unlikely to be relinquished by manufacturers. Additionally,

RAMBleed [26] and ECCsploit [7] have shown how Rowham-

mer can be effective even in the presence of integrity checks.

Ultimately, past attempts at mitigations have shown that

allowing flips to occur in DRAM will inevitably lead to new

vulnerabilities. The surest way to protect against Rowhammer

would be to reconsider the fundamental causes of vulnerable

DIMMs, such as how much voltage is supplied to capacitors,

or the length of the slowest allowable refresh rate, to prevent

bit-flips from occurring in the first place.

Conclusions. In this paper, we have identified a new type

of Rowhammer gadget, demonstrating a particular pattern

that makes code vulnerable to confidentiality exploits via

Rowhammer. In future work, we hope to consider additional

code patterns that may be susceptible to bit-flips.

7 Acknowledgments

This research was supported by the Air Force Office of Sci-

entific Research (AFOSR) under award number FA9550-20-

1-0425; the Defense Advanced Research Projects Agency

(DARPA) under contracts HR00112390029 and W912CG-

23-C-0022, the Office of Navel Research (ONR) under Grant

No. N00014-22-1-2622; the National Science Foundation un-

der grant CNS-1954712; and gifts by Cisco and Qualcomm.

The views and conclusions contained in this document are

those of the authors and should not be interpreted as repre-

senting the official policies, either expressed or implied, of

the U.S. Government.

References

[1] Atri Bhattacharyya, Alexandra Sandulescu, Matthias

Neugschwandtner, Alessandro Sorniotti, Babak Falsafi,

Mathias Payer, and Anil Kurmus. Smotherspectre: ex-

ploiting speculative execution through port contention.

In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 785–

800, 2019.

[2] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano

Giuffrida. Dedup est machina: Memory deduplication

as an advanced exploitation vector. In 2016 IEEE sym-
posium on security and privacy (SP), pages 987–1004.

IEEE, 2016.

[3] Ferdinand Brasser, Lucas Davi, David Gens, Christopher

Liebchen, and Ahmad-Reza Sadeghi. Can’t touch this:

Software-only mitigation against rowhammer attacks

targeting kernel memory. In 26th {USENIX} Security
Symposium ({USENIX} Security 17), pages 117–130,

2017.

[4] Claudio Canella, Jo Van Bulck, Michael Schwarz,

Moritz Lipp, Benjamin Von Berg, Philipp Ortner, Frank

Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-

tematic evaluation of transient execution attacks and

defenses. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 249–266, 2019.

[5] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi,

Gilles Barthe, and Deian Stefan. Sok: Practical foun-

dations for software spectre defenses. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 666–

680. IEEE, 2022.

[6] Anirban Chakraborty, Sarani Bhattacharya, Sayandeep

Saha, and Debdeep Mukhopadhyay. Explframe: exploit-

ing page frame cache for fault analysis of block ciphers.

In 2020 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pages 1303–1306. IEEE,

2020.

[7] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and

Herbert Bos. Exploiting correcting codes: On the effec-

tiveness of ecc memory against rowhammer attacks. In

2019 IEEE Symposium on Security and Privacy (SP),
pages 55–71. IEEE, 2019.

[8] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Her-

bert Bos, Cristiano Giuffrida, and Kaveh Razavi. Smash:

Synchronized many-sided rowhammer attacks from

javascript. In USENIX Security Symposium, pages 1001–

1018, 2021.

[9] Lizzie Dixon. Using userfaultfd. 2016. URL:https:
//blog.lizzie.io/using-userfaultfd.html.

[10] Michael Fahr Jr, Hunter Kippen, Andrew Kwong,

Thinh Dang, Jacob Lichtinger, Dana Dachman-Soled,

Daniel Genkin, Alexander Nelson, Ray Perlner, Arkady

Yerukhimovich, et al. When frodo flips: End-to-end key

recovery on frodokem via rowhammer. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 979–993, 2022.

[11] Ali Fakhrzadehgan, Yale N Patt, Prashant J Nair, and

Moinuddin K Qureshi. Safeguard: Reducing the se-

curity risk from row-hammer via low-cost integrity

protection. In 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 373–386. IEEE, 2022.

[12] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and

Kaveh Razavi. Grand pwning unit: Accelerating mi-

croarchitectural attacks with the gpu. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 195–

210. IEEE, 2018.

[13] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor

Van Der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert

Bos, and Kaveh Razavi. Trrespass: Exploiting the many

sides of target row refresh. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 747–762. IEEE, 2020.

[14] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel

Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang

Schoechl, and Yuval Yarom. Another flip in the wall

of rowhammer defenses. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 245–261. IEEE, 2018.

[15] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.

Rowhammer. js: A remote software-induced fault attack

in javascript. In International conference on detection of
intrusions and malware, and vulnerability assessment,
pages 300–321. Springer, 2016.

[16] Marco Guarnieri, Boris Köpf, José F Morales, Jan

Reineke, and Andrés Sánchez. Spectector: Principled

detection of speculative information flows. In 2020
IEEE Symposium on Security and Privacy (SP), pages

1–19. IEEE, 2020.

[17] Jann Horn. How a simple linux kernel

memory corruption bug can lead to com-

plete system compromise, 2021. URL:https:
//googleprojectzero.blogspot.com/2021/10/
how-simple-linux-kernel-memory.html.

[18] Alex Ionescu. Sheep year kernel heap

fengshui: Spraying in the big kids’ pool.

2014. URL:https://www.alex-ionescu.com/
kernel-heap-spraying-like-its-2015-swimming/
-in-the-big-kids-pool/.

[19] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn

Gunter, and Kaveh Razavi. Blacksmith: Scalable

rowhammering in the frequency domain. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 716–

734. IEEE, 2022.

[20] JEDEC. Jesd209-4d lpddr4, 2017. URL:https:
//www.jedec.org/standards-documents/docs/
jesd209-4b.

[21] JEDEC. Jesd79-5b ddr5 sdram, 2022. URL:https:
//www.jedec.org/standards-documents/docs/
jesd79-5b.

[22] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,

Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad

Lai, and Onur Mutlu. Flipping bits in memory without

accessing them: An experimental study of dram distur-

bance errors. ACM SIGARCH Computer Architecture
News, 42(3):361–372, 2014.

[23] Paul Kocher. Spectre mitigations in microsoft’s c/c++

compiler, 2018. URL:https://www.paulkocher.
com/doc/MicrosoftCompilerSpectreMitigation.
html.

[24] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,

Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre

attacks: Exploiting speculative execution. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1–19.

IEEE, 2019.

[25] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu

Kim, Moritz Lipp, Nicolas Boichat, Eric Shiu, Mattias

Nissler, and Daniel Gruss. {Half-Double}: Hammer-

ing from the next row over. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3807–3824,

2022.

[26] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-

val Yarom. Rambleed: Reading bits in memory without

accessing them. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 695–711. IEEE, 2020.

[27] Jonathan LCorbet. Finding spectre vulnerabilities with

smatch, 2018. URL:https://lwn.net/Articles/
752408/.

[28] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lam-

ster, Misiker Tadesse Aga, Clémentine Maurice, and

Daniel Gruss. Nethammer: Inducing rowhammer faults

through network requests. In 2020 IEEE European
Symposium on Security and Privacy Workshops (Eu-
roS&PW), pages 710–719. IEEE, 2020.

[29] Giorgi Maisuradze and Christian Rossow. ret2spec:

Speculative execution using return stack buffers. In

Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 2109–

2122, 2018.

[30] Michele Marazzi, Patrick Jattke, Flavien Solt, and Kaveh

Razavi. Protrr: Principled yet optimal in-dram target

row refresh. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 735–753. IEEE, 2022.

[31] Onur Mutlu and Jeremie S Kim. Rowhammer: A retro-

spective. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(8):1555–1571,

2019.

[32] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and

Christof Fetzer. {SpecFuzz}: Bringing spectre-type

vulnerabilities to the surface. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1481–1498,

2020.

[33] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache

attacks and countermeasures: the case of aes. In Cryp-
tographers’ track at the RSA conference, pages 1–20.

Springer, 2006.

[34] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael

Schwarz, and Stefan Mangard. {DRAMA}: Exploiting

{DRAM} addressing for cross-cpu attacks. In 25th
{USENIX} security symposium ({USENIX} security
16), pages 565–581, 2016.

[35] phoronix-test suite. Phoronix test suite 10.8.4, Jun 2023.

URL:https://github.com/phoronix-test-suite/
phoronix-test-suite.

[36] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,

Cristiano Giuffrida, and Herbert Bos. Flip feng shui:

Hammering a needle in the software stack. In 25th
{USENIX} Security Symposium ({USENIX} Security
16), pages 1–18, 2016.

[37] Anish Saxena, Gururaj Saileshwar, Prashant J Nair, and

Moinuddin Qureshi. Aqua: Scalable rowhammer mit-

igation by quarantining aggressor rows at runtime. In

2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 108–123. IEEE, 2022.

[38] Michael Schwarz, Claudio Canella, Lukas Giner, and

Daniel Gruss. Store-to-leak forwarding: leaking data on

meltdown-resistant cpus (updated and extended version).

arXiv preprint arXiv:1905.05725, 2019.

[39] Michael Schwarz, Moritz Lipp, Daniel Moghimi,

Jo Van Bulck, Julian Stecklina, Thomas Prescher, and

Daniel Gruss. Zombieload: Cross-privilege-boundary

data sampling. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,

pages 753–768, 2019.

[40] Mark Seaborn and Thomas Dullien. Exploiting the dram

rowhammer bug to gain kernel privileges. Black Hat,
15:71, 2015.

[41] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athana-

sopoulos, Cristiano Giuffrida, Herbert Bos, and Kaveh

Razavi. Throwhammer: Rowhammer attacks over the

network and defenses. In 2018 {USENIX} Annual Tech-
nical Conference ({USENIX}{ATC} 18), pages 213–

226, 2018.

[42] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel

Genkin, and Kang G Shin. Spechammer: Combining

spectre and rowhammer for new speculative attacks. In

2022 IEEE Symposium on Security and Privacy (SP),
pages 681–698. IEEE, 2022.

[43] Victor van der Veen, Yanick Fratantonio, Martina Lin-

dorfer, Daniel Gruss, Calementine Maurice, Giovanni

Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuf-

frida. Drammer: Deterministic rowhammer attacks on

mobile platforms. In CCS, 2016.

[44] Victor Van der Veen, Martina Lindorfer, Yanick Fratan-

tonio, Harikrishnan Padmanabha Pillai, Giovanni Vigna,

Christopher Kruegel, Herbert Bos, and Kaveh Razavi.

Guardion: Practical mitigation of dma-based rowham-

mer attacks on arm. In Detection of Intrusions and
Malware, and Vulnerability Assessment: 15th Interna-
tional Conference, DIMVA 2018, Saclay, France, June
28–29, 2018, Proceedings 15, pages 92–113. Springer,

2018.

[45] Pepe Vila, Boris Köpf, and José F Morales. Theory

and practice of finding eviction sets. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 39–54.

IEEE, 2019.

[46] vusec. trresspass, Mar 2020.

[47] Minbok Wi, Jaehyun Park, Seoyoung Ko,

Michael Jaemin Kim, Nam Sung Kim, Eojin Lee,

and Jung Ho Ahn. Shadow: Preventing row hammer

in dram with intra-subarray row shuffling. In 2023
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 333–346. IEEE,

2023.

[48] Jeonghyun Woo, Gururaj Saileshwar, and Prashant J

Nair. Scalable and secure row-swap: Efficient and safe

row hammer mitigation in memory systems. In 2023
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 374–389. IEEE,

2023.

[49] Xin-Chuan Wu, Timothy Sherwood, Frederic T Chong,

and Yanjing Li. Protecting page tables from rowhammer

attacks using monotonic pointers in dram true-cells. In

Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 645–657, 2019.

[50] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing,

Adam Doupé, Yan Shoshitaishvili, and Tiffany Bao.

Playing for {K (H) eaps}: Understanding and improving

linux kernel exploit reliability. In 31st USENIX Security
Symposium (USENIX Security 22), pages 71–88, 2022.

[51] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal,

Zhi Wang, and Yuval Yarom. Pthammer: Cross-user-

kernel-boundary rowhammer through implicit accesses.

In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 28–41.

IEEE, 2020.

[52] Zhi Zhang, Yueqiang Cheng, and Surya Nepal.

Ghostknight: Breaching data integrity via speculative

execution. arXiv preprint arXiv:2002.00524, 2020.

[53] Zhi Zhang, Yueqiang Cheng, Minghua Wang, Wei He,

Wenhao Wang, Surya Nepal, Yansong Gao, Kang Li,

Zhe Wang, and Chenggang Wu. {SoftTRR}: Protect

page tables against rowhammer attacks using software-

only target row refresh. In 2022 USENIX Annual Tech-
nical Conference (USENIX ATC 22), pages 399–414,

2022.

